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Abstract. Let p(z) be a polynomial of degree at most n. In this paper we obtain some new

results about the dependence of
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s

on ‖p(z)‖s for every α, β ∈ C with |α| ≤ 1, |β | ≤ 1, R > r > 1, and s > 0. Our results

not only generalize some well known inequalities, but also are variety of interesting results

deduced from them by a fairly uniform procedure.
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1 Introduction and Statement of Results

Let Pn be the class of all complex polynomials

p(z) =
n

∑
j=0

a jz
j

of degree at most n and p′(z) its derivative. For p ∈ Pn, define

‖p(z)‖s :=

{

1

2π

∫ 2π

0
|p(eiθ )|s

}
1
s

, 1 ≤ s < ∞

and

‖p(z)‖∞ := max
|z|=1

|p(z)|.
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According to a famous result Known as Bernstein’s inequality[4] , we have

‖p′(z)‖∞ ≤ n‖p(z)‖∞. (1)

Also concerning the maximum modulus of p(z) on |z| = R > 1, we have

‖p(Rz)‖∞ ≤ Rn‖p(z)‖∞ (2)

(for reference see [11]). Zygmund[13] has shown

‖p′(z)‖s ≤ n‖p(z)‖s, s > 1. (3)

whereas we can deduce the following inequality by applying a result of Hardy [9],

‖p(Rz)‖s ≤ Rn‖p(z)‖s, R > 1, s > 0. (4)

Also Arestov[1] proved that (3) remains true for 0 < s < 1 as well. It is clear that the inequalities

(1) and (2) can be obtained by letting s −→ ∞ in the inequalities (3) and (4) respectively. If

we restrict ourselves to the class of polynomials having no zeros in |z| < 1, the inequalities (3)

and (4) can be improved. In fact, it was shown by De-Bruijn[6] for s > 1 and Rahman and

Schmeisser[12] extended it for 0 < s < 1 that if p(z) is a polynomial of degree n having no zeros

in |z| < 1, the inequality (3) can be replaced by

‖p′(z)‖s ≤ n
‖p(z)‖s

‖1+ z‖s

, s > 0. (5)

Also Boas and Rahman[5] proved for s > 1 and Rahman and Schmeisser[12] extended it for 0 <

s < 1 that if p(z) is a polynomial of degree n having no zeros in |z| < 1, the inequality (4) can

be replaced by

‖p(Rz)‖s ≤
‖Rnz+ 1‖s

‖1+ z‖s

‖p(z)‖s, R > 1, s > 0. (6)

Aziz and Rather[2] obtained a generalization of the inequalities (3) and (4). In fact, they have

shown that if p ∈ Pn, then for every R > 1 and s > 1,

‖p(Rz)− p(z)‖s ≤ (Rn −1)‖p(z)‖s. (7)

Recently Aziz and Rather [3] considered a more general problem of investigating the dependence

of

‖p(Rz)−β p(rz)‖s on ‖p(z)‖s

for every β ∈ C with |β | ≤ 1, R > r > 1, s > 0 and extended the inequality (7) for 0 < s < 1 as

following.
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Theorem A. If p ∈ Pn, then for every β ∈ C with |β | ≤ 1 and R > r > 1, s > 0,

‖p(Rz)−β p(rz)‖s ≤ |Rn −β rn| ‖p(z)‖s .

Also for the class of polynomials not vanishing in |z| < 1, they proved:

Theorem B. If p∈Pn and p(z) does not vanish in |z|< 1, then for every β ∈C with |β | ≤ 1

and R > r > 1, s > 0

∥

∥p(Reiθ )−β p(reiθ )
∥

∥

s
≤

‖(Rn −β rn)z+(1−β )‖s

‖1+ z‖s

‖p(z)‖s. (8)

For self-inversive polynomials, the following inequality was proved by Dewan and Govil[7].

‖p(Rz)− p(z)‖s ≤ (Rn −1)‖p(z)‖s , s > 1. (9)

Aziz and Rather[3] generalized (9) by proving the following interesting result.

Theorem C. If p ∈ Pn is self-inversive polynomial, then for every β ∈ C with |β | ≤ 1 and

R > r > 1, s > 0

‖p(Rz)−β p(rz)‖s ≤
‖(Rn −β rn)z+(1−β )‖s

‖1+ z‖s

‖p(z)‖s. (10)

In this paper, we first prove the following result which among other things includes Theorem

A as a special case.

