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Abstract. Making use of Wright operator we introduce a new class of dempalued
harmonic functions with respect to symmetric points whigh@ientation preserving, uni-

valent and starlike. We obtain coefficient conditions, exte points, distortion bounds, and
convex combination.
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1 Introduction

Denote byH the family of functions

f=h+g, (1.1)

which are analytic univalent and sense-preserving in tliedist U = {z: |7 < 1}. So thatf

is normalized byf (0) = f,(0) —1 = 0. Thus, forf = h+g € H, we may express the analytic
functionsh andg in the forms

h@=z+Y &,  9@=3 bz |bf<l. (1.2)
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whereh andg are analytic inD. We callh the analytic part and the co-analytic part of. A
necessary and sufficient condition fbto be locally univalent and sense-preservindims that
Ih'(2)] > |9 (2)| in K (see[4]).Hence

b, [by] < 1. (1.3)

M s

f(2) = z+ f a4
k=2

k=1

We denotel the subclass df{ consists of harmonic functiors= h+ g of the form

f@)=z— Y aZ+ § b || < 1 (1.4)
k=2 k=1

Let the Hadamard product (or convolution) of two power settéz) = z+ E @Zand¥(z) =
k=2

Z+ S Y2 be defined by
k=2

@W)(@) =2+ T Bk = (V+0)(2)
=2

Let ai,Aq,---,0q,Aq andB1,By, -, Bs,Bs (0,5 € N) be positive and real parameters such
that

S q
1+ ) Bj— ) Aj>0.
IR

The Wright generalized hypergeometric functidn(see also [ 12)

qWs(a1,A1), ..., (Aq,Aq); (B1;B1) ... (Bs,Bs) ;2 = g Ws [(Gi,Ai)q;(Bi,Bi)s;Z]
is defined by

UR [(ai,Ai)q;(BiaBi)s;Z} :";WE

=E

r(ai+nAi)Zn
, zeU.

o

If A=1(i=1---,9) andB;=1(i=1,---,s), we have the relationship:

Qs (01,113 (B 1g17] = oFs (..., g1, ).
whereqFs(Qy, ...,aq; B, .., Bs; 2) is the generalized hypergeometric functicsee for detail$6]
(71, (8], (9], [13 ) and

Qo
Il
=p
=
®

(1.5)

- o)
—
1)

Il
iR
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The Wright generalized hypergeometric functions werekedo in the geometric function
theory( see[5|,[6],[15],[16] and[17] ).

By using the generalized hypergeometric function Dziok @ridastave introduced a linear
operator. IN5] Dziok and Riana and if8] Aouf and Dziok extended the linear operator by using
Wright generalized hypergeometric function.

First we define a functiog®s [(ai,Ai)q;(Bi, Bi)s;z} by

a®s [ (01, A)q: (B, B)siz = Q2 oWs [(@1,A)q: (B.B)si7]
and consider the following linear operator
Bos [ (a1, A)q: (BB - Si — S,
defined by the convolution
Oys [(ai,mq;(ﬁi,ai)s] f(2) = Ps [(ai,mq;(ﬁi,si)s;z] «f(2).
We observe that, for a functioh(z) of the form(1.1) , we have
s (o1 A)q3 (B8] 1) =2+ 5 Qaic(an)a: (16

whereQ is given by(1.5) andoi (a1 ) is defined by

[ (ay+Ay(K—1))...T (aq+Aq(k—1))

9(01) = F B B (K= 1)) T (ot Ba(k—1)) (k= 1)1 (7)
If, for convenience, we write
eq,s [alaAlv Bl] f (Z) = eq,S[(abAl) ooy (aq>Aq) ; (Blv Bl) PRREE! (BS» BS)] f (Z) )
then one can easily verify from the definitigh.6) that
A (eq,s [a1,A1,Bq] f (Z))/
(1.8)

= aleq,s [Cfl + 1, A]_, B]_] f (Z) — (al —Al) Qq,s [C{]_,Al, Bl] f (Z) .

