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Abstract. In this paper, we give the exact lower density of Hausdorfasuee of a class of
symmetric perfect sets.
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1 Introduction
Let 0< s< « andv be a measure oR". The upper and lowesdensities ofv atx € R" are
defined as

)

S0y 3 — i v(B(x.r))
O =l

and

O3 (v,x) = Iirrn_igf %,

respectively, wher8(x,r) denotes the closed ball with diameterghd centex.

Symmetric perfect sets are nowhere dense perfect subgétdjofonstructed in the follow-
ing manner.Suppode= [0, 1], let {ck }k>1 be a real number sequence satisfying 6 < %(k >
1). Foranyk > 1, let

Dy = {(i1,--,ix) 1 ij €{1,2}, D= [ J D,
k>0
whereDg = 0. If

O-:(O-lv"'>o-k)€Dk> T:(Tlv"'>Tm)€Dm7
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let

U*T:(Ul,"',Uk,Tl,"‘,Tm).

LetF = {lys: o € D} be the collection of the closed sub-intervald shtisfying

D)lpg=1;

i) For anyk > 1 ando € Dg_1, lg4i (i = 1,2) are sub-intervals d§. l4.1,15+2 are arranged
from the left to the rightl.1 andls have the same left endpoin,.o andls have the same right
endpoint.

iif) Foranyk > 1 ando € Dy_1, j = 1,2, we have

“U*j‘

o ’

where|A| denotes the diameter 8f
Let

B= 1o, E=[Ex

oeDyg k>0
we call E the symmetric perfect set and céll = {l, : o € Dy} thek-order basic intervals of
E. The middle-third Cantor set is a well-known example of thesetric perfect set.
Let x¢ be the length of &-order basic intervalyy the length of the gap between any two
consecutive sub-intervalg.,; andlg,», whereo € Dy_;. Assume that
(1) There exist¥y € N such that
Ck <

Wl

for all k > ko.

(2) kIm 2% exists and is positive finite.

In [8], we gave a formula to calculate the uppedensity of Hausdorff measure for a class
of symmetric perfect sets.

Theorem 1. Let E be a symmetric perfect set(1) and (2) hold, then

O*(Lg,X) for pye—ae xeE,

where L is the restriction of the Hausdorff measure® over the set E and s is the Hausdorff
dimension of the set E.

This paper gives an analogue for the lovgatensity of the Hausdorff measure. Our main
result is

Theorem 2. Let E be the symmetric perfect set(2j holds, then

G)i(uE,x):+ for uyg—ae xcE.
25(2s —1)s
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Remarkl. From the above theorems we know that there exists non-mregutametric
perfect sets.

2 Proof of Theorem
For anyo = (01, -+, 0m) € Dm, when O< k < m, we denote
olk= (01, - ,0k).
By the definition ofxx andyy, we have
X =Cp---C, Y= (1—20c)C1--Ci1.

Take
B = lim 2,
the assumption (2) implies @ B < « and for anye > 0 there exists a positive integks such

that
B—e< 2% <B+e, (2.1)

for all k > kg, and we have

Lemma 2.1. If the assumptior{2) holds, then there exists a positive integgrskich that
Yir1 < Yk for all k > kg, and HS(E) = I!iLrJOkaﬁ.

Proof. From (2.1) we have
1

1 1
25(B—¢)s—2(B+¢
Yk = X1 — 2 > ( )2S'<( ),

1
S

2:(B+¢)s —2(B—¢)

Ykt1 = Xk — D1 <

2%25k
Take )
(45 +2)5-2.3¢
£=-— B,
(45 +2)5+2-3
we have
275(25(B+6)s —2(B—¢)%) < 25(B— €)% — 2(B+£)~.

