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Abstract. In this paper, we introduce two hybrid iterative algorithms of Jungck-Kirk-
Mann (J-K-M) and Jungck-Kirk (J-K) types to obtain some stability results for non-
selfmappings by employing a certain general contractive condition. Our results gen-
eralize and extend most of the existing ones in the literature.
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1 Introduction

Let (E,d) be a complete metric space, and for T : E→E a selfmap of E, let

FT ={p∈E|Tp= p}

be the set of fixed points of T. Also, for S,T :Y→E, let C(S,T)={z∈Y|Sz=Tz= p} be the
set of all coincidence points of S and T.

Definition 1.1. (see [20]) Let S,T : Y→E,T(Y)⊆S(Y) and z a coincidence point of S and
T, that is,

Sz=Tz= p.

For any x0∈Y, let the sequence {Sxn}∞
n=0 generated by the iterative procedure

Sxn+1= f (T,xn), n=0,1,··· , (1.1)

converge to p. Let {Syn}∞
n=0⊂E be an arbitrary sequence, and set

ǫn =d
(

Syn+1, f (T,yn)
)

, n=0,1,··· .

Then, the iterative procedure (1.1) will be called (S,T)-stable if and only if limn→∞ ǫn =0
implies that limn→∞ Syn = p.
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This definition reduces to that of the stability of iterative process in the sense of
Harder and Hicks [6] when Y=E and S= I (identity operator).

Remark 1.1. (i) If in (1.1), for x0∈E,

Sxn+1= f (T,xn)=(1−αn)Sxn+αnTxn, n=0,1,··· , αn ∈ [0,1], (1.2)

then we get the iterative process of Singh et al. [25].

(ii) If in (1.1), for x0∈E, Y=E, S= I (identity operator), then we obtain

xn+1= f (T,xn)=(1−αn)xn+αnTxn, n=0,1,··· , αn ∈ [0,1], (1.3)

which is known as the Mann iterative process (see Mann [11]).

(iii) Also, if in (1.1), for x0∈E, Y=E, S= I (identity operator), we have

xn+1= f (T,xn)=
k

∑
i=0

αiT
ixn,

k

∑
i=0

αi =1, n=0,1,··· , (1.4)

where k is a fixed integer and αi ≥ 0, α0 6= 0, αi ∈ [0,1], and (1.4) is the Kirk’s iterative
process [9].

For several stability results that have been obtained by various authors and differ-
ent contractive definitions, we refer to Berinde [3], Harder and Hicks [6], Osilike [14],
Rhoades [17, 18] and others in the reference of this paper.

We introduce the following hybrid iterative algorithms to establish our results:

Let (E,‖.‖) be a normed linear space, S,T : Y→ E and T(Y)⊆ S(Y). Then, for x0 ∈Y,
consider the sequence {Sxn}∞

n=0⊂E defined by

Sxn+1=αn,0Sxn+
k

∑
i=1

αn,iT
ixn, n=0,1,··· ,

k

∑
i=0

αn,i=1, (1.5)

αn,i≥0, αn,0 6=0, αn,i∈ [0,1], where k is a fixed integer.

If in (1.5), αn,i = αi, then we obtain the following interesting iterative scheme: For
x0∈Y, define the sequence {Sxn}∞

n=0⊂E by

Sxn+1=α0Sxn+
k

∑
i=1

αiT
ixn, n=0,1,··· ,

k

∑
i=0

αi =1, (1.6)

αi ≥0, α0 6=0, αi ∈ [0,1], where k is a fixed integer.

Remark 1.2. The scheme defined in (1.5) shall be called the Jungck-Kirk-Mann iterative
algorithm while that of (1.6) shall be called the Jungck-Kirk iterative algorithm.
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Remark 1.3. (i) If in (1.5), k=1, Y=E, S= I (I being the identity operator), then we obtain
the Mann iterative process in (1.3).

(ii) Also, if in (1.5), k=1, then we obtain the Jungck-Mann iterative process in (1.2).

(iii) The iterative processes of Picard [1], Jungck [8], Krasnoselskij [10] and Schae-
fer [19] are also particular cases of those defined in (1.5) and (1.6). Indeed, (1.5) also
generalizes one of the iterative processes defined by the author in [16] but independent
of those introduced in [14, 15, 17, 18].