We note thatfoA =1(i=1,2,--- ,g)andBi=1(i=1,2,--- ;s), we obtainfys[a1,1,1] f (z) =

Hgqsla1] f (z), which was introduced and studied by Dziok and Srivasiéya
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Applying the Wright operator to the harmonic functiohs- h+ g given by (1.1) we get

Oqs[01,A1,B1] f(2) = Ogs[a1,A1,B1]h(2) + Bys[a1,A1,B1]9(2). (19

Motivated by Jahangiri et a1%11 and Ahuja and Jahangif, we define a new subclass
HSs ([a1,Aq,B1],y) of H that are starlike with respect to symmetric points.

Definition1. For 0< y < 1andz=re'® cU, we letHSs ([a1,A1,By],y) a subclass o
of the form f = h+g be given by (1.3) and satisfying the analytic criteria

Re{ 7 [Oas [al,ii(gfjsf[?zl)’fléf . E;f,zz\)l,sﬂ f(2) } v (110

wherefys[a1,Ar, By f(2) is defined by(1.9) andz = & (z=re'%).

We also letHSs ([a1,Ar,B1],y) = HSs ([a1,A1,B1],y) NIH.

The familyHSs ([a1,Aq,B1], y) is of special interest because for suitable choiceg ef [A;],

[B1] and[a1], we note that

()If A=1(i=1,---,q)andBj=1(j=1,---,5), we haveHS;s ([a1,1,1],y) = HSs ([a1],y) , which
was studied by Murugusundaramoorthy et[&4];

(i)If f(—2=—f(2,A=1(i=1,..,q)andBj=1(j=1,---,5),we haveHSs ([a1,1,1],y) =
S;c (a1, y), which was studied by Al-Kharsani and AL-Khi].

Remarkl. If the co-analytic part of =h+giszerg a; =A =1(i=1,...,q) andf; =
Bj=1(j=1,...,s) thenHSs ([(1,1),Vy]) turns out to be the clas(y) of starlike functions
with respect to symmetric points which was introduced byagakhi [18].

In this paper, we have obtained the coefficient conditionghi® classe$(Ss ([01,A1,B1],Y)

andHSs ([01,A1,B1],y) . Further a representation theorem, inclusion propertiesdistortion

bounds for the clas¥(Ss ([a1,A1,B1],y) are also established.

2 Coefficient Characterization

Unless otherwise mentioned, we assume throughout thig plagte, s N, a; = 1,
a1,Aq, -+ ,0q,Aq, B1,B1, -, Bs,Bs € Rt and 0< y < 1. We begin with a sufficient condition
for functions inHSs ([a1,A1,B1],Y).

Theorem 1. Let f =h+g be given by1.3). Furthermore, let

o |2k—v(1—(—1)¥ i .
kZz [ZK 28—;) . ﬂ Qak(al)\akaZ [2k+y(1 =) ﬂ

a2y 2ea)bds<l (21
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whereQ and ok (a;) are defined by(1.5) and (1.7). Then f is sense-preserving, harmonic
univalentinU and fe HSs ([01,A1,B1],Y).
Proof. According the condition (1.10), we only need to show thaiflj holds, then

27 (Bgs[01,A1,By] £(2)) L A@®
Re{ 7 [Bus |, A, Ba) (2) — By 02, Ac, Br] (=2)] } =Regp >

A(2) = 2z (Bys[01,A1, B f(2)) =22

z+ 5 kQoy (o) axZ* — S kQak(al)bk—zk]
r= =
and

2)]

B(z) = z'[eqs[al,Al,Bl]f(z) Bqsa1,Ar,By) f(—
2t 3 [1- (0] aoanat 5 [1- (0] o]

Using the fact that Rew(z)} > yif and only if |1 — y+w| > |1+ y— w], it suffices to show
that

IA(2) + (1-y)B(2)| - |A(2) - (1+V)B(2)| > O. (22)

