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Abstract. The Lipschitz classes Lip(a, M) ,0 < o < 1 are defined for Orlicz space gen-
erated by the Young function M, and the degree of approximation by matrix transforms of
f € Lip(a,M) is estimated by n~%.
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1 Introduction and the Main Results

A convex and continuous function M : [0,e0) — [0,e0), for which M (0) = 0, M (x) > O for
x> 0and

limM =0, limM = oo

x—0 X X—0oo X
is called a Young function. The complementary Young function N of M is defined by
N (y) := max{xy—M(x) : x >0}

fory > 0.

Let M be a Young function. We denote by Ly = Ly ([0,27]) the set of 2r—periodic mea-
surable functions f : R — R such that

21
[Mf @) <o
0
The linear span of Ly is denoted by Ly = Ly ([0,27]) . Equipped with the norm

2r 21
£l i=sup < [ 1) g@lde: [N(lg@hde<1y,
0 0
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where N is the complementary function of M, Ly; becomes a Banach space, called the Orlicz
space generated by M.

The Orlicz spaces are known as the generalization of the Lebesgue spaces; in special case,
the Orlicz space generated by the Young function M), (x) = x”/p,1 < p < oo, is isometrically
isomorphic to the Lebesgue space L,. More general information about Orlicz spaces can be
found in [6], [11] and [12].

Let M~!:[0,00) — [0,00) be the inverse of the Young function M and let

M~ (x)
h(t) :=limsup————=, t>0.
(1) i=Tim sup7=r S
The numbers o, and B, defined by
) logh(t) logh (t)
oy = lim — ——= = -
M= e logt ’ Pu Pt log?

are called the lower and upper Boyd indices of the Orlicz space Ly, respectively. It is known
that the Boyd indices satisfy
0<ay<Pu<l

and
oy + By =1, o+ By = 1.

The Orlicz space Ly, is reflexive if and only if its Boyd indices are nontrivial, that is 0 < oy <
Bu < 1 (see, for example [5]).

If 1 <g<1/Bu <1/oy < p <eoo, then L, C Ly C L, where the inclusions being con-
tinuous, and hence the relation L., C Ly C L holds. We refer to [1] and [2] for a complete
discussion of Boyd indices properties.

The modulus of continuity of the function f € Ly, is defined by

w(f,6)Mzosggallf(-w)—f\lM, 5>0.

Let 0 < o < 1. The Lipschitz class Lip(c, M) is defined as
Lip(a,M)={f €Ly:o(f,6),,=0(58%),56 >0}.

Let f € L! has the Fourier series
£x) ~ %+ Y (i coskx+ by sinkx) . (1.7)
k=1
Denote by S, (f) (x), n=0,1,--- the nth partial sums of the series (1.7) at the point x, that is,

5. (1)) = Y () (),
k=0
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where
uo (f) (x) = %, ur (f) (x) = agcoskx+ by sinkx, k=1,2,--
Let (p,) be a sequence of positive numbers. The Norlund means of the series (1.7) with
respect to the sequence (p,) are defined by

N W) =5 Y puiSe () (), (8

k=0

n
where P, = Y px,and p_1 = P_; :=0.
k=0

If p, = 1 for n = 0,1,---, then N, (f) (x) coincides with the Cesaro means o, (f) (x), that is

Ly S () ().

n—i—lk:O

Nu(f) (x)

The sequence (p,) is called almost monotone decreasing (increasing) if there exists a con-
stant K, depending only on (p,), such that p, < Kp,, (p,, < Kp,) for n > m.

In the Lebesgue space L, the following results are obtained recently.

Theorem APl Letf € Lip (e, p) and (p,) be a sequence of positive numbers such that
(n+1)p, = O(P,). If either

i) p>1,0<a<1and (p,) is monotonic
or

(i) p=1,0< a < 1and (p,) is non-decreasing,
then

1f = Na (|, = O (n™%).

Theorem BU"\. Ler f € Lip(a,p) and (p,) be a sequence of positive numbers. If one of
the conditions

(i) p>1,0< a < 1and (p,) is almost monotone decreasing,
(ii) p> 1,0 < a < 1, (py) is almost monotone increasing and (n+ 1) p, = O (B,),

n—1

(iii) p> 1,0 =1and Y k|p— prr1] = O (Fy),
k=1

n—1
(iv)p>1,0=1and k§O|pk—pk+1| =0 (B,/n),

n—1
V) p=10<a<l andk;l|pk—pk+l| =0(Py/n)
maintains, then

1f =N (), = O (n™%).

It is clear that Theorem B is more general than Theorem A.
In the paper [8], the authors extended Theorem A to more general classes of triangular matrix
methods.
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Let A = (anx) be an infinite lower triangular regular matrix with nonnegative entries and let

n
sE,A) (n=0,1,---) denote the row sums of this matrix, that is sE,A) = kZOamk.

