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Abstract. In this paper, we investigate n-dimensional complete and orientable hypersu-

faces Mn (n≥ 3) with constant normalized scalar curvature in a locally symmetric manifold.

Two rigidity theorems are obtained for these hypersurfaces.
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1 Introduction

When the ambient manifolds possess very nice symmetry, for example the unit sphere, there

are many rigidity results for hypersurfaces with constant mean curvature or with constant scalar

curvature in these ambient manifolds, such as [2, 3, 4, 6, 7, 11, 12] and the references therein.

Recently, many researchers studied the minimal hypersurfaces or hypersurfaces with constant

mean curvature in more general Riemmanniam manifolds such as the locally symmetric man-

ifolds and the δ -pinched manifolds, and obtained many rigidity results these hypersurfaces,

such as [5, 10, 13, 14] and the references therein. It is natural and very important to study n-

dimensional complete and orientable hypersurfaces with constant scalar curvature in a locally

symmetric manifold. In the paper, we will discuss complete hypersurfaces in this direction.

In order to represent our theorems, we need some notation. Let Nn+1 be a locally symmetric

manifold and Mn be an n-dimensional complete and oriented hypersurface in Nn+1. We choose a
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local orthonormal frame e1, · · · ,en,en+1 in Nn+1 such that e1, · · · ,en are tangent to Mn and en+1

is normal to Mn. We assume that Nn+1 satisfies the following conditions:

Kn+1in+1i = c0, (1)

1

2
< δ ≤ KN ≤ 1, (2)

where c0, δ are constants and KN denotes the sectional curvature of Nn+1. When Nn+1 satisfies

the above conditions (1), (2), it is said simply for Nn+1 to satisfy the condition (∗).

Remark 1.1. If Nn+1 is a unit sphere Sn+1(1), then it satisfies the condition (∗), where

c0 = δ = 1.

It is easy to know that the scalar curvature R̄ of locally symmetric manifold is constant.

On the other hand, if we denote R̄CD as the components of the Ricci curvature tensor of Nn+1

satisfying the condition (∗), then the scalar curvature R̄ of Nn+1 is

R̄ = 2∑
k

Kn+1kn+1k +∑
i j

Ki ji j = 2nc0 +∑
i j

Ki ji j, (3)

hence, ∑
i j

Ki ji j is constant. This fact together with the formula (12) suggests us to define a

constant P by

n(n−1)P = n(n−1)R−∑
i j

Ki ji j = n2H2 −S. (4)

Using (4), we finally establish our main results:

Theorem 1.2. Let Mn (n ≥ 3) be an n-dimensional complete and orientable hypersurface

with constant normalized scalar curvature R in a locally symmetric manifold Nn+1 satisfying the

condition (∗). If P ≥ 0, in the case where P = 0, assume further that the mean curvature function

H does not change sign, then

(i) either sup |Φ|2 = 0 and M is a totally umbilical hypersurface.

(ii) or

sup |Φ|2 ≥ D(n,P) =
n(n−1)(P + c)2

(n−2)(nP + 2c)
> 0. (5)

Moreover, if P > 0 the equality sup |Φ|2 = D(n,P) holds and this suppremum is attained at some

point of M, then Mn has two distinct constant principal curvatures, one of them being simple,

where c = 2δ − c0 > 0 and P determined by (4).
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In particular, let Nn+1 = Sn+1(1) in Theorem 1.2, then c = c0 = δ = 1, so P = R−1 from (4).

If P > 0, i.e., R > 1 the equality sup |Φ|2 = D(n,P) holds and this suppremum is attained at some

point of M, following from Theorem 1.2, we know that Mn has two distinct principal curvatures;

in fact Mn is the H(r)-torus S1(
√

1− r2)× Sn−1(r) ⊂ Sn+1(1), with 0 < r <
√

(n−2)/nR. In

this case, Theorem 1.2 generalizes the result in [2],[3] to more general situations.

Theorem 1.3. Let Mn (n ≥ 3) be an n-dimensional complete and orientable hypersurface

with constant normalized scalar curvature R in a locally symmetric manifold Nn+1 satisfying

the condition (∗). Assume P > 0. If S ≤ 2
√

n−1c, then Mn is totally umbilical hypersurface,

or supS = 2
√

n−1c. Moreover, the equality supS = 2
√

n−1c holds and this suppremum is

attained at some point of M, then Mn has two distinct constant principal curvatures, one of them

being simple, where c = 2δ − c0 > 0.

