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Abstract. The paper considers the Krylov-Lanczos and the Eckhoff approximations for

recovering a bivariate function using limited number of itsFourier coefficients. These ap-

proximations are based on certain corrections associated with jumps in the partial deriva-

tives of the approximated function. Approximation of the exact jumps is accomplished by

solution of systems of linear equations along the idea of Eckhoff. Asymptotic behaviors of

the approximate jumps and the Eckhoff approximation are studied. Exact constants of the

asymptotic errors are computed. Numerical experiments validate theoretical investigations.
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1 Introduction

It is well known that approximation of a 2-periodic and smooth function on the real line by

the truncated Fourier series

SN( f ;x) :=
N

∑
n=−N

fneiπnx, fn :=
1
2

∫ 1

−1
f (x)e−iπnxdx

is highly effective. If the 2-periodic extensions off and its derivatives up to the orderp are

continuous on the real line, butf (p) is discontinuous, the uniform convergence rate isO(N−p)

(see[48]). The approximation is accompanied by the Gibbs phenomenon[48] when the approx-

imated function is discontinuous or non-periodic. The oscillations caused by this phenomenon

typically propagate into regions away from singularities and degrade the quality of approxima-

tion. Even if the approximated function is analytic but non-periodic the error falls only as fast as
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O(1/N) over the entire interval except in zones of widthO(1/N) nearx = ±1 where the error is

alwaysO(1).

Much efforts were devoted to overcoming the convergence deficiency (see, for example, [3],

[11], and [45] with references therein). An efficient approach of convergence acceleration by

subtracting a polynomial representing the discontinuities (jumps) in the function and its deriva-

tives was suggested by Krylov in 1906[23] (see also [40] (pp. 88–99), and [46] (pp. 144-147)).

Lanczos, in 1956[24], in 1964[25] and in 1966[26] independently developed the same approach

with more formality. He introduced a basic system of polynomials B(k;x) that played a central

role in the method and pointed out a close connection betweentheB(k;x) and Bernoulli poly-

nomials. That was why polynomial subtraction method was called also as Bernoulli method.

Jones and Hardy in 1970[22] and Lyness in 1974[29] considered convergence acceleration of

trigonometric interpolation by polynomial subtraction. They showed the relation of the Krylov-

Lanczos method with the theory of Lidstone interpolation[27] . Since then, it widely considered

in the context of Fourier series[3],[8]−[11],[19],[31],[32] , and trigonometric interpolation[32],[38] .

The key problem in the Krylov-Lanczos method is approximation of the exact jump val-

ues. Ordinarily, such values are unknown and in general onlyFourier coefficients or discrete

Fourier coefficients of a given function may be specified. If arbitrary pointwise values of the

function can be calculated then the finite difference formulas can be set up for approximation

of these quantities. Approaches resembling this approach have been attempted under various

names and apparently with varying success for the special case where the approximated func-

tion is smooth with only singularity at the end points of the interval: Gottlieb and Orszag in

1977 (polynomial subtractions for nonperiodic problems)[20], Lanczos in 1966 (increasing the

convergence of Fourier series by adding properly chosen boundary terms)[26] Lyness in 1974

(Lanczos representation)[29] , and Roache in 1978 (reduction to periodicity)[41] . Whereas, even if

the arbitrary pointwise values of the function can be calculated, approximation of jump values

via finite differences is not recommended for this purpose[29]. Even in the case of a uniform grid,

finite difference approximations are notoriously unreliable. Moreover, in many applications the

Fourier coefficients can be calculated but pointwise valuesand derivatives are not explicitly

available.

As noted in[15], the previous lack of robust methods for the approximation of jump values

was the central reason why the polynomial subtraction technique has not been utilized more

extensively. The first attempt towards more robust approachwas initiated by Gottlieb et al[21]
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and which has been further developed in [1], [2], [12], and [14] by utilizing step functions in the

reconstruction of discontinuous functions. Similar idea was applied by Orszag[35] and Wengle et

al[47] to solve problems with nonperiodic boundary conditions. The general approach was estab-

lished by Eckhoff in a series of papers[15]−[18]. It was based on the observation that the Fourier

coefficients themselves contained sufficient information to reconstruct the jump values. Hence,

such values could be approximated to sufficient accuracy using only coefficients. The funda-

mental aspect of Eckhoff’s method was approximation of the jumps by solution of linear system

of equations and was rather familiar. A similar idea was usedin the Richardson extrapolation

process[42]. Further investigation of the Eckhoff approximation and interpolation were organized

in a series of papers [3], [7], [11], [36], [37], and [39]. Application of the polynomial subtraction

method for convergence acceleration of the modified Fourierexpansions was investigated in [3]

(see also references therein).

Polynomial subtraction method for multivariate functionswas investigated in [3]-[6], [30],

[33], and [34]. In this paper we continue these investigations and focus our attention to bivariate

Fourier series

SN( f ;x,y) :=
N

∑
n=−N

N

∑
m=−N

fn,meiπ(nx+my), fn,m :=
1
4

∫ 1

−1

∫ 1

−1
f (x,y)e−iπ(nx+my)dxdy.

Our aim is extraction of exact constants of the asymptotic errors both for jumps and corre-

sponding Eckhoff approximation. Actually we are generalizing the results of [7] for bivariate

functions. Our analysis shows how the exact asymptotic constants can be derived also for mul-

tidimensional Eckhoff approximation that can complement the results obtained in [5]. This

general case will be considered elsewhere. Moreover, our approach shows that exact asymptotic

constants can be derived also for multivariate Eckhoff interpolation along the ideas described in

[37]. This also will be considered elsewhere. Numerical experiments pointed out the existence

of the autocorrection phenomenon, described in [36] and [39], in multivariate approximations

and interpolations. These investigations also will be considered elsewhere.

The paper is organized as follows. Section 2 presents the main ideas around the univariate

Krylov-Lanczos and Eckhoff approximations. Subsection 2.1 describes the Krylov-Lanczos ap-

proximation, subsection 2.2 considers the problem of jump approximation and subsection 2.3

explores the accuracy of the Eckhoff approximation. The results of this section are not new and

are coming mainly from the paper [7]. Section 3 considers theKrylov-Lanczos approximation

in bivariate case. Section 4 solves the problem of jumps approximation along the idea of Eck-
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hoff. Section 5 presents the Eckhoff approximation in bivariate case. In the last three sections

exact constants of the asymptotic errors of approximationsare calculated. Throughout the paper

parallel to theoretical investigations the results of numerical experiments are discussed which

validate theoretical conclusions and reveal the practicalefficiency of the approximations.

2 The Krylov-Lanczos and Eckhoff Approximations in

Univariate case, Approximation of the Jumps

In this section we describe the Krylov-Lanczos and the Eckhoff approximations in univariate

case[7].

2.1 The Krylov-Lanczos Approximation

Supposef ∈Cq[−1,1] and denote byAk( f ) the exact value of the jump in the k-th derivative

of f

Ak( f ) := f (k)(1)− f (k)(−1), k = 0, · · · ,q.

The following lemma is crucial for the Krylov-Lanczos approach.

Lemma 1. Let f ∈ Cq−1[−1,1] and f(q−1) is absolutely continuous on[−1,1] for some

q≥ 1. Then the following expansion is valid

fn =
(−1)n+1

2

q−1

∑
k=0

Ak( f )
(iπn)k+1 +

1
2(iπn)q

∫ 1

−1
f (q)(x)e−iπnxdx, n 6= 0.

