LIOUVILLE PROPERTY FOR A CLASS OF QUASI-HARMONIC SPHERE

Yongyang Jin and Yanmei Di (Zhejiang University of Technology, China)

Received May 15, 2009

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. In this paper we obtain a Liouville type result for a class of quasi-harmonic spheres with rotational symmetry.

Key words: Liouville property, quasi-harmonic sphere, rotational symmetry

AMS (2010) subject classification: 26D10, 22E30, 43A80

1 Introduction

In [1] Lin and Wang introduced the concept of quasi-harmonic sphere in their study of the heat flow of harmonic maps, and asked whether one can show the existence of such quasi-harmonic spheres. Fan^[2] provided the first examples of quasi-harmonic spheres for $N = S^n (3 \le n \le 6)$, and Gastel^[3] gave more examples with $N = S^n$, for all $n \ge 3$. In a recent paper [4] Ding and Zhao consider the problem on the continuity of quasi-harmonic sphere at ∞ , and they show that the non-constant equivariant quasi-harmonic sphere must be discontinuous at infinity. In the present paper we will prove a similar Liouville property for a class of quasi-harmonic spheres with rotational symmetry.

We say u a quasi-harmonic sphere from \mathbb{R}^n to a Riemannian manifold N if it satisfies the following equations

$$\Delta u - \frac{1}{2}x \cdot \nabla u + A(u)(du, du) = 0. \tag{1.1}$$

Note that u is also a harmonic map from (\mathbf{R}^n, g) to N where $g = e^{-\frac{|x|^2}{2(n-2)}} ds_0^2$ and ds_0^2 is the standard Euclidean metric.

Supported by ZJNSF (Y6090359, Y6090383), Department of Education of Zhejiang Province (Z200803357).

By Nash embedding theorem we can assume N is a Riemannian submanifold of the Euclidean space \mathbb{R}^k . We say u is rotational symmetry if it can be represented as

$$u(r,\theta) = (h(r), f(r,h(r))\omega(\theta)), \tag{1.2}$$

where $\omega: S^{n-1} \to S^{m-1}$ is a harmonic map and m is the dimension of N. For simplicity we denote f(r,h(r)) by F(r) below.

Our aim in this paper is to prove the following Liouville theorem.

Theorem 1. If u is rotational symmetry and continuous at the point ∞ , i. e.

$$\lim_{|x|\to\infty}u(x)=y\in N,$$

then u must be a constant map.

2 Proof of the Main Theorem

To prove the theorem we need a simple lemma.

Lemma 1. Let u be any quasi harmonic sphere from \mathbb{R}^n to N. Then the following equality holds

$$r^2 \frac{\partial}{\partial r} |u_r|^2 + r(2(n-1) - r^2)|u_r|^2 = \frac{\partial}{\partial r} |u_\theta|^2.$$
 (2.3)

Proof. As A(u)(du, du) is a norm vector on **N**, we have

$$<\triangle u, u_r> = \frac{r}{2}|u_r|^2.$$

Using the polar coordinate and the fact $\langle u_r, u_\theta \rangle = 0$ we can obtain

$$\frac{r}{2}|u_r|^2 = \langle \triangle u, u_r \rangle
= \langle u_{rr} + \frac{n-1}{r}u_r + \frac{\triangle_{\theta}u}{r^2}, u_r \rangle
= \frac{1}{2}\frac{\partial}{\partial r}|u_r|^2 + \frac{n-1}{r}|u_r|^2 - \frac{1}{2r^2}\frac{\partial}{\partial r}|u_{\theta}|^2,$$

which implies (2.3).

Now we begin to prove Theorem 1.

The assumption u is rotational symmetry and continuous at ∞ means that in (1.2) there must be

$$\lim_{r \to \infty} F(r) = 0.$$

Noting that $\omega: S^{n-1} \to S^{m-1}$ is harmonic, there exists a constant λ such that

$$|\nabla_{\theta}\omega| = \lambda. \tag{2.4}$$

By Lemma 1 we can get

$$\frac{\partial}{\partial r} (r^{2n-2} e^{-\frac{r^2}{2}} |u_r|^2) = r^{2n-2} e^{-\frac{r^2}{2}} (\frac{\partial}{\partial r} |u_r|^2 + (\frac{2n-2}{r} - r)|u_r|^2)
= r^{2n-4} e^{-\frac{r^2}{2}} \frac{\partial}{\partial r} |u_\theta|^2.$$

Note that $\lim_{r \to \infty} r^{2n-2} e^{-\frac{r^2}{2}} |u_r|^2 = 0$, we have

$$|u_r|^2 = -r^{2-2n}e^{\frac{r^2}{2}} \int_r^\infty s^{2n-4}e^{-\frac{s^2}{2}} \frac{\partial}{\partial s} |u_\theta|^2 ds.$$
 (2.5)

