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Abstract. The paper considers the Krylov-Lanczos and the Eckhoff @pprations for
recovering a bivariate function using limited number offitsurier coefficients. These ap-
proximations are based on certain corrections associatadumps in the partial deriva-
tives of the approximated function. Approximation of thaejumps is accomplished by
solution of systems of linear equations along the idea ohbatfk Asymptotic behaviors of
the approximate jumps and the Eckhoff approximation ardistl Exact constants of the

asymptotic errors are computed. Numerical experimenidatal theoretical investigations.
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1 Introduction

It is well known that approximation of a 2-periodic and snmofitnction on the real line by

the truncated Fourier series
N ) 1 /1 .

Sufixi= ™, = é/ilf(x)e""”xdx
is highly effective. If the 2-periodic extensions 6fand its derivatives up to the orderare
continuous on the real line, bit? is discontinuous, the uniform convergence rat®fbdl—P)
(see[48]). The approximation is accompanied by the Giblepmenot® when the approx-
imated function is discontinuous or non-periodic. The ltetidns caused by this phenomenon
typically propagate into regions away from singularitiesl @egrade the quality of approxima-

tion. Even if the approximated function is analytic but nmriodic the error falls only as fast as
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O(1/N) over the entire interval except in zones of wilil/N) nearx = +1 where the error is
alwaysO(1).

Much efforts were devoted to overcoming the convergenceidatly (see, for example, [3],
[11], and [45] with references therein). An efficient apmioaf convergence acceleration by
subtracting a polynomial representing the discontinsiiiamps) in the function and its deriva-
tives was suggested by Krylov in 198% (see also [40] (pp. 88-99), and [46] (pp. 144-147)).
Lanczos, in 195624, in 196429 and in 19669 independently developed the same approach
with more formality. He introduced a basic system of polymeB(k; x) that played a central
role in the method and pointed out a close connection betweeR(k; x) and Bernoulli poly-
nomials. That was why polynomial subtraction method wakedadlso as Bernoulli method.
Jones and Hardy in 1978? and Lyness in 197# considered convergence acceleration of
trigonometric interpolation by polynomial subtractiorhély showed the relation of the Krylov-
Lanczos method with the theory of Lidstone interpolafién Since then, it widely considered
in the context of Fourier seri€g8—[11.[19.131.32  and trigonometric interpolatioif-[38 .

The key problem in the Krylov-Lanczos method is approxiomatof the exact jump val-
ues. Ordinarily, such values are unknown and in general Balyrier coefficients or discrete
Fourier coefficients of a given function may be specified. rifitaary pointwise values of the
function can be calculated then the finite difference foamutan be set up for approximation
of these quantities. Approaches resembling this approaeh been attempted under various
names and apparently with varying success for the specal \where the approximated func-
tion is smooth with only singularity at the end points of tigerval: Gottlieb and Orszag in
1977 (polynomial subtractions for nonperiodic probleA9s)Lanczos in 1966 (increasing the
convergence of Fourier series by adding properly chosemdany terms$® Lyness in 1974
(Lanczos representatioff}, and Roache in 1978 (reduction to periodidit}) Whereas, even if
the arbitrary pointwise values of the function can be calmd, approximation of jump values
via finite differences is not recommended for this purpd3eEven in the case of a uniform grid,
finite difference approximations are notoriously unrdiatMoreover, in many applications the
Fourier coefficients can be calculated but pointwise vakmd derivatives are not explicitly
available.

As noted inf15], the previous lack of robust methods for the approximatibjump values
was the central reason why the polynomial subtraction tgcienhas not been utilized more

extensively. The first attempt towards more robust approeah initiated by Gottlieb et &
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and which has been further developed in [1], [2], [12], ar®] Hy utilizing step functions in the
reconstruction of discontinuous functions. Similar idesswvapplied by Orsz&j and Wengle et
all*" to solve problems with nonperiodic boundary conditionse §eneral approach was estab-
lished by Eckhoff in a series of papet8 —[18. It was based on the observation that the Fourier
coefficients themselves contained sufficient informatmneconstruct the jump values. Hence,
such values could be approximated to sufficient accuraaygusily coefficients. The funda-
mental aspect of Eckhoff's method was approximation of timegs by solution of linear system
of equations and was rather familiar. A similar idea was usdtie Richardson extrapolation
procesé2. Further investigation of the Eckhoff approximation anipolation were organized
in a series of papers [3], [7], [11], [36], [37], and [39]. Ajmgation of the polynomial subtraction
method for convergence acceleration of the modified Foaxpansions was investigated in [3]
(see also references therein).

Polynomial subtraction method for multivariate functiomas investigated in [3]-[6], [30],
[33], and [34]. In this paper we continue these investigetiand focus our attention to bivariate
Fourier series

Su(fixy): ZNWZNf grmamy g = 4/ / (X, y)e~ M) gy,

Our aim is extraction of exact constants of the asymptotiorerboth for jumps and corre-
sponding Eckhoff approximation. Actually we are generafizthe results of [7] for bivariate
functions. Our analysis shows how the exact asymptotictaaiscan be derived also for mul-
tidimensional Eckhoff approximation that can complemdrd tesults obtained in [5]. This
general case will be considered elsewhere. Moreover, quoaph shows that exact asymptotic
constants can be derived also for multivariate Eckhoffrpatation along the ideas described in
[37]. This also will be considered elsewhere. Numericalegxpents pointed out the existence
of the autocorrection phenomenon, described in [36] angl [B9multivariate approximations
and interpolations. These investigations also will be mered elsewhere.

The paper is organized as follows. Section 2 presents the igheds around the univariate
Krylov-Lanczos and Eckhoff approximations. Subsectidndescribes the Krylov-Lanczos ap-
proximation, subsection 2.2 considers the problem of jupgraimation and subsection 2.3
explores the accuracy of the Eckhoff approximation. Thalte®f this section are not new and
are coming mainly from the paper [7]. Section 3 considerskihydov-Lanczos approximation

in bivariate case. Section 4 solves the problem of jumpscqapiation along the idea of Eck-
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hoff. Section 5 presents the Eckhoff approximation in batarcase. In the last three sections
exact constants of the asymptotic errors of approximatwasalculated. Throughout the paper
parallel to theoretical investigations the results of ntioad experiments are discussed which

validate theoretical conclusions and reveal the pracéffadiency of the approximations.