Substituting forA(z) andB(z) in (2.2) and by using2.1), we obtain

22— v>z+ki (204 (1- Y- (-] Qo (@) ac

8

-3 [x-a-na-1 Qak<a1>bk—zk‘
1

=~
Il

“2yz+ Y [k (14 (- (-1 Qo (o a
k=2

8

-3 [+ @rpa- (1Y) Qakml)bk—zk‘
k=1

> 4(1-)l2 —25 |2k (1~ (~1))| Qo () a2
=2

-2y [2k+ V(1 (—1)k)} Qo (ay) by |2
k=1

ez |1 BT o ey
= y kZZ 2(1—y) k(01) |ak
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o |2k+y(1—(—1)%
- [ }Qak(al)\bk! zkl]

=1 2(1-vy)

Qo (a1) [

This last expression is non-negative (2y1).

The harmonic univalent functions

w 2(1-vy) szk+§ 2(1-vy) Y

f(z) =z+ " "
= [Zk— V(l—(-1) )] Qo (a1) & [Zk— V(l—(-1) )] Qo (o)

(2.3)
wherezz\xk] + Z IYk| = 1, show that the coefficient bound given (/1) is sharp. The func-
tions of the form(2 3) are inHS;s ([a1,A1,B4],y) because

@ |-y (2- (-0 o |2k+y(1—(—1)"
= { ZEl_V) ﬂQUk(al)‘akH‘kZl[ ZEl—y) ﬂ

= > X+ Md=1
k=2 k=1

Qo (aq) |by]

This completes the proof of Theorem 1.

In the following theorem, it is shown that the conditi@®1) is also necessary for functions
f(z) of the form(1.4).

Theorem 2. Let f =h+g be given by1.4). Then fc HSs ([a1,A1,B1],y) if and only if

o — — = X - - k
& x Zgi—(v) - >}Qak(a1>|akl+k; [kazgi—(y) - >}Qak(omlbklélv (24)

whereQ and oy (a1) are defined by1.5) and (1.7) , respectively.
Proof. SinceHSs ([a1,Aq,B1],y) C HSs ([01,A1,B1],y), we only need to prove the "only
if” part of the theorem. To this end, for functiorf§z) of the form (1.4), we notice that the

condition

27 (Bys[a1,A1,B1] f(2))
Re{ 7 [Bqs[n. Av. Br] 1(2) — Bgs[0is, As, Br] F(—2)] } >y
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is equivalent to

o Z
2(1-y)- 3 [2k—y(1-(—1))]|Qai(an)ad = 5 [2k+y(1-(~1))Qok(ar)bcE
Re L L > 0. (2.5)
2-5 (1-(-1)900aad - 5 (1-(-1f)Qa(ar)b

The above required conditigi2.5) must hold for all values af in U. Upon choosing the values

of zon the positive real axis where<0z=r < 1, we must have

[2k+y(1—(~1)%)| Qo (ay)berk2
@ - > 0. (2.6)

2- 3 (1-(-1})Qa(anadk 3 (1-(-1)) Qoo

M 8

k=2 k

{ 2(1-y)- 3 [2k—y(1-(~1)")|Qai(ar)ark 1

If the condition (2.4) does not hold, then the numerator (26) is negative for sufficiently
close to 1. Hence there exisgg=rp in (0,1) for which the quotient in(2.6) is negative. This
contradicts the required condition fé(z) € HSs ([a1,A1,B1],y) and so the proof of Theorem

2 is completed.