2 Preliminaries

Let Nn+1 be a locally symmetric manifold and Mn be an n-dimensional complete and ori-

ented hypersurface in Nn+1. We choose a local orthonormal frame e1, · · · ,en,en+1 in Nn+1 such

that e1, · · · ,en are tangent to Mn and en+1 is normal to Mn. Let ω1, · · · ,ωn+1 be the dual coframe.

We use the following convention on the range of indices:

1 ≤ A,B, · · · ≤ n+ 1; 1 ≤ i, j, · · · ≤ n.

The structure equations of Nn+1 are given by

dωA = −∑
B

ωAB ∧ωB, ωAB + ωBA = 0, (6)

dωAB = −∑
C

ωAC ∧ωCB +
1

2
∑

ABCD

KABCDωC ∧ωD, (7)

where KABCD are the components of the curvature tensor of Nn+1.

Restricting to Mn such that

ωn+1 = 0, ωn+1i = ∑
j

hi jω j, hi j = h ji, (8)

The structure equations of Mn are

dωi = −∑
j

ωi j ∧ω j, ωi j + ω ji = 0, (9)
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dωi j = −∑
k

ωik ∧ωk j +
1

2
∑
k,l

Ri jklωk ∧ωl, (10)

Ri jkl = Ki jkl +(hikh jl −hilh jk), (11)

n(n−1)R = ∑
i j

Ki ji j + n2H2 −S, (12)

∑
k

hi jkωk = dhi j −∑
k

hk jωki −∑
k

hikωk j, (13)

∑
l

hi jklωl = dhi jk −∑
l

hl jkωli −∑
l

hilkωl j −∑
l

hi jlωlk, (14)

where n(n− 1)R is the scalar curvature, H is the mean curvature and S is the squared of the

second fundamental form of Mn.

The Laplacian △hi j of the second fundamental form of Mn is defined by △hi j = ∑
k

hi jkk. By

a simple and direct calculation, we have

△hi j = (nH)i j + nHKn+1in+1 j −∑
k

Kn+1kn+1khi j + nH ∑
k

hikhk j

−Shi j +∑
k

[Kmk jkhmi + Kmkikhm j + 2Kmi jkhkm]. (15)

Choose a local frame of orthonormal vectors fields {ei} such that at arbitrary point x of Mn

hi j = λiδi j, (16)

then at point x we have

1

2
△S = ∑

i jk

h2
i jk +∑

i j

hi j△hi j

= ∑
i jk

h2
i jk +∑

i

λi(nH)ii + nH ∑
i

λiKn+1in+1i −S∑
i

kn+1in+1i

+∑
i j

(λi −λ j)
2Ki ji j −S2 + nH ∑

i

λ 3
i , (17)

where we use the fact that the Riemannian curvature of locally symmetric manifold is covariant

constant.

Set Φ = h ji − nHδi j, it is easy to check that Φ is traceless and |Φ|2 = S− nH2 ≥ 0, with

equality if and only if Mn is totally umbilical. For this reason, Φ is also called the total umbilicity

tensor of Mn.
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According to Cheng-Yau[14], we introduce the following operator 2 acting on any C2-function

f by

2( f ) = ∑
i j

(nHδi j −hi j) fi j. (18)

We also need the following algebraic Lemmas.

Lemma 2.1.[1,8] Let µ1, · · · ,µn be real numbers such that

∑
i

µi = 0 and ∑
i

µ2
i = β 2,

where β ≥ 0 is constant. Then

|∑
i

µ3
i | ≤

n−2
√

n(n−1)
β 3, (19)

and equality holds if and only if at least n−1 of µ ′
i s are equal.

Lemma 2.2[9]. Let Mn be an n-dimensional complete Riemannian manifold whose sec-

tional curvature is bounded from below and F : M → R be a smooth function which is bounded

above on Mn. Then there exists a sequence of points xk ∈ Mn such that

lim
k→∞

F(xk) = sup F,

lim
k→∞

|∇F(xk)| = 0,

lim
k→∞

sup max{(∇2(F(xk)))(X ,X) : |X |= 1} ≤ 0.