2 The Krylov-Lanczos and Eckhoff Approximations in
Univariate case, Approximation of the Jumps

In this section we describe the Krylov-Lanczos and the Effldmproximations in univariate

cas¥!.

2.1 The Krylov-Lanczos Approximation
Supposef € CY[—1,1] and denote by ( f) the exact value of the jump in the k-th derivative
of f

A(f) =R —f¥(-1), k=0 .q

The following lemma is crucial for the Krylov-Lanczos apaoh.
Lemma 1. Let f € C91[—1,1] and f4 Y is absolutely continuous op-1,1] for some

g > 1. Then the following expansion is valid

fn:

(—1)™ Al A () 1 /1 @ iy
2 ;;waﬂ+2mmq_f (x)e"™dx,  n#o0.
Proof. The proof is trivial due to integration by parts.

Lemma 1 implies the representation

gq-1
f(x) = Z)Ak(f)B(k; X) +F (%), 1)
K=
whereB(k; x) are 2-periodic extensions of the Bernoulli-like polynoliaith the Fourier coef-
ficients
0, n=0
Bn(K) == (—1)n+l

2(| nn)k+1 ’ n # 0
andF is a 2-periodic and relatively smooth function on the rea¢ liF < C4-1(R)) with the

Fourier coefficients 1
I:n: fn_ zAk(f)Bn(k)- (2)
k=0
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The Bernoulli-like polynomials can be calculated recubiv
B(0;x) = g, B(k;x) = / B(k— 1;x)dx, xe[-1,1],
where the constant of integration is defined by the relation

1
/_1 B(k;x)dx = 0.

Approximation ofF in (1) by the truncated Fourier series leads to the Krylomdzms (KL)
approximation
N q-1 ol
Svg(fix) = n:ZN (fn - k;Ak(f)Bn(k)> em 4+ I(;Ak(f)B(k, X) (3)
with the error
Rn,g( ;%) = f(X) — Suq(f;X). 4)

Denote byj| - || the standard norm in the spalcg(—1,1)

11]] = (/_11|f<x>|2dx)1/2.

The following theorem illustrates the basic idea behindkhdov-Lanczos approach.
Theorem 2.1}, Suppose £ C9[—1,1] and (% is absolutely continuous dr-1,1]. Then

the following estimate holds:

R = A
|\|||LnooN IIRN,q(f)\|—nq+1m‘

Proof. Lemma 1, Equations (1), (3), and (4) imply
RN7q( f) = Fneinnx’
n>N

where
1 1 ;
- = (a) —iTmx
Fn ERE /—1f (x)e~ " dx

(_1)n+1 (f) 1 ! + —i7mX
= (i?%)qﬂ Z(iﬂn)q+1/—1f(q V(9o

Taking into account that the second termo{®9-!) asn — o according to the Riemann-

Lebesgue theorem, we get

2 00
1 g
IRugl?=2 5 [Fof? = 150 S tONEY Now
=N+

20+2 20+2
n>N e = WERL
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This concludes the proof.

2.2 Approximation of the Jumps
In order to determine the approximate valugsf;N) of A (f), the fact is used, that the
coefficientsk, in (2) asymptotically § — ) decay faster than the coefficierg(k) for k =

0,...,— 1 and can therefore be discarded for lahge Hence, we can write

qg-1 _
fo="> Ac(f;N)Bn(k), n=ng,n,...,Ng (5)
&

The next theorem shows how well the valugg f;N) approximate the actual jumps(f)
depending on the choice of the indiaas

Definition 2.2. By the multiplicity of some numberin a sequencg,, ..., Xm we mean the
number of indices for which x; = x.

Theorem 2.37).  Suppose the indices = ns(N) in (5) are chosen such that
im 2 —d,£0  s=1
N~>ooN_ S ’ - a"'aq'

Let a be the greatest multiplicity of a number in the sequengelAd...,d;. Then, for fe
Cota-1[_1 1] such that {491 is absolutely continuous op-1,1], the following estimate
holds:

A,-(f;N):A,-(f)—Aq(f)(mN)q_j+o(|\rq+i), N—w j=0...9-1

where the constantg; are coefficients of polynomial

[(-5) =30

2.3 The Eckhoff Approximation

Approximation ofAg(f) in (3) byﬂk(f;N) leads to the Eckhoff approximation
~ N a-1 _
Sua(fix) =5 Fe™+ 5 A(FN)B(kx) (6)
n=—N k=0

with the error

Rug(Fi%) i= f(X) — Suq(f;), (7)
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where
qg-1 _

Fo=fn— zAk(f;N)Bn(k)' (8)
K=0
The next theorem formulates the analog of Theorem 2.§,{gl{f).

Theorem 2.47. Let the conditions of Theoret3 be valid. Then the following estimate
holds:

o 1 q 1/2
Jim N2[|Ry q(f)|| = \|/A;7(12|1 (/1Q<X_dis>2dx> '

Comparison of Theorems 2.1 and 2.4 shows that approximételaton of the jumps does
not degrade the convergence rate of the Eckhoff approxamati
Theorem 2.4 encompasses the optimal choice of the indicéd = 1) for the best ap-

proximation:
n=N-s+1s=1....mn=—(N-s+m+1),s=m+1---,2m 9
for even values of, g=2m,m=1,2,---, and
ns=N-s+1 s=1--- m+1l;ng=—(N—-s+m+2),s=m+2---.2m+1 (20)

for odd values of,, g=2m+1,m=0,1,---.

As is shown in [36] we have

X2s = <I:> (_1)m+s7 §=0,...,m X2s11=0,5s=0,...,m-1 (11)
for (9), and
m m+s+1 m M-S
o (M) paa— (T a0 m a2
for (10).