The matrix A = (a,x) is said to have monotone rows if, for each n, (a,x) is either non-
increasing or non-decreasing with respect to k, 0 < k < n.

For a given infinite lower triangular regular matrix A = (a, ) with nonnegative entries we
consider the matrix transform

T (F) () = Y St () () (1.9)
k=0

Theorem CI®l. Ler f € Lip(at, p), A has monotone rows and satisfy sV 1‘ =0(n%).

If one of the conditions
(i)p>1,0<a<land (n+1)max{anp,an,} = O(1) where r = [n/2],
(i) p> 1, a =1 and (n+ 1) max{a,,an,} = O(1) where r = [n/2],
(iii) p=1,0< o < 1 and (n+ 1) max{a,,a,,} = O(1),
holds, then
=0 =0,

For a given positive sequence (p,), if we consider the lower triangular matrix with entries
ank = Pn—i/ Py, then the Norlund transform (1.8) can be regarded as a matrix transform of the
form (1.9). Further, in this case the condition of Theorem A implies that of Theorem C and
hence Theorem C is more general than Theorem A (see [8]).

In the present paper we give generalizations of Theorems B and C in reflexive Orlicz spaces.

We say the matrix A = (a,) has almost monotone increasing (decreasing) rows if there
exists a constant K, depending only on A, such that a,, x < Kaym (anm < Kay, ) for each n and
0<k<m<n.

Our main results are the following.

Theorem 1.  Let Ly be areflexive Orlicz space, 0 < a < 1, f € Lip (&, M) and A = (anx)

be a lower triangular regular matrix with ‘SSIA) —1 ‘ = 0(n~%). If one of the conditions
(i) A has almost monotone decreasing rows and (n+ 1) a,o = O(1),
(ii) A has almost monotone increasing rows and (n+1)a, , = O(1) where r := [n/2],
holds, then
-1t o)
Theorem 2.  Let Ly be a reflexive Orlicz space, f € Lip(1,M) and A = (a, ) be a lower
s,gA) — 1‘ =0 (n_l) . If one of the conditions

triangular regular matrix with

n—1
(i) k):1 |apx—1—ani| =0 (n1),
e
(ii) k):l (n—k) ’an,k—l _amk’ = 0(1)7
holds, then

=50, =0

M
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Let (p,) be a sequence of positive numbers, 0 < oo < 1 and 1 < p < 0. Consider the lower
triangular matrix A = (a, x) with a, x = p,—x/P,. It is clear that in this case sSIA) =1.
If (py) is almost monotone decreasing, then the Norlund matrix A has almost monotone

increasing rows and

=

0

(n+1an, <(n+1)Kay,=Kn+1)—= <1,

3|

where r = [n/2] . Thus, A satisfies the condition (ii) of Theorem 1.
If (pn) is almost monotone increasing and (n+ 1) p, = O (P,), then A has almost monotone
decreasing rows and

(n+ 1) ano = (n 1) 2 = %O(Pn) —0(1).

n n

Thus, A satisfies the condition (i) of Theorem 1.

Hence the part (ii) of Theorem 1 is more general than the part (i) of Theorem B and the part
(i) of Theorem 1 is more general than that part (ii) of Theorem B even in the case M (x) = x”/p,
1< p<oo.

Also, it is clear that parts (i) and (ii) of Theorem 1 are more general than corresponding parts
of Theorem C.

n—1
Nowlet p > 1,0 =1and ¥ k|px — pi+1| = O(P,). Then,
k=1

Pn—k+1 . Pn—k
P, P,

n—l n—1
Y (n=K)lank1—ani| = Y (n—k)
k=1 k=1

1=l 1
= — Y kipi—pisi|=—50(R) =0(1).
PE P,

Thus, the Norlund matrix A = (p,—/P,) satisfies the condition (ii) of Theorem 2. Hence, the
part (iii) of Theorem B is a special case of the part (ii) of Theorem 2. Similarly, one can easily
show that the part (i) of Theorem 2 is more general than the part (iv) of Theorem B even if
M(x)=xP/p, 1 < p<eo.

2 Auxiliary Results

Lemma 1. Let Ly be a reflexive Orlicz space and 0 < o« < 1. Then for every f €
Lip (a,M) the estimate

If=Su(f)llyy=0(n"%), n=1,2, (2.3)

holds.
Proof. Lett; (n=0,1,---) be the trigonometric polynomial of best approximation to f €
Lip(a,M),i. e.
1F =ty llyg = inf | f =2l »



130 A. Guven : Trigonometric Approximation in Reflexive Orlicz Spaces

where the infimum is taken over all trigonometric polynomials ¢ of degree at most 7.
From Theorem 1’ of [10] it can be deduced that

1f = tallyy = O(@(f:1/n) )

and hence
If=tally=0(n""%).