Proof. The proof is trivial due to integration by parts.

Lemma 1 implies the representation

f (x) =
q−1

∑
k=0

Ak( f )B(k;x)+F(x), (1)

whereB(k;x) are 2-periodic extensions of the Bernoulli-like polynomials with the Fourier coef-

ficients

Bn(k) :=





0, n = 0

(−1)n+1

2(iπn)k+1 , n 6= 0

andF is a 2-periodic and relatively smooth function on the real line (F ∈ Cq−1(R)) with the

Fourier coefficients

Fn = fn−
q−1

∑
k=0

Ak( f )Bn(k). (2)
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The Bernoulli-like polynomials can be calculated recursively

B(0;x) =
x
2
, B(k;x) =

∫
B(k−1;x)dx, x∈ [−1,1],

where the constant of integration is defined by the relation
∫ 1

−1
B(k;x)dx = 0.

Approximation ofF in (1) by the truncated Fourier series leads to the Krylov-Lanczos (KL)

approximation

SN,q( f ;x) :=
N

∑
n=−N

(
fn−

q−1

∑
k=0

Ak( f )Bn(k)

)
eiπnx+

q−1

∑
k=0

Ak( f )B(k;x) (3)

with the error

RN,q( f ;x) := f (x)−SN,q( f ;x). (4)

Denote by‖ · ‖ the standard norm in the spaceL2(−1,1)

|| f || :=

(∫ 1

−1
| f (x)|2dx

)1/2

.

The following theorem illustrates the basic idea behind theKrylov-Lanczos approach.

Theorem 2.1[7]. Suppose f∈Cq[−1,1] and f(q) is absolutely continuous on[−1,1]. Then

the following estimate holds:

lim
N→∞

Nq+ 1
2‖RN,q( f )‖ =

|Aq( f )|
πq+1

√
2q+1

.

Proof. Lemma 1, Equations (1), (3), and (4) imply

RN,q( f ) = ∑
|n|>N

Fne
iπnx,

where

Fn =
1

2(iπn)q

∫ 1

−1
f (q)(x)e−iπnxdx

=
(−1)n+1

2
Aq( f )

(iπn)q+1 +
1

2(iπn)q+1

∫ 1

−1
f (q+1)(x)e−iπnxdx.

Taking into account that the second term iso(n−q−1) as n → ∞ according to the Riemann-

Lebesgue theorem, we get

‖RN,q‖2 = 2 ∑
|n|>N

|Fn|2 =
|Aq|2
π2q+2

∞

∑
n=N+1

1
n2q+2 +o(N−2q−1), N → ∞.
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This concludes the proof.

2.2 Approximation of the Jumps

In order to determine the approximate valuesÃk( f ;N) of Ak( f ), the fact is used, that the

coefficientsFn in (2) asymptotically (n → ∞) decay faster than the coefficientsBn(k) for k =

0, . . . ,q−1 and can therefore be discarded for large|n|. Hence, we can write

fn =
q−1

∑
k=0

Ãk( f ;N)Bn(k), n = n1,n2, . . . ,nq. (5)

The next theorem shows how well the valuesÃk( f ;N) approximate the actual jumpsAk( f )

depending on the choice of the indicesns.

Definition 2.2. By the multiplicity of some numberx in a sequencex1, . . . ,xm we mean the

number of indicesi for which xi = x.

Theorem 2.3[7]. Suppose the indices ns = ns(N) in (5) are chosen such that

lim
N→∞

ns

N
= ds 6= 0, s= 1, . . . ,q.

Let α be the greatest multiplicity of a number in the sequence d1,d2, . . . ,dq. Then, for f∈
Cq+α−1[−1,1] such that f(q+α−1) is absolutely continuous on[−1,1], the following estimate

holds:

Ã j( f ;N) = A j( f )−Aq( f )
χ j

(iπN)q− j +o(N−q+ j), N → ∞, j = 0, . . . ,q−1,

where the constantsχ j are coefficients of polynomial

q

∏
s=1

(
x− 1

ds

)
=

q

∑
s=0

χsx
s.

2.3 The Eckhoff Approximation

Approximation ofAk( f ) in (3) by Ãk( f ;N) leads to the Eckhoff approximation

S̃N,q( f ;x) :=
N

∑
n=−N

F̃neiπnx+
q−1

∑
k=0

Ãk( f ;N)B(k;x) (6)

with the error

R̃N,q( f ;x) := f (x)− S̃N,q( f ;x), (7)
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where

F̃n = fn−
q−1

∑
k=0

Ãk( f ;N)Bn(k). (8)

The next theorem formulates the analog of Theorem 2.1 forS̃N,q( f ).

Theorem 2.4[7]. Let the conditions of Theorem2.3 be valid. Then the following estimate

holds:

lim
N→∞

Nq+ 1
2‖R̃N,q( f )‖ =

|Aq( f )|√
2πq+1

(∫ 1

−1

q

∏
s=1

(
x− 1

ds

)2
dx

)1/2

.

Comparison of Theorems 2.1 and 2.4 shows that approximate calculation of the jumps does

not degrade the convergence rate of the Eckhoff approximation.

Theorem 2.4 encompasses the optimal choice of the indicesns (ds = ±1) for the best ap-

proximation:

ns = N−s+1, s= 1, . . . ,m; ns = −(N−s+m+1), s= m+1, · · · ,2m (9)

for even values ofq, q = 2m, m= 1,2, · · · , and

ns = N−s+1, s= 1, · · · ,m+1; ns = −(N−s+m+2), s= m+2, · · · ,2m+1 (10)

for odd values ofq, q = 2m+1, m= 0,1, · · · .
As is shown in [36] we have

χ2s =

(
m
s

)
(−1)m+s, s= 0, . . . ,m; χ2s+1 = 0, s= 0, . . . ,m−1 (11)

for (9), and

χ2s =

(
m
s

)
(−1)m+s+1, χ2s+1 =

(
m
s

)
(−1)m+s, s= 0, . . . ,m (12)

for (10).

Henceforth, in numerical experiments we will use these choices for the indicesns.

3 The Krylov-Lanczos Approximation in Bivariate Case

Throughout the paper,D = [−1,1]× [−1,1]. As usualL(D) stands for the set of Lebesgue

integrable functions onD. AC[−1,1] and L[−1,1] are the sets of absolutely continuous and

Lebesgue integrable, respectively, functions on[−1,1].

Carathéodory’s definition [13] of absolute continuity for functions of two variables may be

stated as follows (see [43]):
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Let σ(D) denote the system of all rectangles[x1,x2]× [y1,y2] contained inD. For any rectan-

gleP∈ σ(D), |P| denotes the volume ofP. We say that rectanglesP1,P2 ∈ σ(D) do not overlap

if they have no interior points in common. Furthermore, rectanglesP1,P2 ∈ σ(D) are referred to

be adjoining if they do not overlap andP1∪P2 ∈ σ(D).

Definition 3.1[28]. A finite functionF : σ(D)→ C is said to be additive function of rectan-

gles if, for any adjoining rectanglesP1,P2 ∈ σ(D), the relation

F(P1∪P2) = F(P1)+F(P2)

holds.