Henceforth, in numerical experiments we will use thesead®for the indicess.

3 The Krylov-Lanczos Approximation in Bivariate Case

Throughout the papeD = [—1,1] x [-1,1]. As usualL(D) stands for the set of Lebesgue
integrable functions o. AC[—1,1] andL[—1,1] are the sets of absolutely continuous and
Lebesgue integrable, respectively, functiong-ef, 1].

Carathéodory’s definition [13] of absolute continuity fonttions of two variables may be

stated as follows (see [43]):
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Let (D) denote the system of all rectangles, 2| x [y1,Y2] contained irD. For any rectan-
gleP € (D), |P| denotes the volume &. We say that rectangldy, P, € (D) do not overlap
if they have no interior points in common. Furthermore,aaglesP;, P, € o(D) are referred to
be adjoining if they do not overlap afi UP, € o (D).

Definition 3.1%8. A finite functionF : (D) — C is said to be additive function of rectan-

gles if, for any adjoining rectangléy, P, € (D), the relation
F(Pl U Pz) = F(Pl) + F(Pz)

holds.
Definition 3.2%8. We say that an additive function of rectangkes o(D) — R is abso-
lutely continuous if, for everg > 0, there exist® > 0 such that i, ..., R € a(D) are mutually

non-overlapping rectangles with the property

k
> IFl<d,
=

then the relation )
S FR)<e
=1

is satisfied.

Having the functionf : o(D) — C, we put

Fr([X1,%2] X [y1,Y2]) i= f(x1,y1) — F(X1,¥2) — F(X2,y1) + f(X2,Y2). (13)

The function of rectangleB; : o(D) — C defined by (13) is said to be a function of rectangles
associated witlf.

Definition 3.3*3144, We say that a functiori : g(D) — C is absolutely continuous oR
(f € AC(D)) in the sense of Carathéodory if the following two conditidrold:

e the function of rectangleB; associated with is absolutely continuous;

e the functionsf(—1,-) : [-1,1] — Candf(-,—1): [-1,1] — C are absolutely continuous.

We will frequently use the following result.

Theorem 3.443:44], et f € AC(D). Then

o f(-,y) € AC[—1,1] for every ye [—1,1];

o f(x,-) € AC[—1,1] for every xe [—1,1];

e fy(-,y) € AC[—1,1] for almost every ¥ [—1,1];
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o fy(X,-) € AC[—1,1] for almost every x [—1,1];
o fyye L(D), fyxe L(D), and fx(x,y) = fyy(x,y) for almost everyx,y) € D

Denote

O*HSf(x,y
ks (xy) = —dkxés_y ),

a(kyy) i= <O (1y) - f*O(=Ly), b(sx) == FOI(x 1) - 19 (x, -1),
an(K) 2/ (k:y)e~ ™y, by(s) 2/ x)e Mg,
<><k,y> = 109(Ly) — 169 (1), b (s%) 1= 69 (x, 1) — K9 (x, 1),
aﬁ?(k)::%/_ll a® (ky)e" ™y, bi(s) /b (sX)e™ ™ dx,
c(k,s) := k9 (1,1) — £ (1, —1) — £ >(—1, 1)+ f (=1, —1).

The following lemma is crucial for bivariate approximatson

Lemma?2. Let ks cC(D), ks=0,...,q—1and f9-14-1 ¢ AC(D). Then the following

relations hold:

q-1 1 1 01 .
= - (9,0) —iTmx
fo %Bn<k>ao<k>+ i |2 L 140 eye ™y n o

1,1 .
fom = ZBm s)bo(s) i;m ] [ [ £(O9 (x,y)e™™Ydxdy, m+£ 0,
q 1
fn,m = + %Bm bn (k)Bm(S)C(k>S)
k_ o
- - qq —i7(nx+-my)
+4(|nn) / / f9%(xy)e dxdy, n,m= 0.

Proof. The proof is trivial by means of integration by parts in vieivitheorem 3.4.
Taking into account that
fom rr(nx+my) + f elmx+ fO my fOO
i _szw Z Z m

in view of Lemma 2 we get the main representation

f(xy) =G(xy)+F(xy), (14)

where

q-1 q-1g-1

g-1
G(x,y) := kZO B(k;x)a(k;y) + S;) B(s;y)b(s;x) — kZO S; B(k;x)B(s;y)c(k,s), (15)
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andF is a relatively smooth functiof %% € C(R?), k,s=0,--- ,q— 1.
Henceforth, theoretical investigations will be accompdnby the results of numerical ex-
periments. As a typical example we consider the followingcfion which is smooth o but

has discontinuous 2-periodic extensionR
f(x) = sin(3x+2y? + 2). (16)

The graph of (16) is shown in Figure 1.

T~ 1

Figure 1. Graph of function (16)

Figure ?? presents graphs @(x,y) (left) andF (x,y) (right) for g= 3. Periodic extension
of F ontoR? is smoothF € C?(R?).

Figure 2. Graphs ofG(x,y) (left) andF (x,y) (right) forq=3

The Fourier coefficients & andF are known explicitly in view of Lemma 2, and Equations
(14) and (15)

q-1

Ghm= Z Bn(K)am(k) + Zme S)bn(s Bn(k)Bm(s)c(k,s), n,m=0,
—o
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gq-1
GO7m: ZBm(S)bo(S), m;éO, Gn70— Z Bn n;éO Goo—o
S=

and

1 11 y
Fm = 4(irm)d(irm)d /71/71 F9 (x y)e ™™™ dxdy n,m# 0, Foo = foo,

1 1 1 .
- = (0,0 —iTmx
0= gy [, 19 cye ™dxdyn £ o

1 1 1 .
Fom—e — £(0.0) — 1My xd 0.
O = 2 [1[1 (xy)e xdy m#

Approximation ofF in (14) by the truncated Fourier series leads todhdov-Lanczos (KL)
approximationin bivariate case

N N
Sua(fixy) =GxY)+ 5 5 (fam—Gam)e ™™™ (17)

n=—Nm=—N
with the error
RN,Q(f;X>y) = f(xvy)_S\l(ZI(f’va) (18)

Note that the KL-approximation uses the exact values ofuh®pjfunctionsa(k;y), b(s;x)
and jumpsc(k, s) while constructing the correction functi@h Later we will discuss the problem
of jumps reconstruction.