Theorem 1. If p ∈ Pn, then for every α , β ∈ C with |α | ≤ 1, |β | ≤ 1 and R > r > 1, s > 0,
∥

∥

∥

∥

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

∥

∥

∥

∥

s

≤

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}
∣

∣

∣

∣

‖p(z)‖s .

The result is best possible and equality holds for p(z) = λ zn, λ 6= 0.

If we take α = 0, then Theorem 1 reduces to Theorem A due to Aziz and Rather[3].

If we assume α = β = 1 in Theorem 1, then we get the following result.

Corollary 1. If p ∈ Pn, then for R > r > 1, s > 0,
∥

∥

∥

∥

p(Rz)− p(rz)+

{(

R + 1

r + 1

)n

−1

}

p(rz)

∥

∥

∥

∥

s

≤

∣

∣

∣

∣

Rn − rn + rn

{(

R + 1

r + 1

)n

−1

}
∣

∣

∣

∣

‖p(z)‖s . (11)

The result is best possible and equality holds for p(z) = λ zn, λ 6= 0.

If we take β = 1 in Theorem 1, we conclude the following result.

Corollary 2. If p ∈ Pn, then for every α ∈ C with |α | ≤ 1 and R > r > 1, s > 0,

∥

∥

∥

∥

p(Rz)− p(rz)+ α

{(

R + 1

r + 1

)n

−1

}

p(rz)

∥

∥

∥

∥

s

≤

∣

∣

∣

∣

Rn − rn + αrn

{(

R + 1

r + 1

)n

−1

}
∣

∣

∣

∣

‖p(z)‖s .

(12)
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The result is best possible and equality holds for p(z) = λ zn, λ 6= 0.

If we divide two sides of (12) by (R− r) and let R −→ r, we get:

Corollary 3. If p ∈ Pn in , then for every α ∈ C with |α | ≤ 1 and r > 1, s > 0,

∥

∥

∥

∥

zp′(rz)+
nα

r + 1
p(rz)

∥

∥

∥

∥

s

≤ nrn−1

∣

∣

∣

∣

1+
rα

r + 1

∣

∣

∣

∣

‖p(z)‖s . (13)

The result is best possible and equality holds for p(z) = λ zn, λ 6= 0.

Remark 1. If we let s −→ ∞ in (13), then it reduces to the following interesting inequality.

∣

∣

∣

∣

zp′(rz)+
nα

r + 1
p(rz)

∣

∣

∣

∣

≤ nrn−1

∣

∣

∣

∣

1+
rα

r + 1

∣

∣

∣

∣

max
|z|=1

|p(z)|, |α | ≤ 1, r ≥ 1, |z| = 1. (14)

For r = 1, (14) reduces to the following inequality which is due to Jain[8].

∣

∣

∣
zp′(z)+

nα

2
p(z)

∣

∣

∣
≤ n

∣

∣

∣
1+

α

2

∣

∣

∣
max
|z|=1

|p(z)|, |α | ≤ 1, |z| = 1. (15)

Therefore, for r = 1 in (13), we get the following interesting result which is a generalization of

(15).

Corollary 4. If p ∈ Pn, then for every α ∈ C with |α | ≤ 1, s > 0,

∥

∥

∥
zp′(z)+

nα

2
p(z)

∥

∥

∥

s
≤ n

∣

∣

∣
1+

α

2

∣

∣

∣
‖p(z)‖s . (16)

The result is best possible and equality holds for p(z) = λ zn, λ 6= 0.

For α = 0, (16) reduces to (3).

For p ∈ Pn and p(z) does not vanish in |z| < 1, we prove the following generalization of (8)

and improvement of (16).

Theorem 2. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every α , β ∈ C with

|α | ≤ 1, |β | ≤ 1 and R > r > 1, s > 0,

∥

∥

∥

∥

[

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

]∥

∥

∥

∥

s

≤

∥

∥

∥

[

Rn −β rn + αrn
{

(

R+1
r+1

)n
−|β |

}]

z+
[

1−β + α
{

(

R+1
r+1

)n
−|β |

}]
∥

∥

∥

s

‖1+ z‖s

‖p(z)‖s.

