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Abstract. In this paper, we introduce two hybrid iterative algorithms of Jungck-Kirk-
Mann (J-K-M) and Jungck-Kirk (J-K) types to obtain some stability results for non-
selfmappings by employing a certain general contractive condition. Our results gen-
eralize and extend most of the existing ones in the literature.
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1 Introduction

Let (E,d) be a complete metric space, and for T:E — E a selfmap of E, let

Fr={p€E|Tp=p}

be the set of fixed points of T. Also, for S,T:Y —E, let C(S,T)={z€Y|Sz=Tz=p} be the
set of all coincidence points of S and T.

Definition 1.1. (see [20]) Let S,T:Y —E, T(Y) C S(Y) and z a coincidence point of S and
T, that is,
Sz=Tz=p.

For any xp €Y, let the sequence {Sx, }_, generated by the iterative procedure
Sxp1=f(T,x,), n=0,1,---, (1.1)
converge to p. Let {Sy, }~_, C E be an arbitrary sequence, and set
en=d(SYns1,f(Tyn)), n=01,--.

Then, the iterative procedure (1.1) will be called (S,T)-stable if and only if lim,, €, =0
implies that lim,, .. Sy, =p.
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This definition reduces to that of the stability of iterative process in the sense of
Harder and Hicks [6] when Y =E and S =1 (identity operator).

Remark 1.1. (i) If in (1.1), for xo € E,
Sxpp1=f(T,x,)=(1—way)Sxy+a,Tx,, n=01,--, wa,€[0,1], (1.2)

then we get the iterative process of Singh et al. [25].
(ii) If in (1.1), for xo € E, Y =E, S=1 (identity operator), then we obtain

xpi1=f(T,xp)=(1—ay)xp+a,Tx,, n=0,1,--, a,€[0,1], (1.3)

which is known as the Mann iterative process (see Mann [11]).
(iii) Also, if in (1.1), for xo € E, Y =E, S=1 (identity operator), we have

k , k
X1 =f(Txn) =Y aT'x,, Y aj=1, n=0,1,-, (1.4)
i=0 i=0

where k is a fixed integer and a; >0, ag #0, «; € [0,1], and (1.4) is the Kirk’s iterative
process [9].

For several stability results that have been obtained by various authors and differ-
ent contractive definitions, we refer to Berinde [3], Harder and Hicks [6], Osilike [14],
Rhoades [17,18] and others in the reference of this paper.

We introduce the following hybrid iterative algorithms to establish our results:

Let (E,|.||) be a normed linear space, S,T:Y — E and T(Y) C S(Y). Then, for xp €Y,
consider the sequence {Sx, }7>_, C E defined by

k k
an+1:“n,05xn+zlxn,iTlxm nzolll"'/ len,izll (15)
=1 i=0

0 ;i>0, 0,070, &, €[0,1], where k is a fixed integer.
If in (1.5), &, ; = &;, then we obtain the following interesting iterative scheme: For
xp €Y, define the sequence {Sx, }° , CE by

k .
Sxpi1=aoSxp+)_a;T'xy, n=01,-, Y aj=1, (1.6)
i=1 i=0
a; >0, a9 #0, a; €[0,1], where k is a fixed integer.

Remark 1.2. The scheme defined in (1.5) shall be called the Jungck-Kirk-Mann iterative
algorithm while that of (1.6) shall be called the Jungck-Kirk iterative algorithm.
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Remark 1.3. (i) Ifin (1.5), k=1, Y=E, S=1 (I being the identity operator), then we obtain
the Mann iterative process in (1.3).
(ii) Also, if in (1.5), k=1, then we obtain the Jungck-Mann iterative process in (1.2).
(iii) The iterative processes of Picard [1], Jungck [8], Krasnoselskij [10] and Schae-
fer [19] are also particular cases of those defined in (1.5) and (1.6). Indeed, (1.5) also
generalizes one of the iterative processes defined by the author in [16] but independent
of those introduced in [14,15,17,18].

Lemma 1.1. (see [3,4]) If 6 is a real number such that 0 <6 <1, and {e, }>_, is a sequence of
positive numbers such that lim,_,«€), =0, then for any sequence of positive numbers {u,}°
satisfying u,1 <ou,+e,, n=0,1,---, we have lim,_, o 1t, =0.

