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1 Introduction

Let 7" be a multilinear operator initially defined on the m-fold product of Schwartz spaces

and taking values into the space of tempered distributions,
T:8(R") x---x§(R") — §'(R").

We say that 7' is an m-linear Calderén-Zygmund operator, if for some 1 < g; < oo, it extends
to a bounded multilinear operator from L9 x --- x L9 to L9, where 1/q = 1/q1 + -+ 1/qpm,

and if there exists a function K, defined off the diagonal x =y; =--- =y, in (Rn)m-l—l’ for
f= (f1,-++, fm). satisfying

T = [ K 30 o)

*Supported by the Natural Science Foundation of Hebei Province (08M001) and the National Natural Science Foun-
dation of China (10771049).



Anal. Theory Appl., Vol. 27, No.2 (2011) 159

for all x ¢ (/. suppf;, where dy = dy; ---dy, and y = (y1,-++ ,ym);

A
|K(y0)yla"' )ym)| S m > (1)
(Y =)™
k,j=0
and A o
Yi—Y;
|K(y05)yj)aym)_K(yO;)y;,;ym”S m / 5 (2)
(Y =yl
k,j=0

for some y > 0 and all 0 < j < m, whenever [y; — | < L maxo<k<m |y; — vl

The multilinear Calderén-Zygmund theory has been developed by Grafakos and Torres!!/2].
These articles and the references therein contain the background and applications about this
subject. It was shown in [1] thatif 1 /r=1/r; +---+1/r,, then an m-linear Calder6n-Zygmund
operator satisfies

T:L'"x---xL'm—1L" 3)
when 1 <r; <ooforall j=1,---,m; and

T:L" % x L' — L™, “)
when 1 <r; <ooforall j=1,---,m, and at least one r; = 1. In particular

T:L'x. x L' — LV/m=, (5)

Given € > 0, for x € R", define the truncated operator by
()0 = | KA 01)+ fnlm)5
o=yt [P ey 2> €2
and the associated maximal operator by
T*(f)(x) = sup | Te (f) (x)]-
>0

Grafakos and Torres in [2] proved that the maximal operator 7* satisfies the same boundedness
as T in (3), (4), (5) and some weighted norm inequalities.

Recently, Lerner, Ombrosi, Pérez and Trujillo—Gonzélezm defined a new multilinear maxi-
mal function associated to the m-linear Calderén-Zygmund operator as

M(f)(x) ZSUPﬁ%/Q!fj(yj)\dyj,

03x j=1 |Q

and developed a A weighted theory for the this multilinear maximal function and multilinear
Calder6n-Zygmund operators.
Motivated by the work in [4], we consider here the sharp maximal function estimate and

weighted norm inequalities for the maximal operator 7.
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2 Main Results and Preliminaries

For 0 > 0, let M be the maximal function

5
) = (17 I >

and Mg be the sharp maximal function of Fefferman and Stein,

i 0) = supin (o0 [ 11701 = el

If 6 =1, M; and Mf are the Hardy-Littlewood maximal function and sharp maximal function
denoted by M and M*, respectively.

For m exponents py,---, p,,, we will write p for the number given by 1/p=1/p; +---+
1/ pm, and P = (P1,++,pm)- Let 1 < py -+, pm < oo. Given w = (w1, -+ ,wy,), w; are nonnega-

m
tive locally integrable functions on R", j=1,--- ;m, set vy = Hw?/ 7 We say that w satisfies
j=1

wlok) Mgl ) <=

1 11— /Pf

When p; =1, (@/ w; p’) is understood as (ianwj)*l. For m =1, A is the Mucken-
0

houpt weight class A,. We denote A, = U~ 1A,

the A B condition if

Our main results can be stated as follows.
Theorem 2.1. Let T be an m-linear Calderén-Zygmund operator and T* be the corre-
sponding maximal operator, 0 < 8 < 1/m. Then there exists a constant C > 0 such that for any

m-tuples f of bounded measurable functions with compact support,

-,

ME(T*(f)) (x) < CM(f)(x). (6)

Corollary 2.2. Let T be an m-linear Calderon-Zygmund operator and T* be the corre-
sponding maximal operator, w be a weight in A and p > 0. Then there exists C > 0 (depending

on A constant of w) so that the inequalities

‘|T*(f)||Lp(vv) < CHM(.]?)HL:”(W) (7)

and

IT* (Pl ) < CIME) 0=y (8)
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hold for all m-tuples f of bounded functions with compact support.

Corollary 2.3. Let T be an m-linear Calderon-Zygmund operator and T* be the corre-
sponding maximal operator, 1/p = 1/py +---+1/p,,, and W satisfy the Ay condition.