3 Proof of Theorems

First, we give the following Lemma.

Lemma 3.1. With the same assumptions as Theorem 1.2.

(1) we have the following inequality,

2(nH) ≥ 1

n−1
|Φ|2QP(|Φ|), (20)

where

QP(x) = −(n−2)x2 − (n−2)x
√

x2 + n(n−1)P + n(n−1)(P+ c),

and

c = 2δ − c0 > 0.

(2) If the mean curvature H is bounded, then there is a sequence of points {xk} in M such

that

lim
k→∞

nH(xk) = sup(nH), lim
k→∞

|∇(nH)(xk)| = 0, lim
k→∞

sup(2(nH)(xk)) ≤ 0. (21)
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Proof. (1) Putting µi = λi −H and |Φ|2 = ∑
i

µ2
i = S−nH2. From (12),(17), we have

2(nH) = ∑
i j

(nHδi j −hi j)(nH)i j = nH△(nH)−∑
i j

hi j(nH)i j

=
1

2
△[(nH)2]−n2|∇H|2 −∑

i j

hi j(nH)i j

=
1

2
△S−n2|∇H|2 −∑

i j

hi j(nH)i j (22)

= ∑
i jk

h2
i jk −n2|∇H|2

︸ ︷︷ ︸

I

−S2 + nH ∑
i

λ 3
i

︸ ︷︷ ︸

II

+nH ∑
i

λiKn+1in+1i −S∑
i

kn+1in+1i +∑
i j

(λi −λ j)
2Ki ji j

︸ ︷︷ ︸

III

.

Firstly, we estimate (I):

Taking the covariant derivative of the equation (12), we have

2n2HHk = 2∑
i j

hi jhi jk. (23)

Therefore

n4H2|∇H|2 = ∑
k

(∑
i j

hi jhi jk)
2 ≤ S(∑

i jk

h2
i jk). (24)

Since P ≥ 0, we have n2H2 ≥ S, so from (24), we obtain

∑
i jk

h2
i jk −n2|∇H|2 ≥ 0. (25)

Secondly, we estimate (II):

It is easy to know that ∑
i

λ 3
i = nH3 + 3H ∑

i

µ2
i +∑

i

µ3
i . By applying Lemma 2.1 to real

numbers µ1, · · · ,µn, we obtain

−S2 + nH ∑
i

λ 3
i = −(|Φ|2 + nH2)2 + n2H4 + 3nH2|Φ|2 + nH ∑

i

µ3
i

≥ −|Φ|4 − n(n−2)
√

n(n−1)
|H||Φ|3 + nH2|Φ|2. (26)

Finally, we estimate (III):

Using curvature condition (∗), we get

nH ∑
i

λiKn+1in+1i −S∑
i

kn+1in+1i = nc0(nH2 −S) = −nc0|Φ|2 (27)
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and

∑
i j

(λi −λ j)
2Ki ji j = ∑

i j

(µi −µ j)
2Ki ji j ≥ δ ∑

i j

(µi −µ j)
2 = 2nδ |Φ|2. (28)

From (27) and (28), we have

III ≥ n(2δ − c0)|Φ|2. (29)

From (22),(25), (26),(29) and set c = 2δ − c0, we have

2(nH) ≥−|Φ|2[|Φ|2 +
n(n−2)

√

n(n−1)
|H||Φ|−n(c+ H2)]. (30)

From Gauss equation, we have

H2 =
1

n(n−1)
[|Φ|2 + n(n−1)P]. (31)

From (30) and (31), we have

2(nH) ≥ 1

n−1
|Φ|2QP(|Φ|), (32)

where QP(x) = −(n−2)x2 − (n−2)x
√

x2 + n(n−1)P+ n(n−1)(P+ c).

(2) Since Mn is orientable, P≥ 0 and in the case where P = 0, the mean curvature function H

does not change sign, we can assume that H ≥ 0 (by changing the orientation of Mn if necessary).

If H ≡ 0 the result is obvious. Let suppose that H is not identically zero, we may assume

that supH > 0. From

(λi)
2 ≤ S ≤ n2H2, i.e. |λi| ≤ n|H|. (33)

Since H is bounded and (33), we know that S is also bounded. From (11), we have

Ri ji j ≥ δ −λiλ j ≥ δ −S. (34)

This shows that the sectional curvatures of Mn are bounded from below because S is bounded.