We shall employ the following contractive condition: For commuting operators S,T':
Y —E on an arbitrary set Y with valuesin E,T(Y) CS(Y), there exista€[0,1) and ¢: R"—
R™, a sublinear, monotone increasing function with ¢(0) =0 such that

|Tx—Ty|| <@(||Sx—Tx||)+a||Sx—Sy||, Vx,yeY. (1.7)

Remark 1.4. The contractive condition (1.7) is more general than those of Singh et al. [25]
and several others in the literature. For instance, if in (1.7), ¢(u)=Lu, Yu € RT,L>0, then
we obtain one of the contractive conditions of [25].

Also, if in (1.7), ¢(u) =0, Yu € R, then we obtain the second contractive condition
in [25].

The contractive condition (1.7) also reduces to those of [7,13,16,19,20] and so on, in
the selfmapping setting.

Lemma 1.2. Let (E,||-||) be a normed linear space and S,T:Y — E be commuting operators on
an arbitrary set Y with values in E satisfying (1.7) such that

T(Y)CS(Y), ||S*x—T(Sx)||<||Sx—Tx|, VxeY,

and
|S2x—=S%y) || <||Sx—Syl, VxyeY.

Let ¢ :R™ — R™ be a sublinear, monotone increasing function such that ¢(0) =0. Let z be a
coincidence point of S,T,S' and T', i.e.,

Sz=Tz=p and Sz=T'z=p.

Then, Vi€ N and Vx,y €Y, we have

. . S AN .
||sz_sz||§2(],)¢ I¢/(|Sx—Tx|)+a'|Sx~Sy]. (L8)
j=1
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Proof. We now prove that ¢ is sublinear: In order to show that ¢’ (i.e., iterate of ¢) is
sublinear, we have to show that ¢ is both subadditive and positively homogeneous.

We first establish that ¢ subadditive implies that each iterate ¢/ of ¢ is also subaddi-
tive: Since ¢ is subadditive, we have

p(x+y)<o(x)+o(y), YxyeR,.

Therefore,using subadditivity of ¢ in ¢ yields

¢*(x+y) =9(p(x+y)) <g(e(x)+9(1)) < 9(p(x)) +9(p(y) = ¢*(x) +¢*(¥),
which implies that ¢? is subadditive.
Similarly, applying subadditivity of ¢? in ¢3, we get
¢ (x+y) =0(¢*(x+1)) <9(¢* (1) + 9 (¥) < @(¢*(x)) + 0 (9*(¥))
=9 (x)+¢°(v),

which implies that q)3 is also subadditive. Hence, in general, each ¢", n=1,2,---, is sub-
additive.

We now prove that ¢ positively homogeneous implies that each iterate ¢’ of ¢ is also
positively homogeneous: Therefore, we have

p(ax)=ag@(x), VxeR" and a>0.
Using positive homogeneity of ¢ in ¢?, we have

¢ (ax) =g (¢ (ax)) = p(ag(x))
=ap(p(x))=ap?*(x), VxER, and a>0,

which implies that ¢? is positively homogeneous.

Hence, in general, each ¢", n=1,2,---, is positively homogeneous.

The second part of the proof of this Lemma is by mathematical induction (i.e., induc-
tion on 7). If i=1, then (1.8) becomes

1 1 L
ITx=Tyl < 1 ()t oI5k~ Txl) ol sx—Syl = o153~ Txl)-+alS3—Syl.
j=1

i.e., (1.8) reduces to (1.7) when i =1 and hence the result holds. O

Assume as an inductive hypothesis that (1.8) holds fori=m, m&N, i.e.,

m . .
=yl <3 (" )am gi(Ise= Tl syl
=1
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We then show that the statement is true for i=m+1;
T =Ty || = | T" (Tx) = T"(Ty) |

(W)am-fqofusax)T2x|)+aM|s<Tx)s<Ty)|

IN

a" I (| T(Sx) = T(Tx)||) +a™ || T(Sx) = T(Sy)]|

NagERNgE

-
(”?

)
)
a" (p(||S*x—T(Sx)||) +a]|S*x—S?y|)))
)
"o
)

j=1
j=1

a" gl (¢(||S*x—T(Sx)||) +al|S2x—S(Tx)))

AN
u NagE

( "¢/ (p(||Sx—Tx||) +al|Sx—Tx||)

<

+ﬂm§0(\ISX*TXH)HWH\ISX*S}/H

:(Z)gomﬂﬂsxTx|)+[(m"il)+(2)}a¢m(lsxTxl)

() () |2 s +

(M) (MY a2 qise—Ta+ [ () + () [P sx—Tx)
(5)+(5) ()G

[ /m

+ <1> + (?)}am(p(|5x—Tx|)+ﬂm+l|Sx—sy|
:(m“) "L (||Sx—Tx|) + (mnfl)aqom(ISxTxl)

m+1

m+1 _ m+1 _
(D)o s Txlp4er ("5 )am 1g2(I53- Tl

(ISx=Tx]||)+al|Sx—Syll))