W Ifl<pj<oo, j=1,---,m, then

IT* ()l <CT i llzrs ) - 9)
j=1
() If1<pj<oo, j=1,--- ,mand at least one of pj = 1, then
IT* (P =) < CTT I llrs o
j=1

Note that the weighted inequality (9) was proved in [5] using Lemma 2.9 below.

Theorem 2.4. Let T be an m-linear Calderdn-Zygmund operator and T* be the corre-
sponding maximal operator, 1 < p; <oo, j=1,--- ,m, 1/p=1/pi+---+1/py. Then there is a
constant C > 0 such that for any m-tuples weights w and any m-tuples f of bounded measurable

functions with compact support,

1T (F)llze g IJIHfJHLP el 20,5 (10)
and
1T (Pl v <CHHf;HLm 2, (11)

We will use the following form of the classical result of Fefferman and Stein®. Let 0 <
p,0 < 1 and w be a weight in A... Then, there exists C > 0 (depending on the A., constant of w),
such that

[ 0550y @x)ar <C [ (55 @(x)as (12)

for all function f for which the left hand side is finite. Similarly, if ¢ : (0,00) — (0,0) is
doubling, then there exists a constant C (depending on the A.. constant of w and the doubling
condition of ¢) such that

/slul())fp(l)W({y ER":Msf(y) > A}) < Ciugfp(?t)W({y ER":MLf(y) > A})

for every function f such that the left hand side is finite.
Lemma 2.5.)  Let f be a nonnegative function on R" such that the level set {xeR":
f(x) > A} has finite measures for all A > 0. Then for any weight w,

fwx)dx <C [ M f(x)Mw(x)dx.
R}'I R}'I
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Lemma 2.6.°0 (1) If1 <p; <o, j=1,---,m 1/p=1/pi+--+1/pn. Then the in-
equality

M) o (v <CTTIlriony) (13)
=1

holds for every f if and only if W satisfies Ay condition.
Q) If1 <pj<eoo, j=1,---,m, then

m
M=y < CTT AN 277 0 (14)
j=1
holds for every f if and only if W satisfies A condition.
Lemma 2.7.51  Let w= (wy,--- ,wy) and 1 < py,--- , py < oo. Then w € Ay if and only if
l—p;-

w GAmp},j:I,---,mande € App.
Lemma 2.8.5) (1) If1 <pj<oo, j=1,---.m 1/p=1/p1+---+1/py. Then there is a

constant C > 0 such that for any m-tuples weights w and any m-tuples f of measurable functions,

J

M) zr ) < CTT 22 (vt (15)
j=1
Q) If1 <pj<oo, j=1,---,mand at least one of p; = 1, then

M) lzru) SCI:[]HfjHU’f(MW,-)- (16)

J

Lemma 2.9.5!  Let T be an m-linear Calderén-Zygmund operator. Then, for all n > 0,
there exists a constant Cpy = Cy(n,m) < oo such that for all f in any product of L9 (R") spaces,
with 1 < q; < o, the following inequality holds for all x in R",

-, -,

T*(f)(x) < Cp(M(H)(x) + M(T()|M)(x)) /™). (17)

We will employ the following Kolmogorov inequality. Let 0 < p < g < oo, then there is a

constant C > 0 such that for any measurable function f

Hf”u(g%‘) < C”J[Hmw(g,%)- (18)

3 The Proof of Theorems

For a given x € R" and € > 0, we denote by Sg(x) = {¥: max Ix—y;| <€} and Ug(x) =
sj=m

{F:lx—yi1 P4+ +|x—ynl> > €2}
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Proof of Theorem 2.1. We will use the ideas from [3],[4]. Given a point x and a cube Q
containing x. As in the proof of Theorem 3.2 in [3], it suffices to prove that for 0 < o < 1/m,
there exists a constant C > 0 such that

=,

(g LT @ -colar)  <eniin

for some constant ¢ depending on Q and T*(f).
Let f; = f) + f7, where f? = fixp,j=1,---,m and Q* = 3Q. Then

[1506) = Hf,oyj +o= Y Ao £ Om)
J=1 J=1 s‘“vﬁme{ov‘x’}

/
= Hf}’ Y00 ),
Jj=1
where each term of X’ contains at least one 3; # 0. Then

T*(f)(z) < @Q+Y T (P ) (), (19)