For further investigations we need the following lemma tleakals the asymptotic behavior
of the Fourier coefficientsy m.

Lemma 3. Let fk9 e C(D), k,s=0,...,q and f9%9 ¢ AC(D). Then the following esti-

mates hold:

Fno = Bn(d)ao(q) +o(n™9™%), n— o, (19)
Fom = Brm(@)bo(@) +0o(m™4"%), m— o, (20)
Fum = :3 ”‘(‘)‘) (@ + 2™ m e n 20 (21)
nm= (i;(,rc]‘))qa@(q)jto(%ﬂ, n— oo, M+ 0. (22)

Proof. The proof is trivial by means of integration by parts in vieiliieorem 3.4 and the

Riemann-Lebesgue theorem.
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Asymptotic behavior of the KL-approximation depends ongh®othness of on R? and
hence on the asymptotic behaviorfgf,, asn,m — o that we established in the last lemma. This
encompasses the proof of the following theorem.

Theorem 3.5. Let %9 € C(D), k,s=0,...,q and f%% ¢ AC(D). Then the following

estimate holds:
fim N%*2 |Ry.q(f)|| = Dq(f),

where
hg(f)
matl/2q+1

2 1
g
-1

dx.

and
1 1 1 2
hy(f) =3 ‘/1a(q;x)dx /,1B(q_ ;)b (g; x—t)dt| dx

1
v/
-1

Proof. In view of (14), (17), and (18) we have

2 1 1
+—‘/ b(q; x)dx
2\|/-1
2

1
/ B(q—1;t)a® (g;x—t)dt
-1

N N _
RN7q(f):F(x,y)— Z Z |:n7meln(nx+mw
n=—Nm=—N
i . N, _
- Z F.0€ ™ + Z Fome™ + z z Fn.melﬂ(nxqtmy)

n>N [m|>N n=—N|m[>N

N
2
m&

/ z Fn’mem(nXerY)"i' z z Fn.mein(nx+my)'

N|n[>N [n[>N|m[>N

Therefore

IRug(D2=4S [Fol?+4 S [Foml?

n>N [m>N

N, N,
+4 Z z |Fn.m|2+4 z z |Fn,m|2 (23)

n=—N|m|>N m=—Ni|n[>N

+4 Z [Fml?.
[N[>N |m[>N

The first term in (23) we estimate in accordance with (19)

’ 1 2a(q)P
I|m N2Q+1 4 F 0 2 — ’ao(q)’ I|m N2q+1 _ '
A < \anN| " TS N |n\ZN a2~ 792(2q+ 1)
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Similarly, (20) implies

sim, P2+ 1)

I|m N2q+1< |F m|2> Z‘bo( )’2
[m[>

The third term we treat by (21)

N,
I\IliLnooN2q+1 (4 Z Z ‘Fn7m’2>

n=—N|m[>N

:NIianNzc‘H( = Z qu+2 Z Bn(q— 1)b()(Q)!2>

_ 8 °°' (@ ()2
—m _Z [Bn(q—1)bn" (a)|

2

@ (g;x—t)dt| dx

Similarly, (22) yields

-1
li N2CH-1 = 2 /
N Nlng [Pl HZQ+2(2q+ 1)

In view of (21) or (22), the last term i5(N~24-1) asN — . Substituting all these into (23) we

1 2
/ B(q—1;t)a® (q;x—t)dt| dx
1

get the required estimate.
Numerical values oDq(f) for different values ofj while approximating function (16) by
the KL-approximation are calculated in Table 1. We see thah &alues ofj provide with more

accurate (asymptotically) approximation than odd values.

Table 1 Numerical values oDg( f)

q 1 2 3 4 5

Dq(f) | 0.4904 | 0.0580| 0.5473| 0.0972 | 1.3032

Denote
1
Dan(f) :=N¥"Z|[Ryq(f)]].
It is interesting to calculate the constaitgn () for different values oN and compare them

with the theoretical estimat@q(f). Table 2 shows such values for moderate valuelN.oFor

more large values dfl calculations are useless due to round off errors as we nagsl totegrals
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from oscillatory functions with high precision. Our calatibns are carried out by the MATHE-
MATICA 8.0 package with standard precision. Comparisorheftables shows that the values

of Dgn(f) are close to the values By(f) .

Table 2 Numerical values oDgn ()

g=1|g=2| q=3 | g=4 | g=5

N=4 | 0.3881| 0.0998| 0.3703 | 0.1677 | 0.6317

N=8 | 0.4124| 0.0706 | 0.4488 | 0.1215| 0.9042

N =16 | 0.4280| 0.0555| 0.4963| 0.0780 | 1.0779

Figures 3-6 compare accuracies of approximations by tmeated Fourier series and KL-

approximation.

Figure 3. Graphs of the absolute errors while approximating (16)
by the truncated Fourier series fidr= 8 (left) andN = 32 (right)

Figure 3 shows non-uniform convergence while approxingation-smooth ofir? function
by the truncated Fourier series. Convergence exists oslgarnthe domain of approximation
away from the singularities (see Figure 4). Figures 5 andeSemt the higher accuracy of
the KL-approximation on the whole domain of approximation away from the singularities,
respectively. Figure 4 shows increase in accuracy b§ dées while theoretical estimate, well-
known from the Fourier analysis, is 64 time&3((N%)) while changingN from 8 to 32. Not a bad

coincidence for moderate valueshdf
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Figure 4. Graphs of the absolute errors while approximating (16)

by the truncated Fourier series fidr= 8 (left) andN = 32 (right) away from the singularities

4 Approximation of the Jump Functions

In this section we discuss the problem of reconstructiomefump functions(k;y), b(s;x)
and the numbers(k, s) directly from the Fourier coefficient, m. The procedure of reconstruc-
tion includes the following steps: first, we will recover tapproximate values of the Fourier
coefficientsan(k;N) of am(k) andBn(s; N) of by(s), second, based on these coefficients ap-
proximation ofa(k;y;N) of a(k;y) andb(s;x;N) of b(s;x) will be performed according to the
univariate Eckhoff approximation. Note that the numbals s) are exact jumps o(k;y) or
b(s; x).