Definition 3.2[28]. We say that an additive function of rectanglesF : σ(D) → R is abso-

lutely continuous if, for everyε > 0, there existsδ > 0 such that ifP1, . . . ,Pk ∈σ(D) are mutually

non-overlapping rectangles with the property

k

∑
j=1

|Pj | ≤ δ ,

then the relation
k

∑
j=1

|F(Pj)| ≤ ε

is satisfied.

Having the functionf : σ(D) → C, we put

Ff ([x1,x2]× [y1,y2]) := f (x1,y1)− f (x1,y2)− f (x2,y1)+ f (x2,y2). (13)

The function of rectanglesFf : σ(D) → C defined by (13) is said to be a function of rectangles

associated withf .

Definition 3.3[43],[44]. We say that a functionf : σ(D) → C is absolutely continuous onD

( f ∈ AC(D)) in the sense of Carathéodory if the following two conditions hold:

• the function of rectanglesFf associated withf is absolutely continuous;

• the functionsf (−1, ·) : [−1,1] → C and f (·,−1) : [−1,1] → C are absolutely continuous.

We will frequently use the following result.

Theorem 3.4[43],[44]]. Let f ∈ AC(D). Then

• f (·,y) ∈ AC[−1,1] for every y∈ [−1,1];

• f (x, ·) ∈ AC[−1,1] for every x∈ [−1,1];

• fy(·,y) ∈ AC[−1,1] for almost every y∈ [−1,1];
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• fx(x, ·) ∈ AC[−1,1] for almost every x∈ [−1,1];

• fxy ∈ L(D), fyx ∈ L(D), and fyx(x,y) = fxy(x,y) for almost every(x,y) ∈ D.

Denote

f (k,s)(x,y) :=
∂ k+s f (x,y)

∂ kx∂ sy
,

a(k;y) := f (k,0)(1,y)− f (k,0)(−1,y), b(s;x) := f (0,s)(x,1)− f (0,s)(x,−1),

am(k) :=
1
2

∫ 1

−1
a(k;y)e−iπmydy, bn(s) :=

1
2

∫ 1

−1
b(s;x)e−iπnxd,

a(s)(k;y) := f (k,s)(1,y)− f (k,s)(−1,y), b(k)(s;x) := f (k,s)(x,1)− f (k,s)(x,−1),

a(s)
m (k) :=

1
2

∫ 1

−1
a(s)(k;y)e−iπmydy, b(k)

n (s) :=
1
2

∫ 1

−1
b(k)(s;x)e−iπnxdx,

c(k,s) := f (k,s)(1,1)− f (k,s)(1,−1)− f (k,s)(−1,1)+ f (k,s)(−1,−1).

The following lemma is crucial for bivariate approximations.

Lemma 2. Let f(k,s) ∈C(D), k,s= 0, . . . ,q−1 and f(q−1,q−1) ∈AC(D). Then the following

relations hold:

fn,0 =
q−1

∑
k=0

Bn(k)a0(k)+
1

4(iπn)q

∫ 1

−1

∫ 1

−1
f (q,0)(x,y)e−iπnxdxdy, n 6= 0,

f0,m =
q−1

∑
s=0

Bm(s)b0(s)+
1

4(iπm)q

∫ 1

−1

∫ 1

−1
f (0,q)(x,y)e−iπmydxdy, m 6= 0,

fn,m =
q−1

∑
k=0

Bn(k)am(k)+
q−1

∑
s=0

Bm(s)bn(s)−
q−1

∑
k,s=0

Bn(k)Bm(s)c(k,s)

+
1

4(iπn)q(iπm)q

∫ 1

−1

∫ 1

−1
f (q,q)(x,y)e−iπ(nx+my)dxdy, n,m 6= 0.

Proof. The proof is trivial by means of integration by parts in view of Theorem 3.4.

Taking into account that

f (x,y) =
∞

∑
n=−∞

′ ∞

∑
m=−∞

′
fn,meiπ(nx+my) +

∞

∑
n=−∞

′
fn,0eiπnx+

∞

∑
m=−∞

′
f0,meiπmy+ f0,0

in view of Lemma 2 we get the main representation

f (x,y) = G(x,y)+F(x,y), (14)

where

G(x,y) :=
q−1

∑
k=0

B(k;x)a(k;y)+
q−1

∑
s=0

B(s;y)b(s;x)−
q−1

∑
k=0

q−1

∑
s=0

B(k;x)B(s;y)c(k,s), (15)
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andF is a relatively smooth functionF(k,s) ∈C(R2), k,s= 0, · · · ,q−1.

Henceforth, theoretical investigations will be accompanied by the results of numerical ex-

periments. As a typical example we consider the following function which is smooth onD but

has discontinuous 2-periodic extension onR2

f (x) = sin(3x+2y2 +2). (16)

The graph of (16) is shown in Figure 1.

Figure 1. Graph of function (16)

Figure?? presents graphs ofG(x,y) (left) andF(x,y) (right) for q = 3. Periodic extension

of F ontoR2 is smoothF ∈C2(R2).

Figure 2. Graphs ofG(x,y) (left) andF(x,y) (right) for q = 3

The Fourier coefficients ofG andF are known explicitly in view of Lemma 2, and Equations

(14) and (15)

Gn,m =
q−1

∑
k=0

Bn(k)am(k)+
q−1

∑
s=0

Bm(s)bn(s)−
q−1

∑
k,s=0

Bn(k)Bm(s)c(k,s), n,m 6= 0,
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G0,m =
q−1

∑
s=0

Bm(s)b0(s), m 6= 0, Gn,0 =
q−1

∑
k=0

Bn(k)a0(k), n 6= 0, G0,0 = 0,

and

Fn,m =
1

4(iπn)q(iπm)q

∫ 1

−1

∫ 1

−1
f (q,q)(x,y)e−iπ(nx+my)dxdy, n,m 6= 0, F0,0 = f0,0,

Fn,0 =
1

4(iπn)q

∫ 1

−1

∫ 1

−1
f (q,0)(x,y)e−iπnxdxdy, n 6= 0,

F0,m =
1

4(iπm)q

∫ 1

−1

∫ 1

−1
f (0,q)(x,y)e−iπmydxdy, m 6= 0.

Approximation ofF in (14) by the truncated Fourier series leads to theKrylov-Lanczos (KL)

approximationin bivariate case

SN,q( f ;x,y) := G(x,y)+
N

∑
n=−N

N

∑
m=−N

( fn,m−Gn,m)eiπ(nx+my) (17)

with the error

RN,q( f ;x,y) := f (x,y)−SN,q( f ;x,y). (18)

Note that the KL-approximation uses the exact values of the jump functionsa(k;y), b(s;x)

and jumpsc(k,s) while constructing the correction functionG. Later we will discuss the problem

of jumps reconstruction.

For further investigations we need the following lemma thatreveals the asymptotic behavior

of the Fourier coefficientsFn,m.