Applying Kolmogorov’s inequality (18), we have

)8 B i
<’Q‘/’ dZ) < CHT (fO)HLI/HW(Q’%I)
UL |

ELENY P
[T5g JRLETE

< CM(f)(),
since T%: L' x -+ x L} — L1/m==
In order to study the other term, we set
Co = Z ) 7fﬁm))
1
where (f)gp = 9] / f(z)dz. It suffices to show that for any z € Q, we have an estimate of the
o
form
"B o By (P P <CM(F 20
Z’ (f ’ 7fm )(Z) ( 1 7fm )()C)’ — (f)(X) ( )
Consider first the case when 8y = --- = 3,, = oo. For any z € Q we obtain
T )@ = T ) ()
< Sup|T€(fTO"" ) m)(z) _TS(ffca"' ’fm)(x)|
e>0
<

K(3) — K@) T]1f00)|d5 + 2su / K ) T]1£°0n)ld5
/(Rn\w)mu )= KTl 2sup | KT 00)
= [+11,
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where D = {J: [x—yi1[* + -+ [x —yu[* > €%, [c=y1|*+ -+ |t = yu|* < €}. For I, using the

regularity condition (2), we have

|x—z]? u .
—Jweser (=il A 2= yml) Y Il, [10)ldy
Zw [x—z"
< C / d
- EJemgmerer (lz—yil 4+ |z = yml) mﬂﬂ'II’f’ vi)ldy

S IQIW”
CZ (3k|Q[1/n) mnw/wg H|ﬁ yi)ldy

< C;WEW Ay ldvi < CM(F) (x).

3k+1Q

For 11, using the size condition (1), we have

m
=z T 1fi0)lds
£>% E2< x—y1 |2+ |x—y |2 <42 IK( )|E| i(vi)|
< CJV[(f) (x).
What remains to be considered are the terms in (20) such that 8; = --- = B;, = 0 for some

{j1,---, it c{l,--- ,m}and 1 <I < m. Then

|T ( a : ’fném)(z)_T*( [ afﬁm)( )|
sup |Te (/P S8 (2) — e (P, ) ()]

<
>0
=~ P J (R"\3Q)m-! (|Z—y1|—|—..._|_|z_ym|)mn+7
+ 2sup |K(x,§)| [T 12000 IT 1 00)ldy
e>0/D jelin i} JEL i
— HI+1V,

Similar to the proof for /, we have

= o
w1 [ V600 X G g, T1 1501,

JE{]I ¢{jls'"7jm}

IN

o |/ / o
Cy —— I I (y)]dy; <CM .
Z (K[ Q[1/mymn=7 Jzk1 gym §E{j17~~~,jm}‘f](y])‘ Vi s (f)(x)

Similar to the proof for /7, using (1) we have

Vi <

2 | K3 TT100)1d57 < (7)),
S2(0) (¥) N U0y 2 (%) E

where r(Q) denotes the side length of Q. This concludes the proof of the theorem.
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Proof of Corollary 2.2. It is enough to prove (7) when the right-side is finite (otherwise
there is nothing to prove). Using (12) and (6), we have

1T (F)ller o) < IM5(T* (F))lr ) < CIMET (PDllrwy < UM o

provided we can show that |[Mg(T*(f)]| Lr(w) 1s finite. Since w € A, w is also in Ay, with
0 <max(1,pm) < pp < eo. So with § < p/py < 1/m, we have

M5 (T*()llo) < CIMT* ()PP 30l < CUT*(P)lr oy

It is enough to prove that ||7*(f)|| L»(w) 1s finite for each f of bounded functions with compact
support for which ||M(f)]| Lr(w) 18 finite.

The proof of Corollary 3.8 in [3] shows that ||[Ms(T(f))]| Lr(w) i finite, by Lemma 2.9 with
n =&, we get |T*(f) l|Lr (w) is finite. Similar argument give the weak-type estimate (8).

Proof of Corollary 2.3. Since vj; € A, the corollary immediately follows from Corollary
2.2 and Lemma 2.6.

Proof of Theorem 2.4. We only need to prove (11), since the proof of (10) is the same
because T satisfies the sharp function estimate (6) which is proved in [3].

For fixed p > 1/m, choose g € (0,1/m) such that [p/q] = [mp]. Set v = p/q > 1. It follows
from the duality that

(/n(T*(f)(x))Pva(x)dx) 1/v _ wp <1/H(T*(J?)(X))qg(x)dx.

>
820,18l 11 <

By Lemma 2.5, Theorem 2.1, Lemma 2.8(1) and note that Mv(x ﬁ ”/1’/ , we have
[ () swar < ¢ [ M () Mgl ds
< ¢ [ M)W Mg()as
1/v
< ¢ / O My <x>dx)

IN
a

IN
a
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in which we have used the following inequality (see [8]), that for any p € (1,o0), weight u and
geLr (ur),

M) M u) ar < € [ o)) ux)! 7 ax
R)l R"

This completes the proof of the theorem.
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