The next lemma reveals the asymptotic behaviofgf that outlines the procedure of the
Fourier coefficients approximation.

Lemma4. Let fk9 cC(D),k,s=0,...,q—1and f4-19-1) ¢ AC(D). Then the following
relations hold:

g-1 1 1 |
- — (0,0) —iT(nx+my) "
fom k;)Bn(k)am(k)+4(iTm)q /71/71]: (x,y)e dxdy, n# 0, (24)

q-1 1 1,1 .
_ - (0,0) —iTI(Nx+my) 25
fom= 3 Bu(9n(S) + g [ [ 10y ™ My mio, (29
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0.000015
0.0007

Figure 5. Graphs of the absolute errors while approximating (165py for
N = 8 (left) andN = 32 (right)

f —-mlB(MB(Qdk$+~—£—ﬁ48(méﬁw%+ L qu(@ﬁwg)
"’m_k,szzo” (09 Tizmya 2, iy 2, o)

(26)

1 1 1 .
(9.0) —iT(Nx+-my)
+4(inn)q(inm)q /_1/_1f (x,y)e dxdy, n,m= 0.

Proof. The proof is trivial by means of integration by parts.
As the second term in the right hand side of (24) asymptdyi¢al— ) decay faster than
the first term then it can be discarded for lafge Hence, from (24) we derive the following

systems of linear equations

gq-1
fam= %Bn(k)ém(k;N), Im <N, n=ng,n,...,Ng. (27)
K=
Thus, for any giverN we assume to have chosgulifferent integer indices
nm=n(N),  n=n(N),....,ng=ng(N)

for evaluating systems (27). Solving these we get the vaiués N), which, as we later prove,
approximate the Fourier coefficierdag (k).

Similarly, from (25) we get the systems

-1 -
S—=
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Figure 6. Graphs of the absolute errors while approximating (16)

by Sv,3 for N = 8 (left) andN = 32 (right) away from the singularities

for approximating the Fourier coefficiertis(s).

For approximation of the numbecgk, s) we obtain from (26) the system of equations
q-1
fam= z Bn(k)Bm(s)€(k,s;N), m,n=nq,ny,...,Ng. (29)
k,s=0

Throughout the paper we will suppose that
aN<|ng] <N,s=1,....q (30)

for some O< a < 1. Note that choices (9) and (10) also satisfy to this es#@mat
We will often use the following results.

Lemma5”. Letx=(imms) tandaN <|ns <N,s=1,...,qfor some) < a < 1. Denote

. ,j>o.
0 %)
o
Then
(@) wj(q) =0for j=0,...,9—-2
(b) ay-1(q) = 1;

(c) wj(q) = O(N4I1~1) when N— o for every j> 0.
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Lemma 67,  Suppose the indices; satisfy the conditior{30) and suppose; is the j-th
g q
coefficient of the polynomigf] (x—xs) = 5 y;x!. Then
s=1 =0
yi=ON"%)) j=0,...,.-1, N - .

The next theorem investigates the accuracy of the jumpsajppation.

Theorem 4.1. Suppose the indices & ng(N) are chosen such that

. Ng B
hIllﬂloﬁ_ds;wéo, s=1,....q (31)

Let a be the greatest multiplicity of a number in the sequengelA. .., dy. Now, for fks) ¢
C(D), k,;s=0,...,q+a — 1such that f9+2-1a+a-1) ¢ AC(D), the following estimates hold as

N — oo

an(1:N) = an(]) —an(@) gy +EnoN ), =0 a1 (32
Bn(j;N):bn(j)—bn(q)WJréno(Nq+i)7 j=0,...9-1 (33)
o(ikN) = (], K) — 1. 0) e
. . (34)
—c(q,k)Wm(NqﬂHo(Nq+k), jk=0...q-1,

where the constantg; are the coefficients of the polynomial

q 1 q
M0 a) =20

and the serie§ ., |6n/% S _.|€m/? are convergent.

Proof. First we are proving (33). In view of (25) and (28) we get

q-1 _ og+a—-1

%(bn(S) —ba(s)=— > bn(9K

= =0
B (—1;nk+lxz+a1/1 /1 FOG+a) (g meEn) gy (35)

-1/
k=1,...,q,
1
wherexy = R

We calculate the inverse of matrix;} explicitly. Let Pj(x) be the polynomial of degree
g— 1 defined by
q X_ Xn q

Pj (X) = = mijk_l, j =1...,q,
Xi—* &

n#]
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where bym;, we denote the coefficients of the polynomita(x). From the equations

q
= Z mjkx|!(71:dj7 Ia] :17"'7q7
k=1

(whered;j is Kronecker's symbol) we see that the transposém) is the inverse of the Van-

dermonde matrixx; ~1). Taking into account that (see [7])

1 J' _
M = ——— ;ygxﬁ,k:l,...,q;jzo,...,q—l (36)
X% M 0k —x0)
n#k

Equation (35) can be written as

gt+a—1

- j j
bn(j)_bn(j):bn(Q)/;Véwf—Hq—l"‘ Z bn(s)[;Véwf—HS—l

DB

—j+o+a-2
According to claims (a) and (b) of Lemma 5 we have

// f0q+a)(x y) |rr(nx+nky)dxdy (37)

:_Q

I
?\_H

j
q)/%yf(}‘h—H-f—l - bn(Q)Vp J :077q_1

In view of claim (c) of Lemma 5 and Lemma 6 the second term irridpet hand side of (37) is
O(N~9+I=1) asN — co. For the third term note that

1 nq—1N2q—2 N2q 2
' . <5 < const— = O(Na+a=2), N — oo
[ (X — Xs) [ [Nk — gl
o o

as|ng — ng| > 1 whenevek ands differ and|nx — ns| > CN whenevercs differs from ¢y, which
happens at least fay— a indicess. Also, from Lemma 6, we havgx’k = O(N~9). Therefore,
the third term isd,0(N~9"1) asN — o. Collecting all of the above estimates we obtain from
(37)

bn(j;N) = bn(j) —bn(@)y; + 80(N"%),  j=0,...,q-1

Now (33) follows from the Viet formula.