(17)

The result is best possible and equality holds for p(z) = λ zn + γ , |λ | = |γ | = 1.

For α = 0, Theorem 2 reduces to Theorem B. Also if we take α = β = 0, then (17) reduces

to (6).

The following consequence is concluded by applying Minkowski’s inequality in right hand

side of (17).
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Corollary 5. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every α , β ∈ C with

|α | ≤ 1, |β | ≤ 1, and R > r > 1, s > 1,

∥

∥

∥

∥

[

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

]
∥

∥

∥

∥

s

≤

∣

∣

∣
Rn −β rn + αrn

{

(

R+1
r+1

)n
−|β |

}∣

∣

∣
+

∣

∣

∣
1−β + α

{

(

R+1
r+1

)n
−|β |

}∣

∣

∣

‖1+ z‖s

‖p(z)‖s.

(18)

The result is best possible and equality holds for p(z) = λ zn + γ , |λ | = |γ | = 1.

Remark 2. If we take β = 1, and divide both sides of (18) by R− r and let R −→ r, we get

the following result.

Corollary 6. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every α ∈ C with

|α | ≤ 1 and r > 1, s > 1,

∥

∥

∥

∥

zp′(rz)+
nα

r + 1
p(rz)

∥

∥

∥

∥

s

≤
n
{

rn−1
∣

∣1+ rα
r+1

∣

∣+
∣

∣

α
r+1

∣

∣

}

‖1+ z‖s

‖p(z)‖s. (19)

The result is best possible and equality holds for p(z) = λ zn + γ , |λ | = |γ | = 1.

By letting s −→ ∞ in (19), we get the following result.

Corollary 7. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every α ∈ C with

|α | ≤ 1, and r > 1,

max
|z|=1

∣

∣

∣

∣

zp′(rz)+
nα

r + 1
p(rz)

∣

∣

∣

∣

≤
n

2

{

rn−1

∣

∣

∣

∣

1+
rα

r + 1

∣

∣

∣

∣

+

∣

∣

∣

∣

α

r + 1

∣

∣

∣

∣

}

max
|z|=1

|p(z)|. (20)

The result is best possible and equality holds for p(z) = λ zn + γ , |λ | = |γ | = 1.

For r = 1, (20) reduces to the following inequality which is due to Jain[8].

∣

∣

∣
zp′(z)+

nα

2
p(z)

∣

∣

∣
≤

n

2

{
∣

∣

∣
1+

α

2

∣

∣

∣
+

∣

∣

∣

α

2

∣

∣

∣

}

max
|z|=1

|p(z)|, |α | ≤ 1, |z| = 1. (21)

Therefore, for r = 1 in (19), we get the following interesting result which is a generalization

of (21) and improvement of (16).

Corollary 8. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every α ∈ C with

|α | ≤ 1, s > 1,

∥

∥

∥
zp′(z)+

nα

2
p(z)

∥

∥

∥

s
≤

n
{∣

∣1+ α
2

∣

∣+
∣

∣

α
2

∣

∣

}

‖1+ z‖s

‖p(z)‖s. (22)

The result is best possible and equality holds for p(z) = λ zn + γ , |λ | = |γ | = 1.

If we take α = 0, then (22) reduces to (5) for s > 1.

Finally, we prove the following result for self inversive polynomials which is an improve-

ment as well a generalization of some well known results.
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Theorem 3. If p ∈ Pn is self-inversive polynomial, then for every α , β ∈ C with |α | ≤

1, |β | ≤ 1, and R > r > 1, s > 0,

∥

∥

∥

∥

[

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

]∥

∥

∥

∥

s

≤

∥

∥

∥

[

Rn −β rn + αrn
{

(

R+1
r+1

)n
−|β |

}]

z+
[

1−β + α
{

(

R+1
r+1

)n
−|β |

}]
∥

∥

∥

s

‖1+ z‖s

‖p(z)‖s.

(23)

The result is best possible and equality holds for p(z) = zn + 1.

For α = 0, Theorem 3 reduces to Theorem C. If we take α = 0, β = r = 1 in Theorem 3, then

the inequality (23) reduces to (9). Also from this theorem, we can deduce so many interesting

results in a similar manner as the previous one.

2 Lemmas

For the proof of the theorems, we require the following lemmas.