Lemma 3. Let f(k,s) ∈C(D), k,s= 0, . . . ,q and f(q,q) ∈ AC(D). Then the following esti-

mates hold:

Fn,0 = Bn(q)a0(q)+o(n−q−1), n→ ∞, (19)

F0,m = Bm(q)b0(q)+o(m−q−1), m→ ∞, (20)

Fn,m =
Bm(q)

(iπn)q b(q)
n (q)+

o(m−q−1)

nq , m→ ∞, n 6= 0, (21)

Fn,m =
Bn(q)

(iπm)q a(q)
m (q)+

o(n−q−1)

mq , n→ ∞, m 6= 0. (22)

Proof. The proof is trivial by means of integration by parts in view of Theorem 3.4 and the

Riemann-Lebesgue theorem.
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Asymptotic behavior of the KL-approximation depends on thesmoothness ofF on R2 and

hence on the asymptotic behavior ofFn,m asn,m→ ∞ that we established in the last lemma. This

encompasses the proof of the following theorem.

Theorem 3.5. Let f(k,s) ∈ C(D), k,s = 0, . . . ,q and f(q,q) ∈ AC(D). Then the following

estimate holds:

lim
N→∞

Nq+ 1
2‖RN,q( f )‖ = Dq( f ),

where

Dq( f ) :=

√
hq( f )

πq+1
√

2q+1
,

and

hq( f ) :=
1
2

∣∣∣∣
∫ 1

−1
a(q;x)dx

∣∣∣∣
2

+
1
2

∣∣∣∣
∫ 1

−1
b(q;x)dx

∣∣∣∣
2

+
∫ 1

−1

∣∣∣∣
∫ 1

−1
B(q−1;t)b(q)(q;x− t)dt

∣∣∣∣
2

dx

+
∫ 1

−1

∣∣∣∣
∫ 1

−1
B(q−1;t)a(q)(q;x− t)dt

∣∣∣∣
2

dx.

Proof. In view of (14), (17), and (18) we have

RN,q( f ) = F(x,y)−
N

∑
n=−N

N

∑
m=−N

Fn,meiπ(nx+my)

= ∑
|n|>N

Fn,0eiπnx+ ∑
|m|>N

F0,meiπmy+
N

∑
n=−N

′

∑
|m|>N

Fn,meiπ(nx+my)

+
N

∑
m=−N

′

∑
|n|>N

Fn,meiπ(nx+my) + ∑
|n|>N

∑
|m|>N

Fn,meiπ(nx+my).

Therefore

‖RN,q( f )‖2 = 4 ∑
|n|>N

|Fn,0|2 +4 ∑
|m|>N

|F0,m|2

+4
N

∑
n=−N

′

∑
|m|>N

|Fn,m|2 +4
N

∑
m=−N

′

∑
|n|>N

|Fn,m|2

+4 ∑
|n|>N

∑
|m|>N

|Fn,m|2.

(23)

The first term in (23) we estimate in accordance with (19)

lim
N→∞

N2q+1

(
4 ∑
|n|>N

|Fn,0|2
)

=
|a0(q)|2
π2q+2 lim

N→∞
N2q+1 ∑

|n|>N

1
n2q+2 =

2|a0(q)|2
π2q+2(2q+1)

.
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Similarly, (20) implies

lim
N→∞

N2q+1

(
4 ∑
|m|>N

|F0,m|2
)

=
2|b0(q)|2

π2q+2(2q+1)
.

The third term we treat by (21)

lim
N→∞

N2q+1

(
4

N

∑
n=−N

′

∑
|m|>N

|Fn,m|2
)

= lim
N→∞

N2q+1

(
4

π2q+2 ∑
|m|>N

1
m2q+2

N

∑
n=−N

′
|Bn(q−1)b(q)

n (q)|2
)

=
8

π2q+2(2q+1)

∞

∑
n=−∞

′
|Bn(q−1)b(q)

n (q)|2

=
1

π2q+2(2q+1)

∫ 1

−1

∣∣∣∣
∫ 1

−1
B(q−1;t)b(q)(q;x− t)dt

∣∣∣∣
2

dx.

Similarly, (22) yields

lim
N→∞

N2q+1

(
4

N

∑
m=−N

′

∑
|n|>N

|Fn,m|2
)

=
1

π2q+2(2q+1)

∫ 1

−1

∣∣∣∣
∫ 1

−1
B(q−1;t)a(q)(q;x− t)dt

∣∣∣∣
2

dx.

In view of (21) or (22), the last term iso(N−2q−1) asN → ∞. Substituting all these into (23) we

get the required estimate.

Numerical values ofDq( f ) for different values ofq while approximating function (16) by

the KL-approximation are calculated in Table 1. We see that even values ofq provide with more

accurate (asymptotically) approximation than odd values.

Table 1 Numerical values ofDq( f )

q 1 2 3 4 5

Dq( f ) 0.4904 0.0580 0.5473 0.0972 1.3032

Denote

Dq,N( f ) := Nq+ 1
2‖RN,q( f )‖.

It is interesting to calculate the constantsDq,N( f ) for different values ofN and compare them

with the theoretical estimateDq( f ). Table 2 shows such values for moderate values ofN. For

more large values ofN calculations are useless due to round off errors as we need toget integrals
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from oscillatory functions with high precision. Our calculations are carried out by the MATHE-

MATICA 8.0 package with standard precision. Comparison of the tables shows that the values

of Dq,N( f ) are close to the values ofDq( f ) .

Table 2 Numerical values ofDq,N( f )

q = 1 q = 2 q = 3 q = 4 q = 5

N = 4 0.3881 0.0998 0.3703 0.1677 0.6317

N = 8 0.4124 0.0706 0.4488 0.1215 0.9042

N = 16 0.4280 0.0555 0.4963 0.0780 1.0779

Figures 3-6 compare accuracies of approximations by the truncated Fourier series and KL-

approximation.

Figure 3. Graphs of the absolute errors while approximating (16)

by the truncated Fourier series forN = 8 (left) andN = 32 (right)

Figure 3 shows non-uniform convergence while approximating non-smooth onR2 function

by the truncated Fourier series. Convergence exists only inside the domain of approximation

away from the singularities (see Figure 4). Figures 5 and 6 present the higher accuracy of

the KL-approximation on the whole domain of approximation and away from the singularities,

respectively. Figure 4 shows increase in accuracy by 46.6 times while theoretical estimate, well-

known from the Fourier analysis, is 64 times (O(N3)) while changingN from 8 to 32. Not a bad

coincidence for moderate values ofN.
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Figure 4. Graphs of the absolute errors while approximating (16)

by the truncated Fourier series forN = 8 (left) andN = 32 (right) away from the singularities

4 Approximation of the Jump Functions

In this section we discuss the problem of reconstruction of the jump functionsa(k;y), b(s;x)

and the numbersc(k,s) directly from the Fourier coefficientsfn,m. The procedure of reconstruc-

tion includes the following steps: first, we will recover theapproximate values of the Fourier

coefficientsãm(k;N) of am(k) and b̃n(s;N) of bn(s), second, based on these coefficients ap-

proximation ofã(k;y;N) of a(k;y) and b̃(s;x;N) of b(s;x) will be performed according to the

univariate Eckhoff approximation. Note that the numbersc(k,s) are exact jumps ofa(k;y) or

b(s;x).

The next lemma reveals the asymptotic behavior offn,m that outlines the procedure of the

Fourier coefficients approximation.