Thereforeyy,1 < Yk, and from Themma 1 in [7] we have

HS(E) = lim 25,

k— 00

which completes the proof of Lemma 2.1.
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Lemma 2.2/Y Let E be the symmetric perfect set. If

B = lim 2¢

k— 00

exists and is positive finite, then
lim 240+ yi)* = (2s —1)%B.
Take
Qi = 24+ Yi)5,Q = (25 — 1)°B,

then for anye > O, there exists a positive integeg &uch that
Q-e< Q< Q+e, (2.2)

for all k > ko.
Let u be the restriction of the normalized Hausdorff meagti&E)) 1S over the seE,
then for anyA € Fy, we have
p(A) =27¥ (2.3)

Leto € Dy, T € Dyyr, (I > 0), 71|k =0, set

I(Ua T) = IU*pl U |a*a(2,p2) U---u IU*U(l,p|) U IU*U(|71,p|,1) U lU*U(l,l)a
where
O-(maj) - (p1+17p2+17 7pm—1+17j)70§ pi S 17J :0717

andoxo(l,1) =7, lgx0 = lgug(mo) = 0.
Lemma2.3. Leto € Dy, T € Dy, (k> ko) andt|k = o, then

u([a(o),b(1)]
(b(r) —a(0))

1

)> .
S T Q+¢

Proof. By the definition ofl (o, T), we have

P1 P2 P
u(l(a,r)):ﬁ+ﬁ+---+ﬁ,

and

(o, T)]° < (Pr(Xcr1+ Yke1) + P2(Xir2 + Yir2) + - + P (Xt + Yier1))®
< P1(X1 + Y1) S+ P22 + Yke2) S+ -+ P % + i),
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therefore

u(i(0,1) Ft gt
(o, T)S = Ppr(¥er1+Yir1)S+ P2(Xr2 + Yier2)S+ -+ + P (Xier ) + Yier1)®
> min{Quy1, Q2.+, Qi 1

From (2.2) we have (2.4). Which completes the proof of LemmBa 2
Lemma 2.4. Let E be the symmetric perfect set(2f holds, then for all xc E,

o (1x) > 2750

Proof. Letxe E,0<r <1 and setl = [x—r,x+r], then there exists a positive inteder
such that) contains at least &+ 1)-order basic interval, but it does not contain dagrder
basic interval, thug intersects with at most twk-order basic intervals, andcan be chosen to
be sufficient small such that> kg.

Case 1. Jintersects with twdk-order basic intervals. Lég ), l52)(0(1),0(2) € Dk) be
such two basic intervals and skt J; U [b(o(1)),a(o(2))] Uz, whereJ; andJ have the same
left endpoint,J, andJ have the same right endpoint. Without loss of generalityx ke J;, then
a(0(2)) ~b(0(1) < || < 91| +]%

Q) p(31) + p(J2)

Nk (M1]+ &l +a(a(2)) —b(a(1)))®
p(d1) + p(J2)

25([1f5+[3f°)

1 i) p%)

= M T

, therefore

>

25
Letu=x+r,i.e.k =[a(c(2)),u]. If u=b(a(2)), in this case, we obviously have

H(J2) 1
> . .
P = 0+re (25)

ueE= U lo,

k>10eDyg

butu # b(o(2)), then there exists € D, such that

u= mlt\lv

1>1

thus
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and

Therefore,
H(3e) = fim p(a(a(2)), b(r|))).

On the other hand, we can chds® be sufficient large such thgt C lo(2)s that ist|lk = 0(2),
in this case, by Lemma 2.3, we have

H&) . p(a(a(2),brD]) _ . H([aa(2),b(r]h)]) 1
= lim > lim > .
|Bfs  T-e |J2® I-w (b(T|l)—a(o(2)))s ~ Q+¢
IfugE,ie.
Uel—m U IU:U(I_ U IU)>
k>10eDyg k>1 oeDy
then there exists a positive inteder k such that
uel—J lo,
oeD
in this case, similar to the proof of Lemma 2.3, we also have
K (&) 1
> ) .
|J2|S “Q+¢€ (2 6)
For the intervall;, similar to the above argument, we have
p(Jd) 1
> ) .
0P S 0vre 27)
Therefore o)
u(Jd 1
> . .
[JIs — 25(Q+¢) (28)

Case 2. J intersects with only &-order basic interval, let;(o € Dg) be such a basic
interval. If the left endpoint o8 lies in the left ofa(o), setd; = JN . Sincex € I, then

a(0) = (x—r) <[,

thus
HE) _ ()
95 = 25|05

Similar to the proof in Case 1, we have (2.8).