Lemma 1. If p(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then for every

R > r > 1, and |z| = 1,

|p(Rz)| >

(

R + 1

r + 1

)n

|p(rz)|. (24)

Lemma 2. If F(z) be a polynomial of degree n having all its zeros in |z| ≤ 1 and f (z) be a

polynomial of degree at most n such that | f (z)| ≤ |F(z)| for |z| = 1, then for all α , β ∈ C with

|α | ≤ 1, |β | ≤ 1, and R > r > 1, |z| > 1

∣

∣

∣

∣

f (Rz)−β f (rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

f (rz)

∣

∣

∣

∣

≤

∣

∣

∣

∣

F(Rz)−βF(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

F(rz)

∣

∣

∣

∣

.

(25)

Lemmas 1 and 2 are due to Liman[10].

For γ = (γ0,γ1, · · · ,γn) and p(z) = anzn + an−1zn−1 + · · ·+ a0, let

Λγ p(z) =
n

∑
j=0

γ ja jz
j.

The operator Λγ is said to be admissible if it preserves one of the following properties:

1) p(z) has all its zeros in |z| ≤ 1.

2) p(z) has all its zeros in |z| ≥ 1.
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Now we state a result of Arestov[1].

Lemma 3. Let φ(x) = ψ(logx) where ψ is a convex nondecreasing function on R. Then

for all p ∈ Pn and each admissible operator Λγ ,

∫ 2π

0
φ

(

|Λγ p(eiθ )|
)

dθ ≤

∫ 2π

0
φ

(

C(γ ,n)|p(eiθ )|
)

dθ (26)

where C(γ ,n) = Max(|γ0|, |γn|).

By applying Lemma 3 to the function φ(x) = xs for every s > 0, we get

∫ 2π

0

(

|Λγ p(eiθ )|s
)

dθ ≤ (C(γ ,n))s
∫ 2π

0
|p(eiθ )|sdθ . (27)

Lemma 4. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every α , β ∈ C with

|α | ≤ 1, |β | ≤ 1 and R > r > 1, s > 0 and γ real,

∫ 2π

0

∣

∣

∣

∣

[

p(Reiθ )−β p(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p(reiθ )

]

+eiγ

[

Rn p(eiθ /R)−βrn p(eiθ /r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(eiθ /r)

]∣

∣

∣

∣

s

dθ

≤

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+ eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]s ∫ 2π

0
|p(eiθ )|sdθ .

(28)

Proof of Lemma 4. Let q(z) = zn p(1/z). Applying Lemma 2 to the polynomials p(z) and

q(z), we get for any α , β ∈ C with |α | ≤ 1, |β | ≤ 1 and R > r > 1,

∣

∣

∣

∣

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

∣

∣

∣

∣

≤

∣

∣

∣

∣

q(Rz)−βq(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

q(rz)

∣

∣

∣

∣

=

∣

∣

∣

∣

Rn p(z/R)−β rn p(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(z/r)

∣

∣

∣

∣

, for |z| = 1.

(29)

On the other hand, we have |q(rz)| ≤ |q(Rz)| for |z| = 1, R > r > 1. Since q(Rz) has all its

zeros in |z| ≤ 1/R < 1, a direct application of Rouche’s theorem shows that the polynomial

q(Rz)−βq(rz) has all its zeros in |z| < 1 for every β ∈ C with |β | ≤ 1. By Lemma 1, we have

for R > r > 1,

|q(Rz)−βq(rz)| > |q(Rz)|− |β ||q(rz)| >

{(

R + 1

r + 1

)n

−|β |

}

|q(rz)|, for |z| = 1. (30)
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Therefore, again by applying Rouche’s theorem, it follows that for any α ∈ C with |α | ≤ 1 and

R > r > 1, all the zeros of the polynomial

H(z) := q(Rz)−βq(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

q(rz)

lie in |z| < 1. This implies that the polynomial

znH(1/z) = Rn p(z/R)−β rn p(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(z/r)

has all its zeros in |z| > 1. Hence the function

f (z) :=
p(Rz)−β p(rz)+ α

{

(

R+1
r+1

)n
−|β |

}

p(rz)

Rn p(z/R)−β rn p(z/r)+ αrn

{

(

R+1
r+1

)n
−|β |

}

p(z/r)

is analytic in |z| ≤ 1 and | f (z)| ≤ 1 for |z| = 1. By applying the Maximum Modulus Principle,

we get

| f (z)| < 1, for |z| < 1.