Lemma 4. Let f(k,s) ∈C(D), k,s= 0, . . . ,q−1 and f(q−1,q−1) ∈AC(D). Then the following

relations hold:

fn,m =
q−1

∑
k=0

Bn(k)am(k)+
1

4(iπn)q

∫ 1

−1

∫ 1

−1
f (q,0)(x,y)e−iπ(nx+my)dxdy, n 6= 0, (24)

fn,m =
q−1

∑
s=0

Bm(s)bn(s)+
1

4(iπm)q

∫ 1

−1

∫ 1

−1
f (0,q)(x,y)e−iπ(nx+my)dxdy, m 6= 0, (25)
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Figure 5. Graphs of the absolute errors while approximating (16) bySN,3 for

N = 8 (left) andN = 32 (right)

fn,m =
q−1

∑
k,s=0

Bn(k)Bm(s)c(k,s)+
1

(iπm)q

q−1

∑
k=0

Bn(k)a
(q)
m (k)+

1
(iπn)q

q−1

∑
s=0

Bm(s)b(q)
n (s)

+
1

4(iπn)q(iπm)q

∫ 1

−1

∫ 1

−1
f (q,q)(x,y)e−iπ(nx+my)dxdy, n,m 6= 0.

(26)

Proof. The proof is trivial by means of integration by parts.

As the second term in the right hand side of (24) asymptotically (n→ ∞) decay faster than

the first term then it can be discarded for large|n|. Hence, from (24) we derive the following

systems of linear equations

fn,m =
q−1

∑
k=0

Bn(k)ãm(k;N), |m| ≤ N, n = n1,n2, . . . ,nq. (27)

Thus, for any givenN we assume to have chosenq different integer indices

n1 = n1(N), n2 = n2(N), . . . ,nq = nq(N)

for evaluating systems (27). Solving these we get the valuesãm(k;N), which, as we later prove,

approximate the Fourier coefficientsam(k).

Similarly, from (25) we get the systems

fn,m =
q−1

∑
s=0

Bm(s)b̃n(s;N), |n| ≤ N, m= n1,n2, . . . ,nq (28)
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Figure 6. Graphs of the absolute errors while approximating (16)

by SN,3 for N = 8 (left) andN = 32 (right) away from the singularities

for approximating the Fourier coefficientsbn(s).

For approximation of the numbersc(k,s) we obtain from (26) the system of equations

fn,m =
q−1

∑
k,s=0

Bn(k)Bm(s)c̃(k,s;N), m,n = n1,n2, . . . ,nq. (29)

Throughout the paper we will suppose that

αN ≤ |ns| ≤ N, s= 1, . . . ,q (30)

for some 0< α ≤ 1. Note that choices (9) and (10) also satisfy to this estimate.

We will often use the following results.

Lemma 5[7]. Let xs = (iπns)
−1 andαN≤|ns| ≤N, s= 1, . . . ,q for some0< α ≤ 1. Denote

ω j(q) =
q

∑
k=1

x j
k

q

∏
n=1
n 6=k

(xk−xn)

, j ≥ 0.

Then

(a) ω j(q) = 0 for j = 0, . . . ,q−2;

(b) ωq−1(q) = 1;

(c) ω j(q) = O(Nq− j−1) when N→ ∞ for every j≥ 0.
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Lemma 6[7]. Suppose the indices ns satisfy the condition(30) and supposeγ j is the j-th

coefficient of the polynomial
q

∏
s=1

(x−xs) =
q

∑
j=0

γ jx j . Then

γ j = O(N−q+ j), j = 0, . . . ,q−1, N → ∞.

The next theorem investigates the accuracy of the jumps approximation.

Theorem 4.1. Suppose the indices ns = ns(N) are chosen such that

lim
N→∞

ns

N
= ds 6= 0, s= 1, . . . ,q. (31)

Let α be the greatest multiplicity of a number in the sequence d1,d2, . . . ,dq. Now, for f(k,s) ∈
C(D), k,s= 0, . . . ,q+α −1 such that f(q+α−1,q+α−1) ∈ AC(D), the following estimates hold as

N → ∞

ãm( j;N) = am( j)−am(q)
χ j

(iπN)q− j + εmo(N−q+ j), j = 0, . . . ,q−1, (32)

b̃n( j;N) = bn( j)−bn(q)
χ j

(iπN)q− j
+ δno(N−q+ j), j = 0, . . . ,q−1, (33)

c̃( j,k;N) = c( j,k)−c( j,q)
χk

(iπN)q−k

−c(q,k)
χ j

(iπN)q− j
+o(N−q+ j)+o(N−q+k), j,k = 0, . . . ,q−1,

(34)

where the constantsχ j are the coefficients of the polynomial

q

∏
s=1

(
x− 1

ds

)
=

q

∑
s=0

χsx
s,

and the series∑∞
n=−∞ |δn|2, ∑∞

m=−∞ |εm|2 are convergent.

Proof. First we are proving (33). In view of (25) and (28) we get

q−1

∑
s=0

(bn(s)− b̃n(s))x
s
k = −

q+α−1

∑
s=q

bn(s)x
s
k

− (−1)nk+1

2
xq+α−1

k

∫ 1

−1

∫ 1

−1
f (0,q+α)(x,y)e−iπ(nx+nky)dxdy,

k = 1, . . . ,q,

(35)

wherexk =
1

iπnk
.

We calculate the inverse of matrix{xs
k} explicitly. Let Pj(x) be the polynomial of degree

q−1 defined by

Pj(x) :=
q

∏
n=1
n 6= j

x−xn

x j −xn
=

q

∑
k=1

mjkxk−1, j = 1, . . . ,q,
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where bymjk we denote the coefficients of the polynomialPj(x). From the equations

Pj(xi) =
q

∑
k=1

mjkxk−1
i = δi j , i, j = 1, . . . ,q,

(whereδi j is Kronecker’s symbol) we see that the transpose of(mjk) is the inverse of the Van-

dermonde matrix(xk−1
i ). Taking into account that (see [7])

mjk = − 1

x j+1
k

q

∏
n=1
n 6=k

(xk−xn)

j

∑
ℓ=0

γℓx
ℓ
k, k = 1, . . . ,q; j = 0, . . . ,q−1 (36)

Equation (35) can be written as

bn( j)− b̃n( j) = bn(q)
j

∑
ℓ=0

γℓωℓ− j+q−1+
q+α−1

∑
s=q+1

bn(s)
j

∑
ℓ=0

γℓωℓ− j+s−1

+
j

∑
ℓ=0

γℓ

q

∑
k=1

xℓ− j+q+α−2
k

2
q

∏
r=1
r 6=k

(xk−xr)

∫ 1

−1

∫ 1

−1
f (0,q+α)(x,y)e−iπ(nx+nky)dxdy.

(37)

According to claims (a) and (b) of Lemma 5 we have

bn(q)
j

∑
ℓ=0

γℓωq− j+ℓ−1 = bn(q)γ j , j = 0, . . . ,q−1.

In view of claim (c) of Lemma 5 and Lemma 6 the second term in theright hand side of (37) is

O(N−q+ j−1) asN → ∞. For the third term note that

∣∣∣∣∣
1

q

∏
s=1
s6=k

(xk−xs)

∣∣∣∣∣≤
πq−1N2q−2

q

∏
s=1
s6=k

|nk−ns|
≤ const

N2q−2

Nq−α = O(Nq+α−2), N → ∞

as|nk−ns| ≥ 1 wheneverk ands differ and|nk−ns| ≥CN whenevercs differs fromck, which

happens at least forq−α indicess. Also, from Lemma 6, we haveγℓxℓ
k = O(N−q). Therefore,

the third term isδno(N−q+ j) asN → ∞. Collecting all of the above estimates we obtain from

(37)

b̃n( j;N) = bn( j)−bn(q)γ j + δno(N−q+ j), j = 0, . . . ,q−1.