If the right endpoint ofd lies in the right ofb(o), or J C |5, we also have (2.8), which
completes the proof of Lemma 2.4, sincés arbitary.
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Lemma 2.5. Let E be the symmetric perfect set. If (2) holds, then for atrath x € E,
©%(u,x) <275Q° 1L,

Proof. For anyo € Dy, let T € Dx andl; the firstk-order basic interval to the left df;.
Since 0< ¢ < % we have
a(o)—b(r) >0,

hence there exists> k such that

n=x-+wy<a(o)—b(r)

and
u(la(o)—ry,a(o)+nl) = o
It follows that L
eﬂmﬂo»énmgﬂ“wa*gx?ﬂ+”)=§5' 29

Now, fork > 0 put
0(1) = (17 71) < Dk,

and . . .
As=U U oo, A= AL A= A
I=poeD p=1 k=1
Similar to the proof of Lemma 2.6 in [7], we know that the measu defined in (2.2) is the
same as thé%, %}N Bernoulli measure on the symbolic space- {1,2}N. On the other hand,
since the Bernoulli measure is ergodic, we know that the@eesponding té on the symbolic
space is a set of full measure, Ads a set of full measure.
For anyx € Athere are infinitely many such that there exists € D, with

1
Ix—a(o)| < ?xn.

Taking
1
r=rn— ?Xn
gives

X—rx+r] C[a(o)—rn,alo)+rn),

which implies

1 o sn
O (px) < (1- 5) 20
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U—a.e. onk. Takingk — oo we obtain
O (K, X) <27°Q U

a.e. onk. This completes the proof of Lemma 2.5.
Proof of Theorem 2. By Lemma 2.4-2.5, we immediately obtain Theorem 2.

Examplel. LetE be the middle-third Cantor set, it is well known that ¢i(E) = s
:g%i, andH3(E) = 1, where diny (E) is the Hausdorff dimension of the def andH3(E) is

the Hausdorff measure of the $etBy Theorem 1 and Theorem 2 we obtain

2 1
O (He,X) = 45, (e, X) = 55 for pe—aexcE.

References

[1] Ayer. E. and Strichartz, R. S., Exact Hausdorff Measuré kntervals of Maximum Density for Cantor Mea-
sures, Trans. Amer. Soc., 351(1999), 3725-3741.

[2] Baek, K. K., Packing Dimension and Measure of Homogesd@antor Sets, Bulletin of the Australian Math-
ematical Society 74(2006), 443-448.

[3] Cutler, C. D., The Density Theorem and Hausdorff Inegudibr Packing Measure in General Metric Spaces,
lllinois J.Math. 39(1995), 676-694.

[4] Feng, D. J., Wen, Z. Y. and Wu, J., Dimension of the Homagers Moran Sets, Science in China (Series A),
40(1997), 475-482.

[5] Marion, D. J., Measure de Hausdorff et Theorie de Pefmobinius des Matrice Non-negatives, Ann. Inst.
Fourier, Grenoble 35(1985), 99-125.

[6] Mattila, P., Geometry of Sets and Measures in Euclidgaac8s, Cambridge University Press, 1995.

[7] Qu, C.Q., Rao, H. and Su, W. Y., Hausdorff Measure of Hoemapus Cantor Set, Acta Math. Sinica, English
Series, 17(2001), 1-11.

[8] Qu, C. Q., Zhou, Z. L. and Jia, B. G., The Upper DensitieSpmmetric Perfect Sets, J. Math. Anal. Appl.,
292(2004), 23-32.

Department of Applied Mathematics
South China University of Technology
Guangzhou, 510640

P. R. China

E-mail: chengginggu@tom.com