Equivalently,

∣

∣

∣

∣

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

∣

∣

∣

∣

<

∣

∣

∣

∣

Rnp(z/R)−β rn p(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(z/r)

∣

∣

∣

∣

, for |z| < 1.

(31)

A direct application of Rouche’s theorem shows that

Λγ p(z) = p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

+ eiγ

[

Rn p(z/R)−β rn p(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(z/r)

]

=

(

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+ eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}])

anzn

+ · · · · · ·

+

(

1−β + α

{(

R + 1

r + 1

)n

−|β |

}

+ eiγ

[

Rn −βrn + αrn

{(

R + 1

r + 1

)n

−|β |

}])

a0

(32)

does not vanish in |z| < 1 for every α , β ∈ C with |α | ≤ 1, |β | ≤ 1 and R > r > 1, and γ

real. Therefore Λγ is an admissible operator. By applying (27), the desired result follows. This

completes the proof of Lemma 4.
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Lemma 5. If p ∈ Pn, then for every α , β ∈ C with |α | ≤ 1, |β | ≤ 1 and R > r > 1, s > 0

and γ real,

∫ 2π

0

∣

∣

∣

∣

[

p(Reiθ )−β p(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p(reiθ )

]

+eiγ

[

Rn p(z/R)−β rn p(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(z/r)

]
∣

∣

∣

∣

s

dθ

≤

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+ eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]s ∫ 2π

0
|p(eiθ )|sdθ .

(33)

Proof of Lemma 5. Let p(z) be a polynomial of degree at most n, we can write p(z) =

p1(z)p2(z) such that p1(z) is a polynomial of degree k > 1 having all its zeros in |z| > 1 and

p2(z) is a polynomial of degree n− k having all its zeros in |z| < 1. First we suppose that p1(z)

does not vanish on |z|= 1 and hence all the zeros of p1(z) lie in |z|> 1. Let q2(z) = zn−k p2(1/z),

then all the zeros of q2(z) lie in |z|> 1 and |q2(z)|= |p2(z)| for |z|= 1. Therefore the polynomial

g(z) = p1(z)q2(z) is a polynomial of degree n not vanishing in |z| ≤ 1 and for |z| = 1,

|g(z)| = |p1(z)||q2(z)| = |p1(z)||p2(z)| = |p(z)|. (34)

A direct application of Rouche’s theorem show that h(z) := p(z) + λg(z) does not vanish in

|z| < 1, for every λ ∈ C with |λ | > 1. Also h(z) does not vanish on |z| = 1, because if this is

not true then it would contradict with (34). Thus h(z) does not vanish in |z| ≤ 1 for any λ with

|λ |> 1, so that all the zeros of h(z) lie in |z|> ρ for some ρ > 1 and hence all the zeros of h(ρz)

lie in |z| > 1. Applying (31) to the polynomial h(ρz), we get

∣

∣

∣

∣

h(Rρz)−βh(rρz)+ α

{(

R + 1

r + 1

)n

−|β |

}

h(rρz)

∣

∣

∣

∣

<

∣

∣

∣

∣

Rnh(ρz/R)−βrnh(ρz/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

h(ρz/r)

∣

∣

∣

∣

, for |z| < 1, R > r > 1.

(35)

Taking z = eiθ /ρ , 0 ≤ θ < 2π , then |z| = (1/ρ) < 1 as ρ > 1, and we get

∣

∣

∣

∣

h(Reiθ )−βh(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

h(reiθ )

∣

∣

∣

∣

<

∣

∣

∣

∣

Rnh(eiθ /R)−βrnh(eiθ /r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

h(eiθ /r)

∣

∣

∣

∣

, 0 ≤ θ < 2π , R > r > 1.

(36)
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Or

∣

∣

∣

∣

h(Rz)−βh(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

h(rz)

∣

∣

∣

∣

<

∣

∣

∣

∣

Rnh(z/R)−β rnh(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

h(z/r)

∣

∣

∣

∣

, for |z| = 1.