3 Extreme Points and Distortion Theorem

Our next theorem is on the extreme points of convex hull$(&f ([a1,A1,B1],y) denoted
by clco HSs ([01,A1,B1],Y).
Theorem 3. A function £(z) € clco HSs ([a1,Aq,Ba],y) if and only if &(z) can be ex-

pressed by the form

[ee]

fi(@) = 3 Xchw(2) +Ykak(2)], (31)

k=1

where h(2) =z,

and

_ 21—y _
*(2) =z+ [2k+ y(l_ (_1)k)] Qak(al)zk (k> 1),

X >0,% >0, T (X+Y) =1
k=1

Inparticular, theextremepointsdfSs ([a1,Aq,B4],y) are{hx} and{gx}.
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Proof. For functionsfy(z) of the form (3.1), we have

[ee]

o 2(1-y) (l*V) -
W) =z kZZ [2k—y(1-(-1)")]Qai(ay) Xk +Z 2ty (1 >)]QUk(“1>Yki<'

Then by Theorem 2

o |2k—y(1- (-1 o |2k+y(1-(~1)¥

k_z[ Zgl—v) )]Qak(amakazl[ zgl_y) )]Qak(al)|bk|
_ g o) (1 Y
_kZZ 2(1-vy) Qoi(a) [Zk V( k ]QO’k al)Xk

o [2k+y<1—(—1)k>} 2(1-vy)
+kZl 21y) Qo (az) [2k+y<l—(—l)k)] Qo (ar) Yk

%XH- ZYk 1-X1<1
k=2

and sofy € HSs ([01,A1,B1],Y).
Conversely, iffy € clcoHSs ([a1,A1,B1],Y). Setting

_ Pk_y(l_(_l)k)]Qak<a1>|ak|, (=2,

2(1-y)
and
. [2k+ y(l—(—l)")} .
k= 21-y) ok (az) k], k> 1.
We obtainfy(z) = k% Xk hk(2) + Ykak(2)] as required.
=1

Theorem 4. Let the functions (z) defined by (1.4) be in the clagsSs ([01,A1,B1],Y)

Then for|zl =r < 1, we have

1] = @b+ g { 5 - T i

and

1 1-y 14y
1] 2 -l g {55 - 2

The result is sharp.
Proof. We only prove the right-hand inequality. The proof for th&-leand inequality is
similar and will be omitted. Lef(z) € HSs ([01,Aq,B1],y). Taking the absolute value dfwe
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—
—~
=
IN

(L+[bal)r+ 3 (el + by r'
k=2

(L+[oa))r+ 2y (Jaw] +[bul)
k=2

Ly o Qo (a1)

IN

IN

a| + [bu)r

o2 < | [2Kk—y(1-(~1) 2K+
= (1+’b1‘)|’+§(2102{2;1) Z {%‘aﬂﬁ‘w—)]‘bﬂ}ﬂ(fk(al)
K=2

— (1t ibyr+ (1—y)r? i {[2k—v(1—(—1)k)] A+ [2kty(1-(~1)")] |bk|}QUk(al)

290'2(01) & 2(1-y) 2(1-
(1—yr? 1+y

<

< @b a0 (11

1 1-vy 1+y‘b‘
QO'Q(CY]_) 2

= (14 |be|)r+

The bounds given in Theorem 4 for functiohs= h+ g of the form(1.4) also hold for functions
of the form(1.2) if the coefficient condition2.1) is satisfied. The upper bound given fbe
HSs ([a1,A1,B4],y) is sharp and the equality occurs for the functions

1-y l+yb1}22

f(z) =z+b1z+ 5 5

1
QO'Q (Cfl)
showing that the bounds given in Theorem 4 are sharp. Thiplates the proof of Theorem 4.

4 Convolution and Convex Combination

For our next theorem, we need to define the convolution of taumnionic functions. For

harmonic functions of the form:

z):z—iakszr i b2, |by| < 1 (4.1)
k=2 k=1
and
G(z) =z— ZAkz"JrZ Bk Z (Ac > 0; By > 0) (4.2)

k=2
we define the convolution of andG as

(f+G)(2) = f(2)*G(z) = z— i AN + i by BkZ*. (4.3)
k=2 k=1
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Using this definition, we show that the cla®&Sy ([a1,Ar,B4],y) is closed under convolu-
tion.