Now (33) follows from the Viet formula.

Estimate (32) can be proved similarly.
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Then, in view of (26) and (29) we obtain form,n = n1,n2, . . . ,nq

q−1

∑
k,s=0

c̃(k,s)−c(k,s)
(iπn)k(iπm)s =

q−1

∑
k=0

q+α−1

∑
s=q

c(k,s)
(iπn)k(iπm)s +

q+α−1

∑
k=q

q+α−1

∑
s=0

c(k,s)
(iπn)k(iπm)s

+
2(−1)m+1

(iπm)q+α−1

q+α−1

∑
k=0

a(q+α)
m (k)
(iπn)k +

2(−1)n+1

(iπn)q+α−1

q−1

∑
s=0

b(q+α)
n (s)
(iπm)s

+
(−1)n+m

(iπn)q+α−1(iπm)q+α−1

∫ 1

−1

∫ 1

−1
f (q+α ,q+α)(x,y)e−iπ(nx+my)dxdy.

(38)

The remaining can be carried out as above.

Tables 3 and 4 show numerical values of the error|c̃(k,s;N)−c(k,s)| for q = 3 andN = 8,

N = 16, respectively. These values are more sensitive to round-off errors as for they calculation

we are inverting the same matrix twice (see (29)). Table 5 shows numerical values of the exact

jumpsc(k,s) for understanding the relative values while looking at Tables 3 and 4.

Table 3 Absolute values of the error̃c(k,s;N)−c(k,s) for q = 3 andN = 8.

q s= 0 s= 1 s= 2
k = 0 0.00041 0.013 0.26
k = 1 0.011 0.28 6.65
k = 2 0.0058 2.06 3.66

Table 4 Absolute values of the error̃c(k,s;N)−c(k,s) for q = 3 andN = 16

q s= 0 s= 1 s= 2
k = 0 0.000074 0.0037 0.19
k = 1 0.0011 0.069 2.88
k = 2 0.00071 0.86 1.78

Table 5 Numerical values ofc(k,s).

q s= 0 s= 1 s= 2
k = 0 0 1.7 0
k = 1 0 4.4 0
k = 2 0 −15.4 0

Figures 7-10 explore pointwise accuracy of the Fourier coefficients approximation. Figures

7 and 8 present numerical values of the absolute error|ãm( j;N)−am( j)| ( j = 0,1,2 from left to

right) for q= 3 andN = 8, N = 16, respectively. Theorem 4.1 states that the rate of convergence

of |ãm( j;N)−am( j)| asN → ∞ is O(1/N3), O(1/N2), andO(1/N) for j = 0,1,2, respectively.

Comparison of Figures 7 and 8 confirms the theoretical estimate. We have increase in accuracy
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almost 10, 5, and 3 times (theoretical estimate gives 8, 4, and 2 times) when changingN from

N = 8 to N = 16.

Similar estimates we have in Figures 9 and 10 for the absoluteerror |b̃n( j;N)−bn( j)|.

-8 8

0.0002

0.00005

-8 8

0.005

0.001

-8 8

0.15

0.04

Figure 7. Absolute errors|ãm( j;N)−am( j)|, |m| ≤ N for

N = 8, q = 3 and j = 0,1,2 (from left to right).

-16 16

0.00002

5.´10-6

-16 16

0.0002

0.001

-16 16

0.01

0.05

Figure 8. Absolute errors|ãm( j;N)−am( j)|, |m| ≤ N for

N = 16,q = 3 and j = 0,1,2 (from left to right)
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0.006
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-8 8
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3.5

0.5

Figure 9. Absolute errors|b̃n( j;N)−bn( j)|, |n| ≤ N for

N = 8, q = 3 and j = 0,1,2 (from left to right)

The next theorem immediately follows from the previous one.

Theorem 4.2. Let the conditions of Theorem4.1 be valid. Then the following is true

lim
N→∞

Nq− j

(
N

∑
n=−N

|b̃n( j)−bn( j)|2
)1/2

=
|χ j |√
2πq− j

‖b(q;x)‖, j = 0, . . . ,q−1,
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Figure 10. Absolute errors|b̃n( j;N)−bn( j)|,
|n| ≤ N for N = 16,q = 3 and j = 0,1,2 (from left to right)

lim
N→∞

Nq− j

(
N

∑
m=−N

|ãm( j)−am( j)|2
)1/2

=
|χ j |√
2πq− j

‖a(q;y)‖, j = 0, . . . ,q−1.

Numerical values of |χk|√
2πq−k‖a(q;y)‖ and |χk|√

2πq−k‖b(q;x)‖ are presented in Tables 6 and 7,

respectively. ByrN, j (a) andrN, j (b) denote the actual errors

rN, j(a) := Nq− j

(
N

∑
m=−N

|ãm( j)−am( j)|2
)1/2

, rN, j (b) := Nq− j

(
N

∑
n=−N

|b̃n( j)−bn( j)|2
)1/2

.

Table 8 shows the values ofrN, j(a) andrN, j(b) for different values ofN. We see that these values

are close to theoretical estimates even for moderate numbers ofN.

Table 6 Numerical values of |χk|√
2πq−k‖a(q;y)‖ for k = 0, · · · ,q−1.

k = 0 k = 1 k = 2 k = 3

q = 1 0.1753 − − −

q = 2 0.1955 0 − −

q = 3 0.1599 0.5023 1.5779 −

q = 4 0.1783 0 3.5186 0

Table 7 Numerical values of |χk|√
2πq−k‖b(q;x)‖ for k = 0, · · · ,q−1

k = 0 k = 1 k = 2 k = 3

q = 1 1.8067 − − −
q = 2 0 0 − −
q = 3 3.5708 11.2179 35.2421 −
q = 4 0 0 0 0
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Table 8 Values ofrN,k(a) andrN,k(b) for q = 3.

N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

k = 0 rN,k(a) 0.2682 0.1912 0.1720 0.1654 0.1625 0.1612 0.1605

rN,k(b) 5.8947 4.3638 3.8710 3.700 3.6310 3.6000 3.5850

k = 1 rN,k(a) 0.5322 0.5095 0.5040 0.5027 0.5024 0.5023 0.5023

rN,k(b) 12.3945 11.5548 11.3033 11.2393 11.2233 11.2192 11.2182

k = 2 rN,k(a) 2.8428 1.9350 1.7123 1.6357 1.6046 1.5907 1.5842

rN,k(b) 58.1779 43.0687 38.2050 36.5224 35.8362 35.5281 35.3824

Having approximate Fourier coefficients̃am(k;N) and b̃n(s;N) the functionsa(k;y) and

b(s;x), respectively, can be recovered by univariate Eckhoff approximation

ã(k;y;N) :=
N

∑
m=−N

(
ãm(k)−

q−1

∑
s=0

c̃(k,s)Bm(s)

)
eiπmy+

q−1

∑
s=0

c̃(k,s)B(s;y), k = 0, . . . ,q−1, (39)

and

b̃(s;x;N) :=
N

∑
n=−N

(
b̃n(s)−

q−1

∑
k=0

c̃(k,s)Bn(k)

)
eiπnx+

q−1

∑
k=0

c̃(k,s)B(k;x), s= 0, . . . ,q−1. (40)

In the next theorem we explore the accuracy of the approximations a(k;y) andb(s;x) by

ã(k;y;N) andb̃(s;x;N), respectively.