Estimate (32) can be proved similarly.
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Then, in view of (26) and (29) we obtain farn=ny, Ny, ..., Nq

gq-1 6(k,s) q-1lg+a-1 kS) q+a lg+a-1
k,;o (irm)¥(i Zo Z ZO i7m)k (i7mm)s

2(_1)m+1 q“'a_laﬁﬁ"'a)(k) 2(_1)n+l Q—lblglq-&-a)(s)

(irm)er+a-1 kZo (irm)k  (im)a+a-1 £ (imm)s
(_1)n+m 1 1 7 y

(inn)q+a—1(inm)q+a—1 ‘/71/71f(Q+a q*“)(x,y)e ln(nx-l-my)dxdy.

The remaining can be carried out as above.

(38)

_l’_

Tables 3 and 4 show numerical values of the efgtk,s;N) — c(k,s)| for g =3 andN = 8,
N = 16, respectively. These values are more sensitive to roffrerrors as for they calculation
we are inverting the same matrix twice (see (29)). Table Svshmumerical values of the exact

jumpsc(k,s) for understanding the relative values while looking at &at8 and 4.

Table 3 Absolute values of the erraxk,s;N) — c(k,s) for = 3 andN = 8.

q s=0 | s=1|s=2
k=0 | 0.00041| 0.013 | 0.26
k=1| 0.011 | 0.28 | 6.65
k=2| 0.0058 | 2.06 | 3.66
Table 4 Absolute values of the errak,s;N) — c(k,s) for q= 3 andN = 16
q s=0 s=1 |s=2
k=0 | 0.000074| 0.0037| 0.19
k=1| 0.0011 | 0.069 | 2.88
k=2| 0.00071| 086 | 1.78
Table 5 Numerical values of(k, s).
q s=0| s=1|s=2
k=0| O 17 0
k=1| O 4.4 0
k=2 0 —154 0

Figures 7-10 explore pointwise accuracy of the Fourierfamehts approximation. Figures

7 and 8 present numerical values of the absolute éargii;N) —am(j)| (j = 0,1,2 from left to
right) forg= 3 andN = 8, N = 16, respectively. Theorem 4.1 states that the rate of cgevee
of |am(j;N) —am(j)| asN — o« is O(1/N?), O(1/N?), andO(1/N) for j = 0,1,2, respectively.

Comparison of Figures 7 and 8 confirms the theoretical estim&e have increase in accuracy
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almost 10, 5, and 3 times (theoretical estimate gives 8, d 2aimes) when changinly from
N=8toN = 16.
Similar estimates we have in Figures 9 and 10 for the absehute|by,(j;N) — bn(j).

Figure 7. Absolute errorsam(j;N) —am(j)|, Im| < N for
N=8,g=3andj=0,1,2 (from left to right).

0.0000: 0.0 0.0
5.x107° 0.000z 01
‘ 16 -16 ‘ 16 -16 ‘ 16

-16

Figure 8. Absolute errorsam(j;N) —am(j)|, |m| < N for
N =16,q=3andj =0,1,2 (from left to right)

Figure 9. Absolute errorgbn(j;N) —bn(j)
N =8,g=3andj=0,1,2 (from left to right)

n| <N for

The next theorem immediately follows from the previous one.

Theorem 4.2. Let the conditions of Theoredl be valid. Then the following is true

/N 1/2 .
N”L“wN“"<Z lbn<i>—bn<i>|2> — XL gl j=0.....q-1,

n=—N a \/énq—j
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o

0.00 ’ 1.

0.008 0l4
0.0001

_16 ‘ 16 -16 ‘ 16 -16 ‘ 16

Figure 10. Absolute errorsbn(j;N) — bn(j)],
In| <N forN=16,g=3andj=0,1,2 (from left to right)

/N 1/2
N”L“qu‘<mz_Nram<j>—am<j>\2> — eyl =01

Numerical values o%”a(q y)|| and f');kq' -|Ib(qg;x)|| are presented in Tables 6 and 7,

respectively. By j(a) andry,j(b) denote the actual errors

N 1/2 N 1/2
rN,,-<a>:=Nqi<z_Nram<J>—am<j>\2> ,rN,,-<b>:=NqJ'< _z_Nrbn<j>—bn<j>\2> .

Table 8 shows the values o§ j (a) andry j(b) for different values oN. We see that these values

are close to theoretical estimates even for moderate nisnolbiy.

Table 6 Numerical values of\%“a(q;y)“ fork=0,---,9—1.

k=0 | k=1 | k=2 | k=3

q=1]01753| - - -

g=2| 0.1955 0 — —

g=3| 0.1599| 0.5023| 1.5779| -—

g=4|0.1783 0 35186| O

Table 7 Numerical values ofﬂnb(q;x)” fork=0,---,q—-1

V2o

k=0 | k=1 | k=2 |[k=3
q=1|18067| — — —
q=2| O 0 — —
q=3|35708| 112179 | 352421| —
q=4| O 0 0 0
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Table 8 Values ofryk(a) andry k(b) for g=3.