(37)

By Rouche’s theorem, it follows that the polynomial

T (z) :=

(

h(Rz)−βh(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

h(rz)

)

+ eiγ

(

Rnh(z/R)−β rnh(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

h(z/r)

)

,

does not vanish in |z| ≤ 1 for every α , β ∈ C with |α | ≤ 1, |β | ≤ 1, R > r > 1, and γ real. If we

replace h(z) by p(z)+ λg(z), then the polynomial

T (z) =

{

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

+ eiγ

[

Rn p(z/R)−β rn p(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(z/r)

]}

+ λ

{

g(Rz)−βg(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

g(rz)

+eiγ

[

Rng(z/R)−β rng(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

g(z/r)

]}

(38)

does not vanish in |z| ≤ 1 for every α , λ , β ∈ C with |α | ≤ 1, |β | ≤ 1, |λ | > 1, R > r > 1, and

γ real. This implies

∣

∣

∣

∣

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

+ eiγ

[

Rn p(z/R)−β rn p(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(z/r)

]
∣

∣

∣

∣

≤

∣

∣

∣

∣

g(Rz)−βg(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

g(rz)

+ eiγ

[

Rng(z/R)−β rng(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

g(z/r)

]
∣

∣

∣

∣

(39)

for |z| ≤ 1, |α | ≤ 1, |β | ≤ 1, R > r > 1, and γ real. If the inequality (39) is not true, then we
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would have

∣

∣

∣

∣

p(Rz0)−β p(rz0)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz0)

+ eiγ

[

Rn p(z0/R)−βrn p(z0/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(z0/r)

]
∣

∣

∣

∣

>

∣

∣

∣

∣

g(Rz0)−βg(rz0)+ α

{(

R + 1

r + 1

)n

−|β |

}

g(rz0)

+eiγ

[

Rng(z0/R)−βrng(z0/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

g(z0/r)

]
∣

∣

∣

∣

,

for some z0 with |z0| ≤ 1. Since all the zeros of polynomialg(z) lie in |z| > 1, it follows (as

before) that all the zeros of polynomial

g(Rz)−βg(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

g(rz)

+ eiγ

[

Rng(z/R)−β rng(z/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

g(z/r)

]

also lie in |z| > 1. Hence

g(Rz0)−βg(rz0)+ α

{(

R + 1

r + 1

)n

−|β |

}

g(rz0)

+ eiγ

[

Rng(z0/R)−β rng(z0/r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

g(z0/r)

]

6= 0

for any |z0| ≤ 1. So we can take a suitable value for λ such that |λ | > 1 and T (z0) = 0 with

|z0| ≤ 1. This clearly is a contradiction to the fact that T (z) does not vanish in |z| ≤ 1. The

inequality (39) gives for each s > 0 and 0 ≤ θ < 2π ,

∫ 2π

0

∣

∣

∣

∣

p(Reiθ )−β p(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p(reiθ )

+eiγ

[

Rn p(eiθ /R)−βrn p(eiθ /r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(eiθ /r)

]∣

∣

∣

∣

s

dθ

≤
∫ 2π

0

∣

∣

∣

∣

g(Reiθ )−βg(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

g(reiθ )

+eiγ

[

Rng(eiθ /R)−βrng(eiθ /r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

g(eiθ /r)

]∣

∣

∣

∣

s

dθ .

(40)

By applying Lemma 4 to g(z) and using (34), we get for any α , β ∈ C with |α | ≤ 1, |β | ≤ 1,
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R > r > 1, s > 0 and γ real,

∫ 2π

0

∣

∣

∣

∣

p(Reiθ )−β p(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p(reiθ )

+eiγ

[

Rn p(eiθ /R)−βrn p(eiθ /r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(eiθ /r)

]∣

∣

∣

∣

s

dθ

≤

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+ eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]∣

∣

∣

∣

s ∫ 2π

0
|g(eiθ )|sdθ

=

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+ eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]
∣

∣

∣

∣

s ∫ 2π

0
|p(eiθ )|sdθ .

(41)

Now If p1(z) has a zero on |z| = 1, then applying (41) to the polynomial p∗(z) = p1(tz)p2(z)

where t < 1, we get for any α , β ∈ C with |α | ≤ 1, |β | ≤ 1, R > r > 1, s > 0 and γ real,

∫ 2π

0

∣

∣

∣

∣

p∗(Reiθ )−β p∗(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p∗(reiθ )

+eiγ

[

Rn p∗(eiθ /R)−βrn p∗(eiθ /r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p∗(eiθ /r)

]∣

∣

∣

∣

s

dθ

≤

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+ eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]∣

∣

∣

∣

s ∫ 2π

0
|p∗(eiθ )|sdθ .