Therefore we may apply Lemma 2.2 to the function nH and obtain a sequence of points {xk} ∈
Mn such that

lim
k→∞

nH(xk) = nsup H, lim
k→∞

|∇H(xk)| = 0, lim
k→∞

sup(nHii(xk)) ≤ 0. (35)

From (33), we have

0 ≤ nH −|λi| ≤ nH −λi, (36)
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By applying 2(nH) at xk, we have

lim
k→∞

sup(2(nH)(xk)) = lim
k→∞

∑
i

sup[nH(xk)−λi(xk)]nHii(xk) ≤ 0. (37)

Proof of Theorem 1.2. From the assumptions of Theorem 1.2, we can assume that H ≥ 0

on Mn. If sup |Φ|2 = +∞, then (ii) of Theorem 1.2 is trivially satisfied and there is nothing to

prove. If sup |Φ|2 = 0, then (i) of Theorem 1.2 holds and there is nothing to prove. Then, let us

assume that 0 < sup |Φ|2 < +∞. From (31), we know that H is bounded. According to (2) of

Lemma 3.1, there exists a sequence of points {xk} in Mn such that

lim
k→∞

nH(xk) = sup(nH), lim
k→∞

|∇(nH)(xk)| = 0, lim
k→∞

sup(2(nH)(xk)) ≤ 0. (38)

From (31), we have lim→∞ |Φ|2(xk) = sup |Φ|2. Evaluating (20) at the point xk of the sequence,

taking the limit and using (38), we obtain that

0 ≥ lim
k→∞

2(nH)(xk) ≥
1

n−1
sup |Φ|2QP(sup |Φ|). (39)

Since P ≥ 0 and c = 2δ − c0 > 0, QP(0) = P+ c > 0 and QP(x) is strictly decreasing for x ≥ 0,

with QP(x0) = 0 at

x0 =

√

n(n−1)

(n−2)(nP + 2c)
(P + c) > 0. (40)

Therefore (39) implies

sup |Φ|2 ≥ n(n−1)(P + c)2

(n−2)(nP + 2c)
= D(n,P). (41)

This proves the inequality in (ii) of Theorem 1.2.

If P > 0, from Gauss equation, we know n2H2 > S ≥ λ 2
i , so nH −λi ≥ nH −|λi| > 0, i.e.

nH −λi > 0. (42)

From (42), we know the operator 2 is positive definite, that is, the operator 2 is elliptic. From

(31), we have

2(|Φ|2) =
n−1

n
2(n2H2)

= 2
n−1

n
nH2(nH)+ 2

n−1

n
(nH −λi)(nHi)

2

≥ 2
n−1

n
nH2(nH)

≥ 2
n−1

n
nH|Φ|2QP(|Φ|) = 2(n−1)H|Φ|2QP(|Φ|). (43)
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If supM |Φ| = x0, then 0 ≤ |Φ| ≤ supM |Φ| = x0, so we have

QP(|Φ|) ≥ 0. (44)

From (43) and (44), we have

2(|Φ|2) ≥ 0. (45)

If sup |Φ|2 = D(n,P) and this supremum is attained at some point of Mn, then by the max-

imum principle |Φ| must be constant, |Φ| = x0. From (31), we know that H is constant. Thus,

(20) becomes trivially an equality

2(nH) = 0 =
1

n−1
|Φ|2QP(|Φ|). (46)

Therefore, all the inequality in the proof of (1) of Lemma 3.1 must be equalities. So (27)

becomes an equality, i.e. ∑i jk h2
i jk = n2|∇H|2, since H is constant, we know that ∑i jk h2

i jk = 0,

i.e. hi jk = 0, for i, j,k ∈ {1, · · · ,n}. From (13), we have 0 = dλi −2∑k hikωki = dλi, hence λi is

constant.

From (26) and Lemma 2.1, we know that Mn has two distinct principal curvatures, one of

them being simple, after reenumeration if necessary, we can assume that µ1 = · · · = µn−1 ≥ 0,

µn 6= µ1, where µi = λi −H , i = 1, · · · ,n. Thus λi ≥ H ≥ 0 for i = 1, · · · ,n−1, we set λ = λ1 =

· · · = λn−1 ≥ 0, µ = λn.