Theorem 4.3. Let indices ns = ns(N) be chosen such that

lim
N→∞

ns

N
= ds 6= 0, s= 1, . . . ,q.

If f (k,s) ∈C(D), k,s= 0, . . . ,2q−1 such that f(2q−1,2q−1) ∈ AC(D) then the estimates hold:

lim
N→∞

Nq−k‖ã(k;y;N)−a(k;y)‖ =
|χk|
πq−k‖a(q;y)‖, k = 0, . . . ,q−1,

and

lim
N→∞

Nq−s‖b̃(s;x;N)−b(s;x)‖ =
|χs|
πq−s

‖b(q;x)‖, s= 0, . . . ,q−1.

Proof. In view of (39) we write

‖ã(k;y;N)−a(k;y)‖2 = 2
N

∑
m=−N

|ãm(k)−am(k)|2

+2 ∑
|m|>N

∣∣∣∣∣am(k)−
q−1

∑
s=0

c̃(k,s)Bm(s)

∣∣∣∣∣

2

.

(41)
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The first term we estimate based on Theorem 4.2. For the secondterm we write

am(k) =
q−1

∑
s=0

c(k,s)Bm(s)+c(k,q)Bm(q)+o(m−q−1), |m| > N, N → ∞.

Hence

am(k)−
q−1

∑
s=0

c̃(k,s)Bm(s) =
q−1

∑
s=0

(c(k,s)− c̃(k,s))Bm(s)+c(k,q)Bm(q)+o(m−q−1).

Now Equation (4.11) implies

am(k)−
q−1

∑
s=0

c̃(k,s)Bm(s) =
1

Nq−kO

(
1
m

)
, |m| > N, N → ∞.

Therefore the second term in the right hand side of (41) iso(N−2q+2k) asN→ ∞. This concludes

the proof of the first estimate. The second can be proved similarly.

Figures 11-14 explore the pointwise accuracy of the jumps approximation forq = 3 and

N = 8,16. Jumps with greater values ofk are recovered with less accuracy as they correspond

to higher order of derivatives. It is interesting to mentionthat the order of accuracy of approxi-

mations in Theorem 4.3 coincides with the accuracy of coefficients approximation in Theorems

4.1 and 4.2. This differs from the situation in univariate case when the Fourier coefficients are

known exactly and the error of approximation depends on the accuracy of jumps approximation.

-1 1

0.0006

0.0002

-1 1

0.012

0.003

-1 1

0.3

0.15

Figure 11. Absolute errors|ã(k;y;N)−a(k;y)|
for N = 8, q = 3 andk = 0,1,2 (from left to right).

5 The Eckhoff Approximation in Multivariate Case

Replacinga(k;y), b(s;x), andc(k,s) in Equation (15) by their approximated onesã(k;y;N),

b̃(s;x;N), andc̃(k,s), respectively, we get the following correction function

G̃(x,y;N) =
q−1

∑
k=0

B(k;x)ã(k;y;N)+
q−1

∑
s=0

B(s;y)b̃(s;x;N)−
q−1

∑
k,s=0

B(k;x)B(s;y)c̃(k,s). (42)
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Figure 12. Absolute errors|ã(k;y;N)−a(k;y)| for

N = 16,q = 3 andk = 0,1,2 (from left to right)
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8

2

Figure 13. Absolute errors|b̃(s;x;N)−b(s;x)| for

N = 8, q = 3 andk = 0,1,2 (from left to right)

Therefore, the approximated function has the representation

f (x,y) = F̃(x,y;N)+ G̃(x,y;N). (43)

Approximation ofF̃ by the truncated Fourier series leads to theEckhoff approximationin

bivariate case

S̃N,q( f ;x,y) := G̃(x,y)+
∞

∑
n=−∞

∞

∑
m=−∞

(
fn,m− G̃n,m

)
eiπ(nx+my) (44)

with the error

R̃N,q( f ;x,y) := f (x,y)− S̃N,q( f ;x,y). (45)

From (42) the Fourier coefficients̃Gn,m can be calculated explicitly

G̃n,m =
q−1

∑
k=0

Bn(k)ãm(k)+
q−1

∑
s=0

Bm(s)b̃n(s)−
q−1

∑
k,s=0

Bn(k)Bm(s)c̃k,s, n,m 6= 0, G̃0,0 = 0,

G̃0,m =
q−1

∑
s=0

Bm(s)b̃0(s), m 6= 0, G̃n,0 =
q−1

∑
k=0

Bn(k)ã0(k), n 6= 0.
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Figure 14. Absolute errors|b̃(s;x;N)−b(s;x)| for

N = 16,q = 3 andk = 0,1,2 (from left to right)

In the next theorem we investigate the accuracy of the Eckhoff approximation.

Theorem 5.1. Let the indices ns = ns(N) be chosen such that

lim
N→∞

ns

N
= ds 6= 0, s= 1, · · · ,q. (46)

If f (k,s) ∈C(D), k,s= 0, . . . ,2q−1 such that f(2q−1,2q−1) ∈ AC(D) then the estimate holds:

lim
N→∞

Nq+ 1
2‖R̃N,q( f )‖ = D̃q( f ), (47)

where

D̃q( f ) :=

√
hq( f )√
2πq+1



∫

|x|>1

∣∣∣∣∣
q

∑
s=0

χs

xs+1

∣∣∣∣∣

2

dx




1/2

, (48)

andχq = 1, function hq( f ) is defined in Theorem3.5 andχs are defined in Theorem 2.3.

Proof. In view of (43), (44), and (45) we get

‖R̃N,q( f )‖2 = ‖F̃(x,y)−
N

∑
n=−N

N

∑
m=−N

F̃n,meiπ(nx+my)‖2

= 4 ∑
|n|>N

|F̃n,0|2 +4 ∑
|m|>N

|F̃0,m|2

+4
N

∑
n=−N

′

∑
|m|>N

|F̃n,m|2 +4
N

∑
m=−N

′

∑
|n|>N

|F̃n,m|2 +4 ∑
|n|>N

∑
|m|>N

|F̃n,m|2,

(49)

whereF̃n,m = fn,m− G̃n,m.

We start with the first term in the right hand side of (49)

F̃n,0 = fn,0− G̃n,0 =
q−1

∑
k=0

Bn(k)(a0(k)− ã0(k))+
1

4(iπn)q

∫ 1

−1

∫ 1

−1
f (q+1,0)(x,y)e−iπnxdxdy

=
q−1

∑
k=0

Bn(k)(a0(k)− ã0(k))+a0(q)Bn(q)+o(n−q−1), n→ ∞.
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Hence, in view of Equation (32), we have

lim
N→∞

N2q+1

(
4 ∑
|n|>N

|Fn,0|2
)

=
|a0(q)|2
π2q+2 lim

N→∞

1
N ∑

|n|>N

∣∣∣∣∣
q

∑
k=0

χk

(n/N)k+1

∣∣∣∣∣

2

=
|a0(q)|2
π2q+2

∫

|x|>1

∣∣∣∣∣
q

∑
k=0

χk

xk+1

∣∣∣∣∣

2

dx.