N=4 N=8 | N=16 | N=32 | N=64 | N=128 | N=256
k=0 | rnk(a) | 0.2682 | 0.1912 | 0.1720 | 0.1654 | 0.1625 | 0.1612 | 0.1605

(
rnk(b) | 5.8947 | 43638 | 3.8710 | 3.700 | 3.6310 | 3.6000 | 3.5850
k=1 |rnk(a) | 05322 | 0.5095 | 0.5040 | 0.5027 | 0.5024 | 0.5023 | 0.5023
rnk(b) | 123945 | 115548 | 113033 | 112393 | 11.2233 | 112192 | 11.2182
k=2 |rnk(a) | 28428 | 1.9350 | 1.7123 | 1.6357 | 1.6046 | 1.5907 | 1.5842
(

rnk(b) | 581779 | 43.0687 | 38.2050 | 36.5224 | 358362 | 355281 | 35.3824

Having approximate Fourier coefficiens,(k;N) and bs(s;N) the functionsa(k;y) and
b(s;x), respectively, can be recovered by univariate Eckhoff @agpration
N g-1 ] g-1
alkcy;N) == % | @m(k) - Z)E(k,S)Bm(S) e 4 Z)G(k,S)B(s;y), k=0,...,q-1, (39)
m=—N S= S=
and
" N . g-1
b(sxN):= % [bn(s)—  €(k s)Bn(k) e'"”X+chs (k;x),s=0,...,q—1. (40)
n=—N k=0
In the next theorem we explore the accuracy of the approxamag(k;y) andb(s;x) by
a(k;y;N) andb(s;x;N), respectively.

Theorem 4.3. Letindices g= ns(N) be chosen such that
lim 25 —d.£0 s=1
N*)CON_ S ’ - 7"'7q'
If fk$) € C(D), k,s=0,...,2q— 1 such that f29-1.20-1) ¢ AC(D) then the estimates hold:

Jim NTH Ay N) —alky)|| = 25 X cla@y)ll k=0,....9-1,

and
im NS{B(sN) ~b(s )| = 2L (g s=0.....q 1
Proof. In view of (39) we write
la(k;y;N) —a(k;y)||* = 2 Z |8m(K) — am(K)|?
-1 2 (41)
+2 am(k) — ) €(k,s)Bm(s)
[m|>N s=




352 A. Poghosyan : Asymptotic Behavior of the Eckhoff Approxtioa in Bivariate Case

The first term we estimate based on Theorem 4.2. For the séeomdve write
Zj c(k,S)Bm(S) + c(k,)Bm(q) +o(m 1) |m >N, N — oo.

Hence
q-1 q-1

am(K) — 3 Clk.9Bm(S) = 3 (c(k.5) ~C(k.9)Br(S) +-c(k.c)Brn(@) +-0(m ™)

Now Equation (4.11) implies

Sy 1 1
anl)— 5 Sk 9Bn(®) = o0 () Im>N. N

Therefore the second term in the right hand side of (4a)Ns 29t%¢) asN — co. This concludes
the proof of the first estimate. The second can be provedasimil

Figures 11-14 explore the pointwise accuracy of the jumpgsagimation forq= 3 and
N = 8,16. Jumps with greater values lofire recovered with less accuracy as they correspond
to higher order of derivatives. It is interesting to menttbat the order of accuracy of approxi-
mations in Theorem 4.3 coincides with the accuracy of cdefits approximation in Theorems
4.1 and 4.2. This differs from the situation in univariatseavhen the Fourier coefficients are

known exactly and the error of approximation depends on¢heracy of jumps approximation.
0.000€

\ 0.000z

-1 1

Figure 11. Absolute errorga(k;y;N) —a(k;y)|
for N =8,g=3 andk =0, 1,2 (from left to right).

5 The Eckhoff Approximation in Multivariate Case

Replacinga(k;y), b(s;x), andc(k,s) in Equation (15) by their approximated orgs;y;N),
B(S; x;N), andc(k, s), respectively, we get the following correction function
gq-1

G(x,y;N) z B(k;x)a(k;y;N) + qZ:B(S:y)B(s;X;N) — > Bkx)B(sy)c(ks). 42)
S= k,s=0
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0.0000¢

[\ .0000z
-1 ‘

Figure 12. Absolute errorsa(k;y;N) — a(k;y)| for
N =16,q=3 andk =0,1,2 (from left to right)

Figure 13. Absolute errorgb(s;x;N) — b(s; x)| for
N =28,g=3andk=0,1,2 (from left to right)

Therefore, the approximated function has the representati

f(xy) = F(x,y;N)+G(x,y;N). (43)

Approximation ofF by the truncated Fourier series leads to Bukhoff approximationin
bivariate case

00 00

Sua(fixy) =60+ 5 5 (fam—Gom) ™™ (44)

N=—o00 M=—00

with the error

RN,Q(f;X>y) = f(xvy)_S\l(ZI(f’va) (45)
From (42) the Fourier coeﬁicienén.m can be calculated explicitly
~ -1 g-1 - g-1 _
Ghm= z Bn(k)am(k) + %Bm(S)bn(S) — z Bn(K)Bm(S)Cks, N,Mm# 0, Goo =0,
k=0 S= k.s=

=0

" g-1 _ _ g-1
S— k=0
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Figure 14. Absolute errorgb(s;x;N) — b(s;x)| for
N =16,q=3 andk =0, 1,2 (from left to right)

In the next theorem we investigate the accuracy of the Eéldpgiroximation.

Theorem 5.1. Let the indices = ng(N) be chosen such that
im ™ —do£0, s=1 (46)
Nsoo N — Us 7£ ) ) , 0

If fk$) € C(D), k,s=0,...,2q— 1 such that f29-1.20-1) ¢ AC(D) then the estimate holds:

lim N2 |[Ryq(f)]] = Da(f). (47)
where
. h X
By(f) 1= V-1 / S|, 48

and xq = 1, function hy(f) is defined in Theorer®5 and xs are defined in Theorem 2.3.
Proof. In view of (43), (44), and (45) we get

_ _ NN
||RN,q(f)H2:||F(x,y)— z z Fn.me'"(”x+my)||2

n=—Nm=-N

=45 [Faol*+4 Y [Foml? (49)
n>N [m>N
N,

N, _ _
+4 3 ; Foml®+4 5 ; |Fn.m|2+4; Foml?,
n=—N|m[>N m=—N|n[>N [N[>N |m[>N

Wherel/fn’m — fn.m - én’m.