"I Sx—Tx) +z< ]) a1 gi (|| 5x—Tx]))
j= 1

1
(" )amgtlsy—Tal)+am sk -sy)

m+1 L
(m].“)am“-fqofuSx—Tx|>+am+1|Sx—Sy|.
=1

2 Main results

Theorem 2.1. Let (E,||.||) be a normed linear space. Let S, T:Y — E be commuting operators
on an arbitrary set Y with values in E such that T(Y) C S(Y) and S(Y) or T(Y) is a complete
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subspace of E. Let z be a coincidence point of S, T, Stand T, i.e.,
S(z)=T(z)=p, S'z=Tz=p.

Let xo € Y and let {Sx,}5> o C E defined by (1.5) be the Jungck-Kirk-Mann iterative process
converging to p, with a,, ;€[0,1],i=0,1,--- ,k and Y5_a, ;=1. Suppose that S and T satisfy the
contractive condition (1.7), where ¢ :R™ — R is a sublinear monotone increasing function such
that ¢(0)=0. Then, the Jungck-Kirk-Mann iterative process is (S,T)-stable.

Proof. Let
{Syn}ioCE

and

k .
€n= Hsyn—&-l _D‘n,OS]/n - Z“n,iTz]/n
i=1

Let lim,_ o€, =0. Then, we shall prove that lim, .Sy, = p, by using both Lemma 1.1
and Lemma 1.2 as well as the triangle inequality. Therefore,

+

k .
“n,OS]/n + Z“n,iTl]/n - PH
i=1

2,0(SYn _p)‘i'i:l“n,i(Tiyn_p) H

k .
191 =PIl <[ Syns1 — 0,08~ Y, T
i=1

:en-"—‘

k k
0, 0SYn+ Y i T'Yn— )t ip
i=1 i=0

:en-"—‘

k .
<llanolllSyn—pll+Y_anillp—T'yull+en
—

1

k . .
=0n,0(|Syn—p| +Z“n,iHle_len | +en
i=1

k i A )
<analsva I+ Lans{ 1 (§) 9152 T2+ 525 e,

i=1 =1

k i N )
:0671,0||Syn_p” +Elxl{2 <l> a’_Jq)J(O)-i-a' Hp—syn || } +€,

i1 =3 J
k .
:<Z“n,iul> |Syn—pll+e€n, 2.1)
i=0

where ¢/(0) =0. Since

k k
0< Y ania’ < | Yia’
i=0 i=0

k .
<Y lanilla’l <1,
i=0
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using Lemma 1.1 in (2.1) yields
lim [[Sy, —pl|=0,

that is,
lim Sy, =p.

n—oo

Conversely, let lim,,_, Sy, = p. Then, by applying both Lemma 1.2 and the triangle
inequality, we have

k )
€n= H SYnt1—0n0SYn— Y 0 T'Yu
i—1

k .
<I1Syns1 =PI+ |[p—n0Syn— Y n T
i=1

k .
<NSYnt1—pll+anollSyn—pll+ Y anillp—T'yull
i=1

k . .
=[ISyus1—pll+anollSyn—pli+ Y anil T'z=T'yal|
i=1

k .
§\|5]/n+1—PH+( ocial)HSyn—pH—m as n— oo.
=0

1

The proof is complete. O

Theorem 2.2. Let (E,||.||) be a normed linear space. Let S,T:Y — E be commuting operators
on an arbitrary set Y with values in E such that T(Y) CS(Y) and S(Y) or T(Y) is a complete
subspace of E. Let z be a coincidence point of S, T, S' and T', i.e.,

S(z)=T(z)=p, S'z=T'z=p.

Let xo €Y and let {Sx, };,_, C E defined by (1.6) be the Jungck-Kirk iterative process converging
to p, with a; € [0,1], i=0,1,--- ,k and Y-¥_,a; = 1. Suppose that S and T satisfy the contractive
condition (1.7), where o:RT—R™ is a sublinear monotone increasing function such that ¢(0)=0.
Then, the Jungck-Kirk iterative process is (S, T)-stable.

Proof. The proof is similar to that of Theorem 2.1. O

Remark 2.1. Both Theorem 2.1 and Theorem 2.2 are generalizations and extensions of
several results in the literature. In particular, we refer to some similar results in Berinde [3],
Osilike [14], Osilike and Udomene [15], Rhoades [17, 18] Singh et al. [20] and some of
the results of the author [7,9,13,16]. However, our results are independent of those
of [14,15,17,18].
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