By the uniform boundedness of the partial sums S, (f) in the reflexive Orlicz spacesm]

, we get

1F =S (Dllae - < 1 = tallag 118w = Sn () g = 1 =2 llag + 1150 (5 = )l
= O(lf —tall) =0 (n*).

Lemma 2.  Let Ly be a reflexive Orlicz space . If f € Lip(1,M), then f is absolutely
continuous and f' € Ly.

Proof. Since Ly, is reflexive, the Boyd indices satisfy 0 < oy < By < 1. If we choose a
number g such that 1 < g < 1/By, then Ly is continuously embedded in the Lebesgue space L.
Hence we have

1fC+h) = fll, <cllf(+h) = fliy
for every h with 0 < A < &, § > 0. This inequality yields

(D(f,6)q§0(!)(f,6)M

Hence, f € Lip (1,M) implies @ (f,8),= O (8), and this implies that f is absolutely continuous
and f/ e Lq[4,pp. 51754]‘
Since f is absolutely continuous,the relation

wﬁf’@c)’ § 0t

2
holds almost everywhere. Hence, by Fatou Lemma, for every g with [N (|g(x)|)dx < 1,
0

2 2r

J1r@llswia = [ (im FEESELO0 oy
0

6—0t
0

IN

6—0t

27
L1
hmmfg{|f(x+ 8) — £ (x)||g (x)|dx

IN

.1
hsrgglf 5 IFC+8)—flly

IN

N o4
hérgglf ga)(f,S)M = lgg%)rlf 5 0(6)=0(1),

and this means that f’ € Ly,.



Anal. Theory Appl., Vol. 27, No.2 (2011) 131

Lemma 3. Let Ly be a reflexive Orlicz space and f € Lip (1,M). Then forn=1,2,--- the
estimate

1S5 (f) = 00 (lyy =0 (n™") 24)
holds.
Proof. By Lemma 2, f is absolutely continuous and f’ € Ly,. If f has the Fourier series

() ~ Y e (f) (%)
k=0
then the Fourier series of the conjugate function f’ is

() ~ Y ki () ()
k=1

On the other hand,

n
5100 =019 = X AN 0 = 8 () 9
Considering the boundedness of the partial sums and the conjugation operator in reflexive Orlicz
spaces! yield (2.4).
In the classical Lebesgue spaces L”, 1 < p < oo, the analogue of Lemma 3 was proved in [9].
Lemma 4. Let A = (any) be an infinite lower triangular matrix and 0 < o < 1. If one of
the conditions

(i) A has almost monotone decreasing rows and (n+ 1) a,o = O(1),

(ii) A has almost monotone increasing rows, (n+1)a,, = O(1) where r := [n/2], and
s 1] =0,
holds, then
n
Y k% =0(n""%). (2.5)
k=1

n
Proof. (i) Since ¥ kK *=0 (nl_o‘) and a,x < Ka,ofork=1,--- ,n, we get
k=1

n n

Zkfaamk < KamoZk*a =0 <L> o (nlf‘x) =0 (nfa) )

k=1 k=1 n+1
(ii) Since ay i < Kay, fork = 1,. - 1( —0(n ),

n
Zkiaan,k = Zk ani+ Z k=%
k=1 k=r+1
< Kaank +(r+1)" Z ank<Ka,,,Zk +(r+1)" Zank
k=1 k=r+1 k=1

_ 0 (ni1> 0 (') + 0 (n ) sV = 0 ().
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3 Proofs of the Main Results

Proof of Theorem 1. By the definition of 7Y (f), we have
TN —F ) = YawSi(f)®) )
k=0
= Y Sk (f) (x) = £ () + s £ () = s f ()
k=0

= Yo S0 -F W)+ (5 -1) £

Hence, by (2.3) and (2.5) we obtain

=12 0||, < XanslSe() = Flas+anoliSo (F) = Fll+ [ = 1111
k=1
- —a 1 —a
= 0(n™%),
since [s{ — 1 =0(n%).
Proof of Theorem2. By (2.3),
lr-52 0|, = =52, 1550 ()l
= .- +o().
Thus, we have to show that
Si(n-tV | =o@m™). 3.1)

n
SetA, i := ). a,m. Hence,

m=k

n n k
TN = Lausi() (9= Lo < Y (1) <x>>
= i <i amm) Uk (f) ()C) = kioAn,kuk (f) (X)

k=0 \m=k

On the other hand,
n
Se(Hx) = Y (f)(x nOZuk (1-Anp Zuk
k=0

- iAn,ouk (N @)+ (1- sS;”) 5 () ().
k=0
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Thus,
EFfom—s;u>@>=§2@u#—Amwuufﬂm+—@ﬁﬁ—QSAfﬂm.

By the boundedness of partial sums we get

SN-120) <

M

X im0 +[5 = 1[151
e 1% (3.2)
P

Avo)ue ()| +0(n7").