We start with the first term in the right hand side of (49)
E o= fo— Gno— 5 Bu(k)(a0(k) —30(K)) + - /1 /1 F(@+L0) (. v)e T ™Xgiycly
n,0 = Tno no = k; n ag dp 4Gmm)a 1) 4 .Y

g-1
= 3 Bak)(@0(K)— &(K)) +20(c)Bn() +o(m ). n— .
=0
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Hence, in view of Equation (32), we have

2 g
i <4 |Fn0|2> _ laoa)
~ K
N—s0o |n‘ZN 7729+2 NHCON‘[’HZN kzo n/N +1
_ Jao(@)? i %
T[ZCH-Z X‘>l
Similarly
2
: bo(q)? & Xk
lim N9t 4§ |Fom|? _ | / Xk g
N—s 0o |m>N 7-[2CH-2 |X‘>1 kZOXk—HL

For the third term in the right hand side of (49) we hawe(= 0)
'Emm = 1:n7m_ fGme = ZBm ( (S))

DLUICTR CTEE)

+W /_ /_ 1f(o’q)(x,y)e*i"(”X“‘”y)dxdy.

We need asymptotic behavior &f(k) — zq;é Bm(s)C(k,s) asN — c and|m| > N. In view

of (24) and (27) we get

qilamm)—am(k) :2‘42‘1 am(k)
o (iTlng)k = (iTlng)k
(_l)nﬁ_l /1 /1 (29,0) o—iTT(NEX-+my) _
+W s f e dXdy,E—l, ,Q.

Recalling (36) we get

j 29-1 20—1
am(]j) Wuik-j-1 ) Bm(S)
22 2, Bl
q ( l)”‘+1 j u—j—lzqil (29)
- /Z q Z YuXy Bm(S)br, " (S)
(irm)28=1 ] (% — %) =0 s
r=1

r#£L

+o(m~29), [m >N, N — e.
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Similarly from (38), witha = g, we derive

h 2g-1 j 20-1
. —cih==>w > climish1— > W > ckhwij
v=0 s=Q u=0  k=q

J h
+ Z Yu Z W Z C(K,S) Wy k—j—1Wys-h-1
u=0 v=0 ks=q

q -1 my+1 h .
2y T S wx e ()
=1 (immy )2t 1 (% — Xp) V=0
o
1 n+1 J
_Z/Z (— ) Zy N - lb( )(h)
(irmg)2a-1 ﬂ(xz X ) H=0
ryé[
0(1)
+W7 N — oo.

These imply
;Bm g
c(j,a) %Bm

+0<;) N9,  |m|>N,N— .

L4

Figure 15. Absolute errofG(x,y) — G(x,y;N)| for g = 3 andN = 8

0.2

-1

Taking into account that

;B’“ c(j,8) = ¢(j,MBm(q) +o(m 9H),  m— oo
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0.0008

Figure 16. Absolute errors while approximating (16) by the KL-approztion (left)
and the Eckhoff approximation (right) for= 3 andN = 8

we get the estimate

%Bm JS_CJQ%Bm

Collecting all these intoq?) together with (37) we write

1
s +0 () oON 9. i > NN

m

N, _
(335

n=—N|m[>N
1 & q-1 2 9y 2
:Wn:z_m bn(q)_k;)B"(k)c(k’q) /x|>1 S;XSH dx
9 Xs 2 1] r1 @ e 2
n—2q+2 /|x>1 &Z)Xerl / /_1B(q 1;t)b'Y (g;x—t)dt| dx.

Similarly
20+1 Ay =2
NS4S S [P
m=—N|n[>N

zox)s(fl 2dx

Finally, taking into account that the last term in the rigaint side of (49) i(N~24"1) as

1] 1 2
/ B(q—1;t)a®(g;x—t)dt| dx.
1)/

_ 1 /
_2n2q+2 X>1

N — o we get the required.
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Numerical values olﬁq(f) while approximating (16) are calculated in Table 9 and tHees
of Dgn(f)
~ 1_ ~
Dan(f) :=N¥2[Ryq(f)]

for different values oN are presented in Table 10. Comparison shows how close aeetina

constants to their theoretical counterparts.

Table 9 Numerical values oDg(f).
q 1 2 3 4
Dq(f) | 0.9808 | 0.0947 | 1.1304 | 0.1859

Table 10 Numerical values oDq ().

q=1 | q=2 | q=3 | q=4

4 | 0.9354 | 0.1438| 2.0038| 0.6711
8 | 0.9208 | 0.0872| 1.5084 | 0.2111
16 | 0.9269 | 0.0704 | 1.3505| 0.0980

N
N
N

Figure 15 shows the graph of the absolute efaix,y) — G(x,y;N)| for g =3 andN =
8. Approximation ofG(x,y) by é(x,y;N) in the Eckhoff approximation leads to decrease in
accuracy that is shown in Figure 16 (right) compared withldieone where the exadd is
applied (KL-approximation).

Figure 17 presents more graphs for the Eckhoff approximatio

0.0006 0.00008 \

R

Figure 17. Absolute errors while approximating (16) by the Eckhoff
approximation foN = 16 (left) andN = 32 (right) wheng = 3.
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0.0001

~0:7

Figure 18. Absolute errors away from the singularities while appracadimg (16) by the
Eckhoff approximation for
N = 8 (left) andN = 32 (right) wheng = 3

Figure 18 presents the absolute errors away from the sirigega Comparison of Figures
18 and 6 shows that in comparison with the KL-approximatiwhere the exact values of the
jumps are used, in the Eckhoff approximation we have an isgment in convergence. This
convergence acceleration phenomenon (away from the sirges), which is quite contrary
to the slow convergence that might be expected due to appateicalculation of the jumps,
we have called (see [36] ) the autocorrection phenomenoheoEtkhoff method. Theoretical
background of this phenomenon for multivariate functionilve carried out elsewhere.
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