Lemma 1.1. (see [3, 4]) If δ is a real number such that 0≤ δ< 1, and {ǫ′n}
∞
n=0 is a sequence of

positive numbers such that limn→∞ ǫ′n = 0, then for any sequence of positive numbers {un}∞
n=0

satisfying un+1≤δun+ǫ′n, n=0,1,··· , we have limn→∞ un=0.

We shall employ the following contractive condition: For commuting operators S,T :
Y→E on an arbitrary set Y with values in E,T(Y)⊆S(Y), there exist a∈[0,1) and ϕ : R+→
R+, a sublinear, monotone increasing function with ϕ(0)=0 such that

‖Tx−Ty‖≤ ϕ(‖Sx−Tx‖)+a‖Sx−Sy‖, ∀x,y∈Y. (1.7)

Remark 1.4. The contractive condition (1.7) is more general than those of Singh et al. [25]
and several others in the literature. For instance, if in (1.7), ϕ(u)=Lu, ∀u∈R+, L≥0, then
we obtain one of the contractive conditions of [25].

Also, if in (1.7), ϕ(u) = 0, ∀u∈R+, then we obtain the second contractive condition
in [25].

The contractive condition (1.7) also reduces to those of [7, 13, 16, 19, 20] and so on, in
the selfmapping setting.

Lemma 1.2. Let (E,‖·‖) be a normed linear space and S,T : Y→E be commuting operators on
an arbitrary set Y with values in E satisfying (1.7) such that

T(Y)⊆S(Y), ‖S2x−T(Sx)‖≤‖Sx−Tx‖, ∀x∈Y,

and

‖S2x−S2y)‖≤‖Sx−Sy‖, ∀x,y∈Y.

Let ϕ : R+ → R+ be a sublinear, monotone increasing function such that ϕ(0) = 0. Let z be a
coincidence point of S,T,Si and Ti, i.e.,

Sz=Tz= p and Siz=Tiz= p.

Then, ∀i∈N and ∀x,y∈Y, we have

‖Tix−Tiy‖≤
i

∑
j=1

(

i

j

)

ai−j ϕj(‖Sx−Tx‖)+ai‖Sx−Sy‖. (1.8)
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Proof. We now prove that ϕ is sublinear: In order to show that ϕi (i.e., iterate of ϕ) is
sublinear, we have to show that ϕ is both subadditive and positively homogeneous.

We first establish that ϕ subadditive implies that each iterate ϕj of ϕ is also subaddi-
tive: Since ϕ is subadditive, we have

ϕ(x+y)≤ ϕ(x)+ϕ(y), ∀x,y∈R+.

Therefore,using subadditivity of ϕ in ϕ yields

ϕ2(x+y)= ϕ(ϕ(x+y))≤ ϕ(ϕ(x)+ϕ(y))≤ ϕ(ϕ(x))+ϕ(ϕ(y))= ϕ2(x)+ϕ2(y),

which implies that ϕ2 is subadditive.
Similarly, applying subadditivity of ϕ2 in ϕ3, we get

ϕ3(x+y)=ϕ(ϕ2(x+y))≤ ϕ(ϕ2(x)+ϕ2(y))≤ ϕ(ϕ2(x))+ϕ(ϕ2(y))

=ϕ3(x)+ϕ3(y),

which implies that ϕ3 is also subadditive. Hence, in general, each ϕn, n=1,2,··· , is sub-
additive.

We now prove that ϕ positively homogeneous implies that each iterate ϕi of ϕ is also
positively homogeneous: Therefore, we have

ϕ(αx)=αϕ(x), ∀x∈R+ and α>0.

Using positive homogeneity of ϕ in ϕ2, we have

ϕ2(αx)=ϕ(ϕ(αx))= ϕ(αϕ(x))

=αϕ(ϕ(x))=αϕ2(x), ∀x∈R+ and α>0,

which implies that ϕ2 is positively homogeneous.
Hence, in general, each ϕn, n=1,2,··· , is positively homogeneous.