M
Thus, the problem is reduced to proving that
< 1
Z Ano)ur ()| =0(n"). (3.3)
k=1 M
If we set A A
bmk - nk ; 0 ) k= 17 )1,

Abel transform yields

Y Ak —An0)uwc(f) =Y bk (f)
k=1 k=1
n n—1
= bn,n Z muy, (f) + Z (bn,k by, J+-1 ( Z mum > .
m=1 k=1

Hence,
Z (Amk _AmO) Uy (f) < ‘bmn’ Z mup (f)
n—1 k
+ Y [bug — bugs] ) .
k=1 m=1 M
Considering (2.4), we have
Y muw ()| = (DS (f) = 0a (Nl
m=1 M

= (m+1)o(n ") =0(1).

This and the previous inequality yield

Z nO Mk(f) ( |bnn|+0 Z |bnk n,k+1|- (3-4)

M
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Since

s,gA)—l‘ :0(n_1),

(A)

Ann—An, An.n—5n
|bn,n| = | n 0| = n
= (8 ) < ()
= lom=0(x").
Therefore, it remains to prove that
n—1 :
nk — Onk+1] = no). .
by —bpjr1| =0 (n"") (3.6)
k=1

A simple calculation yields

1
— = — 1
bpj — bpj+1 Kt 1) { (k+1)ay,— 2 anm}

n—1
() Let Y [@ni—1 —ank| =0 (n7").
k=1
Let’s verify by induction that

Zanm k+1 ank < Zm|anm 1 —Aum (3.7

m=1

fork=1,---,n
If k =1, then

- 2an,l = ‘amO —dp,1 ‘ ;

thus (3.7) holds. Now let us assume that (3.7) is true for k = v. Fork=v +1,

\4

Zanm V+1 anVJrl

v+1
Zanm V+2 anVJrl

\%
< Zanm V+1 anv +|(V+1)anv (V+1)an,v+1|
v
< Zm’an,m—l _an,m’+(v+1)’an,v_an,v+l‘
m=1
v+1

= Zm|an,m71 _an,m|a
m=1
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and hence (3.7) holds for k=1, --- ,n. Therefore,

1 k
{(k+1)an,k_ Zan,m}‘

m=0

3
|
—

g

n—1
Z |bn,k - bn,k+1 | =
k=1

>~
I
=~
—
bl
_.I_
—
~

—_ =

3
I

Zanm k+1 ank

k:I
n—1 1 k

< m|apm—1 — anm|
k:lk(k+1)n;l n,m n,m
n—1

- ’anm 1— anm’ Z
m=1 k+1
n—1

S ’anm 1— anm’ Z
= k—|—1
n—1

= ‘amm—l _amm‘
m=1

I
—
S

|
~—

(i1) Let
n—1
(n—k) lan 1 — ang| = O(1).
k=1
By (3.7),
n—1 —
Z ’bn,k - bn,k-i—l ‘ S ’an m—1 — an,m’
k=1 k=
r k
< |anm 11— anm| + Z k+1 Z |an,m71 —dpm|,

where r := [n/2]. By Abel transform,

!
3
El
3
R
|
S
El
A
1~

|an k-1 — anil

>~
l
=~
—
b
_.I_
—
~—
3
Il
>~
I

T

— ) lay o —
k;n 7 (=) a1 = ang
1 r

< - ’"k;n k) |anj—1 — anl
1

= on=0(m".
o =0(")
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On the other hand

Z k—|—1 Zm’an,m—l _amm’

—r

—1
1
< k(k+1 {Zm|anm 1— anm|+mzrm|anm 1= anm|}
n—1 1 1
S S
= - n1+1n2-

.
Since Z lank—1—ani| = O (”_1) )

k=1
n—1
Ly < Zk+12|anml Anm
n—1 1
_ -1
= O(n )k:,—k‘f']

= O(n_]) (n—r)
= O(nfl).

r+1

Let’s also estimate I,».

1
1
Lp = Zmzm‘anml . m

k=r
n—1 1 k
< k:rk+1m:r|an,m71 an,m|
1 n—1 k
S r+1kg;, <mz_,r’an,m—l _an,m’>
2n—1 k
< ZZ <Z ’amm—l _amm‘)
k=r \m=r
2 n- 1
= =Y (n—k)|ani—1 — an
Ly —
2= 1

< —Z n—k)|ani—1 — ankl

= 20(1):0(;1—1).

Thus

Z k+1 Zm|anm 11— anm| (n—l)’
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and hence

n—1
Z |bn,k - bn,k+1| =0 (n_l) .
k=1

Therefore, (3.6) is verified both in cases (i) and (ii). Finally, combining (3.1), (3.2), (3.3), (3.4),
(3.5) and (3.6) finishes the proof.
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