From the equality of (28), we have ∑i j(λi −λ j)
2(Ki ji j − δ ) = 0. Since KN ≥ δ , so if i 6= j,

then (λi −λ j)
2(Ki ji j − δ ) = 0, so Ki ji j = δ or λi = λ j for i 6= j. If λi 6= λ j, from (13), we have

(λi −λ j)ωi j = 0, so ωi j = 0. From (10) and ωi j = 0, we have

Ri ji j = 0(λi 6= λ j). (47)

From (11), we have

λ µ + δ = 0. (48)

On other hand

(n−1)λ + µ = nH = constant. (49)

From (48) and (49), we have

λ =
1

2(n−1)
[nH +

√

n2H2 + 4(n−1)δ ], µ =
1

2
[nH −

√

n2H2 + 4(n−1)δ ].
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So Mn has two distinct constant principal curvatures, one of them being simple. This proves the

Theorem 1.2.

Proof of Theorem 1.3. From the assumptions of Theorem 1.3, we can assume that H > 0

on Mn. From (30), we have

2(nH) ≥−|Φ|2[|Φ|2 +
n(n−2)

√

n(n−1)
H|Φ|−n(c+ H2)]. (50)

Consider the quadratic form P(x,y) = −x2 − n−2√
n−1

xy+ y2. By the orthogonal transformation

u =
1√
2n

((1+
√

n−1)y+(1−
√

n−1)x)

v =
1√
2n

((−1+
√

n−1)y+(1+
√

n−1)x)

P(x,y) =
n

2
√

n−1
(u2 − v2). Take x = |Φ| and y =

√
nH; we obtain u2 + v2 = x2 + y2, and by

(50), we have

2(nH) ≥ |Φ|2(nc+
n

2
√

n−1
(u2 − v2))

≥ |Φ|2(nc− n

2
√

n−1
(u2 + v2)+

n

2
√

n−1
2u2)

≥ |Φ|2(nc− n

2
√

n−1
(u2 + v2))

≥ |Φ|2(nc− n

2
√

n−1
S). (51)

From (12) and S ≤ 2
√

n−1c, we know that H is bounded. According to (2) of Lemma 3.1, there

exists a sequence of points {xk} in Mn such that

lim
k→∞

nH(xk) = sup(nH), lim
k→∞

|∇(nH)(xk)| = 0, lim
k→∞

sup(2(nH)(xk)) ≤ 0. (52)

From (31) we have

lim
k→∞

|Φ|2(xk) = sup |Φ|2. (53)

and

lim
k→∞

S(xk) = lim
k→∞

|Φ|2(xk)+ lim
k→∞

(nH)(xk) = sup S. (54)

Evaluating (51) at the points xk of the sequence, taking the limit and using (52), we obtain that

0 ≥ lim
k→∞

sup(2(nH)(xk))

≥ sup |Φ|2(nc− n

2
√

n−1
supS) ≥ 0. (55)
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we have sup |Φ|2 = 0, that is Φ = 0 or supS = 2
√

n−1c. If sup Φ = 0, then S = nH2 and Mn is

totally umbilical.

Since P > 0, we know that 2 is an elliptic operator. From (12) and S ≤ 2
√

n−1c, we have

2(S) = 2(n2H2) = 2nH2(nH)+ 2(nH −λi)(nHi)
2

≥ 2nH2(nH) ≥ 2nH|Φ|2(nc− n

2
√

n−1
S) ≥ 0. (56)

If sup S = 2
√

n−1c and this supremum is attained at some point of Mn, then by the maxi-

mum principle S must be constant, S = 2
√

n−1c. From (12), we know that H is constant. Thus,

(51) becomes trivially an equality

2(nH) = 0 = |Φ|2(nc− n

2
√

n−1
S). (57)

Therefore, all inequalities in proof of (51) must be equalities. From u = 0, we have

|Φ| =
√

n−1+ 1√
n−1−1

√
nH > 0. (58)

By using Lemma 2.1 and (58), we know that Mn has two distinct principal curvature, one of

them being simple. Since S and H are constants, it is easy to know that Mn has two distinct

constant principal curvatures, one of them being simple. This proves Theorem 1.3.
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