The second part of the proof of this Lemma is by mathematical induction (i.e., induc-
tion on i). If i=1, then (1.8) becomes

‖Tx−Ty‖≤
1

∑
j=1

(

1

j

)

a1−j ϕj(‖Sx−Tx‖)+a‖Sx−Sy‖= ϕ(‖Sx−Tx‖)+a‖Sx−Sy‖.

i.e., (1.8) reduces to (1.7) when i=1 and hence the result holds.

Assume as an inductive hypothesis that (1.8) holds for i=m, m∈N, i.e.,

‖Tmx−Tmy‖≤
m

∑
j=1

(

m

j

)

am−j ϕj(‖Sx−Tx)‖)+am‖Sx−Sy‖.
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We then show that the statement is true for i=m+1;

‖Tm+1x−Tm+1y‖=‖Tm(Tx)−Tm(Ty)‖

≤
m

∑
j=1

(

m

j

)

am−j ϕj(‖S(Tx)−T2x‖)+am‖S(Tx)−S(Ty)‖

=
m

∑
j=1

(

m

j

)

am−j ϕj(‖T(Sx)−T(Tx)‖)+am‖T(Sx)−T(Sy)‖

≤
m

∑
j=1

(

m

j

)

am−j ϕj(ϕ(‖S2x−T(Sx)‖)+a‖S2x−S(Tx)‖)

+am(ϕ(‖S2x−T(Sx)‖)+a‖S2x−S2y‖))

≤
m

∑
j=1

(

m

j

)

am−j ϕj(ϕ(‖Sx−Tx‖)+a‖Sx−Tx‖)

+am(ϕ(‖Sx−Tx‖)+a‖Sx−Sy‖))

≤
m

∑
j=1

(

m

j

)

am−j ϕj+1(‖Sx−Tx‖)+
m

∑
j=1

(

m

j

)

am+1−jϕj(‖Sx−Tx‖)

+am ϕ(‖Sx−Tx‖)+am+1‖Sx−Sy‖

=

(

m

m

)

ϕm+1(‖Sx−Tx‖)+

[(

m

m−1

)

+

(

m

m

)]

aϕm(‖Sx−Tx‖)

+

[(

m

m−2

)

+

(

m

m−1

)]

a2 ϕm−1(‖Sx−Tx‖)+···

+

[(

m

2

)

+

(

m

3

)]

am−2ϕ3(‖Sx−Tx‖)+

[(

m

1

)

+

(

m

2

)]

am−1ϕ2(‖Sx−Tx‖)

+

[(

m

1

)

+

(

m

0

)]

am ϕ(‖Sx−Tx‖)+am+1‖Sx−Sy‖

=

(

m+1

m+1

)

ϕm+1(‖Sx−Tx‖)+

(

m+1

m

)

aϕm(‖Sx−Tx‖)

+

(

m+1

m−1

)

a2 ϕm−1(‖Sx−Tx‖)+···+

(

m+1

2

)

am−1ϕ2(‖Sx−Tx‖)

+

(

m+1

1

)

am ϕ(‖Sx−Tx‖)+am+1‖Sx−Sy‖

=
m+1

∑
j=1

(

m+1

j

)

am+1−j ϕj(‖Sx−Tx‖)+am+1‖Sx−Sy‖.

2 Main results

Theorem 2.1. Let (E,‖.‖) be a normed linear space. Let S, T : Y →E be commuting operators
on an arbitrary set Y with values in E such that T(Y)⊆ S(Y) and S(Y) or T(Y) is a complete
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subspace of E. Let z be a coincidence point of S, T, Si and Ti, i.e.,

S(z)=T(z)= p, Siz=Tiz= p.

Let x0 ∈ Y and let {Sxn}∞
n=0 ⊂ E defined by (1.5) be the Jungck-Kirk-Mann iterative process

converging to p, with αn,i∈ [0,1], i=0,1,··· ,k and ∑
k
i=0αn,i=1. Suppose that S and T satisfy the

contractive condition (1.7), where ϕ :R+→R+ is a sublinear monotone increasing function such
that ϕ(0)=0. Then, the Jungck-Kirk-Mann iterative process is (S,T)-stable.

Proof. Let
{Syn}

∞
n=0⊂E

and

ǫn =
∥

∥

∥
Syn+1−αn,0Syn−

k

∑
i=1

αn,iT
iyn

∥

∥

∥
.