Theorem5. ForO<pu<y<1,let feHSs ([a1,A1,B1],y) and GE HSy ([a1,A1,By], ).
Then f+G € HSs ([a1,A1,B1],y) € HSs ([a1,A1,Ba], ).

Proof. Let the functionf (z) defined by(4.1) be in the clas§{Ss ([a1,A1,B1],y) and let the
function G(z) defined by(4.2) be in the clas§(Ss ([a1,Ar,B4], 1). Then the convolutiorf x G
is given by(4.3). We wish to show that the coefficients % G satisfy the required condition
given in Theorem 2. FoG € HSs ([a1,Aq,B1], 1) we note that 0< A < 1 and 0< By < 1.

Now, for the convolution functiorf *+ G we obtain

i [Zk y( 1)k)] Qo (ay) ]ak]AkJrki [2k+ y(l— (—1)k)} Qo (a1) | bx|Bx

00

< 3 [2ov(1- 1) Qoayla +k§1 2ty (1 (-1)¥) | Qo) b

K=

since 0< pu < y< landf € HSs ([a1,A1,B1],Y). Thereforef x G € HSy ([a1,A1,B1],Yy) C
HSs ([a1,A1,B1], 1), since the above inequality bounded bii2- y) while 2(1—y) <2(1— p).
Now, we show that the clasESy ([a1,Aq,B4],y) is closed under convex combinations of
its members.
Theorem 6. The classHSs ([a1,A1,B1],y) is closed under convex combination.

Proof. Fori=1,2,---,let fi € HSs ([a1,A1,B1],y), wherefi is given by
fi(d=2-3 la|Z+ Y || 2, (a >0;bg >0; z€U).
k=2 k=1
Then by using Theorem 2, we have

o [2k—y(1— (—1)k ) ok
2 x yzgi— Eo Dloaay AP = yzgi— (v) Maiami<s @

For 5 ti=1,0<t; <1, the convex combination df may be written as
i=1

i;ti fi(z) = z—k; <izlti |a4q|> i+kzl(i;ti by, [ Z5. (4.5)
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Then, by using4.4), we have

f%m(m) (liti|aka|> f M e (thl|bk||>

2k+y(1-(-1)9)]

:igti [i [2k— v )]QUk(Gl) il—wgak(ambm]

< Zitl = 17
i&

this is the necessary and sufficient condition given by (;Zm;)sog ti fi(2) € HSs ([a1,A1,B1],Y).
i=1

This completes the proof of Theorem 6.

5 Properties of Certain Integral Operator

Finally, we study properties of certain integral operator.
Theorem 7. Let the functions (z) defined by (1.4) be in the clags$Ss ([01,A1,B1],Y)

and let ¢ be a real number such that-c—1. Then the function Fz) defined by

F(2) = °;1 tc-lf( \dt (5.1)
0

belongs to the clas¥(Ss ([a1,A1,B1],Y).

Proof. From the representation &f(z), it follows that

Fiz) = %1 = {h(t) + gO) } o
0

= C;rcl(/zt” (t—kiaktk>dt+0/ztcl<§ ktk> )

0
_ _C:C ( / -3 a / oLt 4 3 by [ terkLat
o =2 k=1

:Z—ZAka-i-ZBka

k=2

O\.N
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1 1
* a, Bx= cr2 bx. Therefore

whereAy = 2 Tk

+K

& [2koy(1-(-14)] c+1 o [2Kty(1-(-1)")] c+1
2, 2w Qoda)gnladt y Ty e Gl

2k—y(1—(—1)¥ & [2Kkty(1-(—1)
< 5 P06 (ar) ad+ 5 B g (0 g < 1
K=1
Sincef(z) € HS;y ([a1,A1,B1],y), we have from Theorem E(z) € HS; ([a1,A1,B1],Y).
Remark2.  PuttingAi =1(i=1,...,q) andBj =1(j = 1,...,s) in our results we obtain the

results obtained by Murugusundaramoorthy efH].
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