From (1.2) and (2.4) it is easy to check that

$$|u_r|^2 = (h')^2 + (F')^2; |u_\theta|^2 = \lambda^2 F^2.$$
 (2.6)

Using (2.5) and (2.6) we can obtain that for any $r > \sqrt{2n-4}$, there holds

$$(F'(r))^{2} \leq |u_{r}|^{2}$$

$$= -r^{2-2n}e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2n-4}e^{-\frac{s^{2}}{2}} \frac{\partial}{\partial s} |u_{\theta}|^{2} ds$$

$$= -\lambda^{2}r^{2-2n}e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2n-4}e^{-\frac{s^{2}}{2}} (F^{2})'(s) ds$$

$$= \lambda^{2}r^{2-2n}e^{\frac{r^{2}}{2}} \left(r^{2n-4}e^{-\frac{r^{2}}{2}}F^{2}(r) + \int_{r}^{\infty} \left(\frac{2n-4}{s} - s\right)s^{2n-4}e^{-\frac{s^{2}}{2}}F^{2}(s) ds\right)$$

$$\leq \lambda^{2}r^{2-2n}e^{\frac{r^{2}}{2}}r^{2n-4}e^{-\frac{r^{2}}{2}}F^{2}(r)$$

$$= \lambda^{2}r^{-2}F^{2}(r).$$
(2.7)

Then we get

$$|F'(r)| \le \lambda \frac{F(r)}{r}. (2.8)$$

Now for any $\sqrt{2n-4} < r < s$, it can be derived from (2.8) that

$$\frac{F(s)}{F(r)} = e^{\int_r^s \frac{F'(t)}{F(t)} dt} \le e^{\int_r^s \frac{|F'(t)|}{F(t)} dt} \le e^{\lambda \int_r^s \frac{1}{t} dt} = \left(\frac{s}{r}\right)^{\lambda}. \tag{2.9}$$

In the proof of (2.7) we have obtained

$$(F'(r))^2 \le -\lambda^2 r^{2-2n} e^{\frac{r^2}{2}} \int_{r}^{\infty} s^{2n-4} e^{-\frac{s^2}{2}} (F^2)'(s) ds.$$

By using (2.8) and (2.9) we obtain

$$(F'(r))^{2} \leq -2\lambda^{2}r^{2-2n}e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2n-4}e^{-\frac{s^{2}}{2}}F(s)F'(s)ds$$

$$\leq 2\lambda^{3}r^{2-2n}e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2n-5}e^{-\frac{s^{2}}{2}}F^{2}(s)ds$$

$$\leq 2\lambda^{3}r^{2-2n}e^{\frac{r^{2}}{2}} \int_{r}^{\infty} s^{2n-5}e^{-\frac{s^{2}}{2}} \left(\frac{s}{r}\right)^{2\lambda}F^{2}(r)ds$$

$$\leq C_{\lambda}r^{2-2n}e^{\frac{r^{2}}{2}}r^{2n-6+2\lambda}e^{-\frac{r^{2}}{2}}r^{-2\lambda}F^{2}(r)$$

$$\leq C_{\lambda}r^{-4}F^{2}(r).$$
(2.10)

31

This inequality implies that there exists a positive constant $c(=\sqrt{C_{\lambda}})$ such that for any r big enough,

$$F'(r) + c\frac{F(r)}{r^2} \ge 0$$

which is equivalent to

$$(e^{-\frac{c}{r}}F(r))' \ge 0.$$
 (2.11)

The fact $\lim_{r\to\infty} F(r) = 0$ and (2.11) imply that $F \equiv 0$, so we complete the proof of Theorem 1.

References

- [1] Lin, F. H. and Wang, C. Y., Harmonic and Quasi-harmonic Spheres, Comm. Anal. Geom., 7:2(1999), 397-429.
- [2] Fan, H. J., Existence of the Self-similar Solutions in the Heat Flow of Harmonic Maps, Sci. China Ser. A, 42:2(1999), 113-132.
- [3] Andreas Gastel, Singularities of First Kind in the Harmonic Map and Yang-Mills Heat Flown, Math. Z., 242:1(2002), 47-62.
- [4] Ding, W. Y. and Zhao, Y. Q., Elliptic Equations Strongly Degenerate at a Point, Nonlinear Anal., 65:8(2006), 1624-1632.

Department of Applied Mathematics Zhejiang University of Technology Hangzhou, 310032 P. R. China

Y. Y. Jin

E-mail: yongyang@zjut.edu.cn

Y. M. Di

E-mail: Diyanmei@163.com