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Abstract. In this paper we obtain a Liouville type result for a class of quasi-harmonic

spheres with rotational symmetry.
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1 Introduction

In [1] Lin and Wang introduced the concept of quasi-harmonic sphere in their study of the

heat flow of harmonic maps, and asked whether one can show the existence of such quasi-

harmonic spheres. Fan[2] provided the first examples of quasi-harmonic spheres for N = Sn(3 ≤
n ≤ 6), and Gastel[3] gave more examples with N = Sn, for all n ≥ 3. In a recent paper [4] Ding

and Zhao consider the problem on the continuity of quasi-harmonic sphere at ∞, and they show

that the non-constant equivariant quasi-harmonic sphere must be discontinuous at infinity. In the

present paper we will prove a similar Liouville property for a class of quasi-harmonic spheres

with rotational symmetry.

We say u a quasi-harmonic sphere from Rn to a Riemannian manifold N if it satisfies the

following equations

△u− 1

2
x ·∇u+ A(u)(du,du) = 0. (1.1)

Note that u is also a harmonic map from (Rn,g) to N where g = e
− |x|2

2(n−2) ds2
0 and ds2

0 is the

standard Euclidean metric.
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By Nash embedding theorem we can assume N is a Riemannian submanifold of the Eu-

clidean space Rk. We say u is rotational symmetry if it can be represented as

u(r,θ) = (h(r), f (r,h(r))ω(θ)), (1.2)

where ω : Sn−1 → Sm−1 is a harmonic map and m is the dimension of N. For simplicity we

denote f (r,h(r)) by F(r) below.

Our aim in this paper is to prove the following Liouville theorem.

Theorem 1. If u is rotational symmetry and continuous at the point ∞, i. e.

lim
|x|→∞

u(x) = y ∈ N,

then u must be a constant map.

2 Proof of the Main Theorem

To prove the theorem we need a simple lemma.

Lemma 1. Let u be any quasi harmonic sphere from Rn to N. Then the following equality

holds

r2 ∂

∂ r
|ur|2 + r(2(n−1)− r2)|ur|2 =

∂

∂ r
|uθ |2. (2.3)

Proof. As A(u)(du,du) is a norm vector on N, we have

< △u,ur >=
r

2
|ur|2.

Using the polar coordinate and the fact < ur,uθ >= 0 we can obtain

r

2
|ur|2 = < △u,ur >

= < urr +
n−1

r
ur +

△θ u

r2
,ur >

=
1

2

∂

∂ r
|ur|2 +

n−1

r
|ur|2 −

1

2r2

∂

∂ r
|uθ |2,

which implies (2.3).

Now we begin to prove Theorem 1.

The assumption u is rotational symmetry and continuous at ∞ means that in (1.2) there must

be

lim
r→∞

F(r) = 0.

Noting that ω : Sn−1 → Sm−1 is harmonic, there exists a constant λ such that

|∇θ ω | = λ . (2.4)
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By Lemma 1 we can get

∂

∂ r
(r2n−2e−

r2

2 |ur|2) = r2n−2e−
r2

2 (
∂

∂ r
|ur|2 +(

2n−2

r
− r)|ur|2)

= r2n−4e−
r2

2
∂

∂ r
|uθ |2.

Note that lim
r→∞

r2n−2e−
r2

2 |ur|2 = 0, we have

|ur|2 = −r2−2ne
r2

2

∫ ∞

r
s2n−4e−

s2

2
∂

∂ s
|uθ |2ds. (2.5)

From (1.2) and (2.4) it is easy to check that

|ur|2 = (h′)2 +(F ′)2; |uθ |2 = λ
2F2

. (2.6)

Using (2.5) and (2.6) we can obtain that for any r >
√

2n−4, there holds

(F ′(r))2 ≤ |ur|2

= −r2−2ne
r2

2

∫

∞

r
s2n−4e−

s2

2
∂

∂ s
|uθ |2ds

= −λ
2r2−2ne

r2

2

∫

∞

r
s2n−4e−

s2

2 (F2)′(s)ds

= λ
2r2−2ne

r2

2

(

r2n−4e−
r2

2 F2(r)+

∫

∞

r

(

2n−4

s
− s

)

s2n−4e−
s2

2 F2(s)ds

)

≤ λ 2r2−2ne
r2

2 r2n−4e−
r2

2 F2(r)

= λ 2r−2F2(r).

(2.7)

Then we get

|F ′(r)| ≤ λ
F(r)

r
. (2.8)

Now for any
√

2n−4 < r < s, it can be derived from (2.8) that

F(s)

F(r)
= e

∫ s
r

F ′(t)
F(t) dt ≤ e

∫ s
r

|F′(t)|
F(t) dt ≤ eλ

∫ s
r

1
t
dt =

( s

r

)λ

. (2.9)

In the proof of (2.7) we have obtained

(F ′(r))2 ≤−λ
2r2−2ne

r2

2

∫ ∞

r
s2n−4e−

s2

2 (F2)′(s)ds.

By using (2.8) and (2.9) we obtain

(F ′(r))2 ≤ −2λ
2r2−2ne

r2

2

∫ ∞

r
s2n−4e−

s2

2 F(s)F ′(s)ds

≤ 2λ
3r2−2ne

r2

2

∫ ∞

r
s2n−5e−

s2

2 F2(s)ds

≤ 2λ
3r2−2ne

r2

2

∫ ∞

r
s2n−5e−

s2

2

( s

r

)2λ

F2(r)ds

≤ Cλ r2−2ne
r2

2 r2n−6+2λ e−
r2

2 r−2λ F2(r)

≤ Cλ r−4F2(r).

(2.10)
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This inequality implies that there exists a positive constant c(=
√

Cλ ) such that for any r big

enough,

F ′(r)+ c
F(r)

r2
≥ 0

which is equivalent to

(e−
c
r F(r))′ ≥ 0. (2.11)

The fact lim
r→∞

F(r) = 0 and (2.11) imply that F ≡ 0, so we complete the proof of Theorem 1.
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