Similarly

lim
N→∞

N2q+1

(
4 ∑
|m|>N

|F0,m|2
)

=
|b0(q)|2
π2q+2

∫

|x|>1

∣∣∣∣∣
q

∑
k=0

χk

xk+1

∣∣∣∣∣

2

dx.

For the third term in the right hand side of (49) we have (n,m 6= 0)

F̃n,m = fn,m− G̃n,m =
q−1

∑
s=0

Bm(s)
(

bn(s)− b̃n(s)
)

−
q−1

∑
k=0

Bn(k)

(
ãm(k)−

q−1

∑
s=0

Bm(s)c̃(k,s)

)

+
1

4(iπm)q

∫ 1

−1

∫ 1

−1
f (0,q)(x,y)e−iπ(nx+my)dxdy.

We need asymptotic behavior ofãm(k)−∑q−1
s=0 Bm(s)c̃(k,s) asN → ∞ and|m| > N. In view

of (24) and (27) we get

q−1

∑
k=0

ãm(k)−am(k)
(iπnℓ)k =

2q−1

∑
k=q

am(k)
(iπnℓ)k

+
(−1)nℓ+1

2(iπnℓ)2q−1

∫ 1

−1

∫ 1

−1
f (2q,0)e−iπ(nℓx+my)dxdy, ℓ = 1, · · · ,q.

Recalling (36) we get

ãm( j)−am( j) = −
j

∑
µ=0

γµ

2q−1

∑
k=q

ωµ+k− j−1

2q−1

∑
s=0

Bm(s)c(k,s)

−
q

∑
ℓ=1

(−1)nℓ+1

(iπnℓ)2q−1
q

∏
r=1
r 6=ℓ

(xℓ −xr)

j

∑
µ=0

γµxµ− j−1
ℓ

2q−1

∑
s=0

Bm(s)b(2q)
nℓ (s)

+o(m−2q), |m| > N, N → ∞.
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Similarly from (38), withα = q, we derive

c̃( j,h)−c( j,h) = −
h

∑
ν=0

γν

2q−1

∑
s=q

c( j,s)ων+s−h−1−
j

∑
µ=0

γµ

2q−1

∑
k=q

c(k,h)ωµ+k− j−1

+
j

∑
µ=0

γµ

h

∑
ν=0

γν

2q−1

∑
k,s=q

c(k,s)ωµ+k− j−1ων+s−h−1

−2
q

∑
r=1

(−1)mr+1

(iπmr)2q−1
q

∏
ℓ=1
ℓ 6=r

(xr −xℓ)

h

∑
ν=0

γνxν−h−1
r a(2q)

mr ( j)

−2
q

∑
ℓ=1

(−1)nℓ+1

(iπnℓ)2q−1
q

∏
r=1
r 6=ℓ

(xℓ −xr)

j

∑
µ=0

γµxµ− j−1
ℓ b(2q)

nℓ (h)

+
o(1)

N2q− j−h , N → ∞.

These imply

ãm( j)−
q−1

∑
s=0

Bm(s)c̃( j,s) = am( j)−
q−1

∑
s=0

Bm(s)c( j,s)

+c( j,q)
q−1

∑
s=0

Bm(s)
χs

(iπN)q−s
+O

(
1
m

)
o(N−q), |m| > N, N → ∞.

Figure 15. Absolute error|G(x,y)− G̃(x,y;N)| for q = 3 andN = 8

Taking into account that

am( j)−
q−1

∑
s=0

Bm(s)c( j,s) = c( j,q)Bm(q)+o(m−q−1), m→ ∞
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Figure 16. Absolute errors while approximating (16) by the KL-approximation (left)

and the Eckhoff approximation (right) forq = 3 andN = 8

we get the estimate

ãm( j)−
q−1

∑
s=0

Bm(s)c̃( j,s) = c( j,q)
q

∑
s=0

Bm(s)
χs

(iπN)q−s +O

(
1
m

)
o(N−q), |m| > N, N → ∞.

Collecting all these into (??) together with (37) we write

lim
N→∞

N2q+1

(
4

N

∑
n=−N

′

∑
|m|>N

|F̃n,m|2
)

=
1

π2q+2

∞

∑
n=−∞

′
∣∣∣∣∣bn(q)−

q−1

∑
k=0

Bn(k)c(k,q)

∣∣∣∣∣

2∫

|x|>1

∣∣∣∣∣
q

∑
s=0

χs

xs+1

∣∣∣∣∣

2

dx

=
1

2π2q+2

∫

|x|>1

∣∣∣∣∣
q

∑
s=0

χs

xs+1

∣∣∣∣∣

2

dx
∫ 1

−1

∣∣∣∣
∫ 1

−1
B(q−1;t)b(q)(q;x− t)dt

∣∣∣∣
2

dx.

Similarly

lim
N→∞

N2q+1

(
4

N

∑
m=−N

′

∑
|n|>N

|F̃n,m|2
)

=
1

2π2q+2

∫

|x|>1

∣∣∣∣∣
q

∑
s=0

χs

xs+1

∣∣∣∣∣

2

dx
∫ 1

−1

∣∣∣∣
∫ 1

−1
B(q−1;t)a(q)(q;x− t)dt

∣∣∣∣
2

dx.

Finally, taking into account that the last term in the right hand side of (49) iso(N−2q−1) as

N → ∞ we get the required.
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Numerical values of̃Dq( f ) while approximating (16) are calculated in Table 9 and the values

of D̃q,N( f )

D̃q,N( f ) := Nq+ 1
2‖R̃N,q( f )‖

for different values ofN are presented in Table 10. Comparison shows how close are theactual

constants to their theoretical counterparts.

Table 9 Numerical values of̃Dq( f ).
q 1 2 3 4

D̃q( f ) 0.9808 0.0947 1.1304 0.1859

Table 10 Numerical values of̃Dq,N( f ).

q = 1 q = 2 q = 3 q = 4
N = 4 0.9354 0.1438 2.0038 0.6711
N = 8 0.9208 0.0872 1.5084 0.2111
N = 16 0.9269 0.0704 1.3505 0.0980

Figure 15 shows the graph of the absolute error|G(x,y)− G̃(x,y;N)| for q = 3 andN =

8. Approximation ofG(x,y) by G̃(x,y;N) in the Eckhoff approximation leads to decrease in

accuracy that is shown in Figure 16 (right) compared with theleft one where the exactG is

applied (KL-approximation).

Figure 17 presents more graphs for the Eckhoff approximation.

Figure 17. Absolute errors while approximating (16) by the Eckhoff

approximation forN = 16 (left) andN = 32 (right) whenq = 3.
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Figure 18. Absolute errors away from the singularities while approximating (16) by the

Eckhoff approximation for

N = 8 (left) andN = 32 (right) whenq = 3

Figure 18 presents the absolute errors away from the singularities. Comparison of Figures

18 and 6 shows that in comparison with the KL-approximation,where the exact values of the

jumps are used, in the Eckhoff approximation we have an improvement in convergence. This

convergence acceleration phenomenon (away from the singularities), which is quite contrary

to the slow convergence that might be expected due to approximate calculation of the jumps,

we have called (see [36] ) the autocorrection phenomenon of the Eckhoff method. Theoretical

background of this phenomenon for multivariate functions will be carried out elsewhere.
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