Let limn→∞ ǫn = 0. Then, we shall prove that limn→∞ Syn = p, by using both Lemma 1.1
and Lemma 1.2 as well as the triangle inequality. Therefore,

‖Syn+1−p‖≤
∥

∥

∥
Syn+1−αn,0Syn−

k

∑
i=1

αn,iT
iyn

∥

∥

∥
+
∥

∥

∥
αn,0Syn+

k

∑
i=1

αn,iT
iyn−p

∥

∥

∥

=ǫn+
∥

∥

∥
αn,0Syn+

k

∑
i=1

αn,iT
iyn−

k

∑
i=0

αn,i p
∥

∥

∥

=ǫn+
∥

∥

∥
αn,0(Syn−p)+

k

∑
i=1

αn,i(T
iyn−p)

∥

∥

∥

≤‖αn,0‖‖Syn−p‖+
k

∑
i=1

αn,i‖p−Tiyn‖+ǫn

=αn,0‖Syn−p‖+
k

∑
i=1

αn,i‖Tiz−Tiyn‖+ǫn

≤αn,0‖Syn−p‖+
k

∑
i=1

αn,i

{ i

∑
j=1

(

i

j

)

ai−j ϕj(‖Sz−Tz‖)+ai‖Sz−Syn‖

}

+ǫn

=αn,0‖Syn−p‖+
k

∑
i=1

αi

{ i

∑
j=1

(

i

j

)

ai−j ϕj(0)+ai‖p−Syn‖

}

+ǫn

=
( k

∑
i=0

αn,ia
i
)

‖Syn−p‖+ǫn , (2.1)

where ϕj(0)=0. Since

0≤
k

∑
i=0

αn,ia
i ≤

∣

∣

∣

k

∑
i=0

αn,ia
i
∣

∣

∣
≤

k

∑
i=0

|αn,i‖ai|<1,
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using Lemma 1.1 in (2.1) yields

lim
n→∞

‖Syn−p‖=0,

that is,

lim
n→∞

Syn = p.

Conversely, let limn→∞ Syn = p. Then, by applying both Lemma 1.2 and the triangle
inequality, we have

ǫn =
∥

∥

∥
Syn+1−αn,0Syn−

k

∑
i=1

αn,iT
iyn

∥

∥

∥

≤‖Syn+1−p‖+
∥

∥

∥
p−αn,0Syn−

k

∑
i=1

αn,iT
iyn

∥

∥

∥

≤‖Syn+1−p‖+αn,0‖Syn−p‖+
k

∑
i=1

αn,i‖p−Tiyn‖

=‖Syn+1−p‖+αn,0‖Syn−p‖+
k

∑
i=1

αn,i‖Tiz−Tiyn‖

≤‖Syn+1−p‖+
( k

∑
i=0

αia
i
)

‖Syn−p‖→0 as n→∞.

The proof is complete.

Theorem 2.2. Let (E,‖.‖) be a normed linear space. Let S,T : Y → E be commuting operators
on an arbitrary set Y with values in E such that T(Y)⊆ S(Y) and S(Y) or T(Y) is a complete
subspace of E. Let z be a coincidence point of S, T, Si and Ti, i.e.,

S(z)=T(z)= p, Siz=Tiz= p.

Let x0∈Y and let {Sxn}∞
n=0⊂E defined by (1.6) be the Jungck-Kirk iterative process converging

to p, with αi ∈ [0,1], i= 0,1,··· ,k and ∑
k
i=0αi = 1. Suppose that S and T satisfy the contractive

condition (1.7), where ϕ:R+→R+ is a sublinear monotone increasing function such that ϕ(0)=0.
Then, the Jungck-Kirk iterative process is (S,T)-stable.

Proof. The proof is similar to that of Theorem 2.1.

Remark 2.1. Both Theorem 2.1 and Theorem 2.2 are generalizations and extensions of
several results in the literature. In particular, we refer to some similar results in Berinde [3],
Osilike [14], Osilike and Udomene [15], Rhoades [17, 18] Singh et al. [20] and some of
the results of the author [7, 9, 13, 16]. However, our results are independent of those
of [14, 15, 17, 18].
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