(42)

Letting t −→ 1 in (42) and using continuity, the desired result follows.

3 Proofs of the Theorems

Proof of Theorem 1. Since p(z) is a polynomial of degree at most n, we can write p(z) =

p1(z)p2(z) such that p1(z) is a polynomial of degree k > 1 having all its zeros in |z| ≤ 1 and

p2(z) is a polynomial of degree n− k having all its zeros in |z| > 1. Let q2(z) = zn−k p2(1/z) ,

then all the zeros of q2(z) lie in |z| < 1 and |q2(z)| = |p2(z)| for |z| = 1. Now if we consider the

polynomial F(z) = p1(z)q2(z), then all the zeros of F(z) lie in |z| ≤ 1 and |F(z)| = |p(z)| for

|z| = 1. By applying Lemma 2 to the polynomials F(z) and p(z), we get for all α , β ∈ C with

|α | ≤ 1, |β | ≤ 1, R > r > 1,and |z| > 1

∣

∣

∣

∣

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

∣

∣

∣

∣

≤

∣

∣

∣

∣

F(Rz)−βF(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

F(rz)

∣

∣

∣

∣

.

(43)
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Hence it gives for s > 0

∫ 2π

0

∣

∣

∣

∣

p(Reiθ )−β p(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p(reiθ )

∣

∣

∣

∣

s

dθ

≤
∫ 2π

0

∣

∣

∣

∣

F(Reiθ )−βF(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

F(reiθ )

∣

∣

∣

∣

s

dθ .

(44)

On the other hand, as in the proof of Lemma 4 for H(z), we conclude that the polynomial

G(z) := F(Rz)−βF(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

F(rz)

has all its zeros in |z| ≤ 1. Therefore, the operator Λγ defined by

ΛγF(z) = F(Rz)−βF(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

F(rz)

=

(

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

})

bnzn + ...+

(

1−β + α

{(

R + 1

r + 1

)n

−|β |

})

b0

is admissible. Hence by (27), we get for each s > 0

∫ 2π

0

∣

∣

∣

∣

F(Reiθ )−βF(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

F(reiθ )

∣

∣

∣

∣

s

dθ

≤

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}∣

∣

∣

∣

s ∫ 2π

0
|F(eiθ )|sdθ .

(45)

Combining (44) and (45) and using |F(eiθ )| = |p(eiθ )|, we get for every α , β ∈ C with |α | ≤

1, |β | ≤ 1, R > r > 1,and s > 0,

∫ 2π

0

∣

∣

∣

∣

p(Reiθ )−β p(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p(reiθ )

∣

∣

∣

∣

s

dθ

≤

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}∣

∣

∣

∣

s ∫ 2π

0
|p(eiθ )|sdθ .

(46)

This completes the proof of Theorem 1.

Proof of Theorem 2. Since p ∈ Pn and P(z) 6= 0 in |z| < 1, then by using (29), we have for

every α , β ∈ C with |α | ≤ 1, |β | ≤ 1, R > r > 1, and s > 0,

|F(θ)| ≤ |G(θ)|, 0 ≤ θ < 2π, (47)

where

F(θ) = p(Reiθ )−β p(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p(reiθ ) ,

G(θ) = Rnp(eiθ /R)−β rn p(eiθ /r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(eiθ /r).
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Using (28), we get

∫ 2π

0

∣

∣F(θ)+ eiγ G(θ)
∣

∣

s
dθ ≤

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+ eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]s ∫ 2π

0
|p(eiθ )|sdθ .

(48)

By integrating both sides of (48) with respect to γ in [0, 2π], we get

∫ 2π

0

∫ 2π

0

∣

∣F(θ)+ eiγ G(θ)
∣

∣

s
dγdθ ≤

{

∫ 2π

0

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]
∣

∣

∣

∣

s

dγ

}{

∫ 2π

0
|p(eiθ )|sdθ

}

.

(49)

Now we use the fact that |t + eiγ | is an increasing function of t for t > 1 which implies

∫ 2π

0
|t + eiγ |sdγ >

∫ 2π

0
|1+ eiγ |sdγ , γ ∈ R, s > 0, t > 1. (50)

If we suppose that F(θ) 6= 0, then by taking t = |G(θ)|/|F(θ)|, we have t > 1 by (47) and we

get

∫ 2π

0

∣

∣F(θ)+ eiγ G(θ)
∣

∣

s
dγ = |F(θ)|s

∫ 2π

0

∣

∣

∣

∣

1+ eiγ G(θ)

F(θ)

∣

∣

∣

∣

s

dγ

= |F(θ)|s
∫ 2π

0

∣

∣

∣

∣

G(θ)

F(θ)
+ eiγ

∣

∣

∣

∣

s

dγ

= |F(θ)|s
∫ 2π

0

∣

∣

∣

∣

∣

∣

∣

∣

G(θ)

F(θ)

∣

∣

∣

∣

+ eiγ

∣

∣

∣

∣

s

dγ

> |F(θ)|s
∫ 2π

0

∣

∣1+ eiγ
∣

∣

s
dγ (by (50)).

(51)

It is clear that the inequality (51) holds for F(θ) = 0 also. By using (51) in (49), we get for

every α , β ∈ C with |α | ≤ 1, |β | ≤ 1, R > r > 1 and s > 0,

{

∫ 2π

0

∣

∣1+ eiγ
∣

∣

s
dγ

}{

∫ 2π

0

∣

∣

∣

∣

p(Reiθ )−β p(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p(reiθ )

∣

∣

∣

∣

s

dθ

}

≤

{

∫ 2π

0

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]∣

∣

∣

∣

s

dγ

}{

∫ 2π

0
|p(eiθ )|sdθ

}

.

(52)
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But

{

∫ 2π

0

∣

∣

∣

∣

[

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}]

+ eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]
∣

∣

∣

∣

s

dγ

}

=

{

∫ 2π

0

∣

∣

∣

∣

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}
∣

∣

∣

∣

+ eiγ

∣

∣

∣

∣

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]
∣

∣

∣

∣

∣

∣

∣

∣

s

dγ

}

=

{

∫ 2π

0

∣

∣

∣

∣

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}∣

∣

∣

∣

+ eiγ

∣

∣

∣

∣

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]∣

∣

∣

∣

∣

∣

∣

∣

s

dγ

}

=

{

∫ 2π

0

∣

∣

∣

∣

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}
∣

∣

∣

∣

eiγ +

∣

∣

∣

∣

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]
∣

∣

∣

∣

∣

∣

∣

∣

s

dγ

}

=

{

∫ 2π

0

∣

∣

∣

∣

[

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}]

eiγ +

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]
∣

∣

∣

∣

s

dγ

}

.

(53)

Now by combining (52) and (53), we get the desired result.

Proof of Theorem 3. Since p(z) is a self-inversive polynomial, we have p(z) = aq(z),

where |a|= 1 and q(z) = zn p(1/z). Therefore, we have for every α , β ∈C with |α | ≤ 1, |β | ≤ 1

and R > r > 1,

∣

∣

∣

∣

p(Rz)−β p(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

p(rz)

∣

∣

∣

∣

=

∣

∣

∣

∣

q(Rz)−βq(rz)+ α

{(

R + 1

r + 1

)n

−|β |

}

q(rz)

∣

∣

∣

∣

.

Hence we can write

|F(θ)| = |G(θ)|, 0 ≤ θ < 2π, (54)

where

F(θ) = p(Reiθ )−β p(reiθ )+ α

{(

R + 1

r + 1

)n

−|β |

}

p(reiθ ) ,

G(θ) = Rnp(eiθ /R)−β rn p(eiθ /r)+ αrn

{(

R + 1

r + 1

)n

−|β |

}

p(eiθ /r).

By applying Lemma 5, we have

∫ 2π

0

∣

∣F(θ)+ eiγ G(θ)
∣

∣

s
dθ ≤

∣

∣

∣

∣

Rn −β rn + αrn

{(

R + 1

r + 1

)n

−|β |

}

+ eiγ

[

1−β + α

{(

R + 1

r + 1

)n

−|β |

}]s ∫ 2π

0
|p(eiθ )|sdθ .

(55)

By using the similar argument as in the proof of Theorem 2, we conclude the desired result. And

this completes the proof of Theorem 3.
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