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Abstract. In the present paper we study properties of Szdsz-Durrmeyer operators. These

operators are introduced in [5] and generalize the integral operators proposed by S.M.Mazhar
and V.Totik in [12]. We also generalize some results obtained by M. Heilmann[® and D.-X.

Zhoul'0),
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1 Introduction

In this paper we study Szédsz-Durrmeyer operators defined on functions f € L, in the follow-

ing form:

Mn,v (fvx) = /Ooon Z Pmk(x)pmk—kv([)f(t)d[7
k=0

l
(1)

where x, n € [0,00), k € N, v € (—1,e0) and py,(t) = e I'(+1)

for I € [0,0). The term

K,LV(Z,X) =n Z Pn,k(X)Pkarv(l)
k=0

is called the kernel of Szasz-Durrmeyer operator. This family of operators was introduced by A.
Ciupa and LGavreal' and was also independently proposed by E. Wachnicki®. Some typical
results could be found in papers [5, 13, 14, 7]. In the first section we placed the results which
are useful in the proof of the further theorems, some of them generalize the properties which
are known for the particular case (for v =0, n € N) but others couldn’t even be formulated for

the previously considered families of operators. As the main results in the second section we
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present certain theorems for combinations of considered operators. Similar results (theorems
3,4 and 5) were obtained by M. Heilmann!® and later by D. Zhou!!® who used the same method
for particular case of Szdsz-Durrmeyer operators (for v =0, n € N). In our proofs we use the
same ideas, but they are slightly simplified compared to the mentioned special case [16] thanks

to Theorem 1 and Lemma 4.

2 Auxiliary Results

By simple induction with respect to » we obtain the following

Lemma 1. Letr € N, x,n,k € [0,0), then

r . r
Pix) =n" Y (—1) Puk-j(x), T <Kk, (1)

J=0 J
xpi ) = (k=m)pl)(x) = r (P30 +mpl (). @

r+1 r r
P @) =nlp} ()= P (0] ®
Moreover, pf:,)c(x) are in the form
) r 13 '
xp}’lk pl’lk Z br[] k I’lx (n.x)‘l, (4)
i=0j=0

where i € {0,1,...,r}, j€{0,1,..., [é]} and b,; ; are coefficients independent of x, n, k.

Using properties of the Gamma-Euler function, we get

* _ k+v+s+1)
*py Adf =p GrH2ETP T for k *
/0 Prjrv(t) ThrveD) orkeN, s,neN 5)
and
n /0 Py ()dr = 1. ©)
Let us note that
C(k4+v+s+1)
B 1 ‘B
Lk+v+1) kv (ktvts)= Zk 8,00 )

where By ; are coefficients of the polynomial independent of i,s and v, moreover By = 1.

Taking BY; = 0 for i <0 or i > s we obtain

BYoy;=(v+ DB+ B ®)

s,i—1
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for v e (—1,00), 5,i € N. In particular, BY (v—i—l)B;’H1 and B = 1.

The next lemma shows the recurrent dependency between moments of the operator. Let us

s+10_

notice that in this formula the derivative does not appear, in contrast to the results obtained by
V. Totikl®l. Tt is clear that V. Totik could not get (9) since he considered only M, o. Let us also
observe that in the proof of the formula (9) the essential role plays the result of Lemma 1.

Lemma 2. Let us assume that x,n € (0,00), v € (—1,00), r € N. Then

Tov(xX) = My ((- —x)", %),

v+1

Ty () = x (T 42 (6) = Ty () + ——=T 1 (%), ©)
TZr qu . r i —21’
TZr—H qu 2r+1 r l —2i— 1’

where g; j(V) are polynomials of v, satisfying additional conditions:

qo2r2(V) = qo2r+1(V+2) —qo2r+1(V),
Gr12r2(v) = (V+1Dgrar1(v+1),
v+1
gizr+2(V) = qiv12041(VH2) —qGiv12041(V) + gizr+1(V+1),

forreN,ie{l,2,---,r}, and

Grarr1(V) = (V+1)gp(v+1),

v+1
gigrr1(V) = %’+172r(V+2)—Qi+172r(v)+761i72r(v+1)7

forreN;ie{0,1,--- ,r—1}.
Moreover, deg qi»-(v) <2i and deg gi2r+1(V) <2i+1.
Remark 1. Ifr € N, n€ [0,00), v € (—1,00), then

N
i< (ver)

n

where C is a constant independent of x, i, n.

Now we give the properties of the derivatives of Szdsz-Durremeyer operators. We will use
these properties in the second part of the paper. Independently they state the interesting result
describing the connection between the operator and it’s r-th derivative. The next lemma is a

simple generalization of the result obtained by M. Heilmann!®.
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Lemma 3. Letn,x €[0,00), V€ (—1,00),r€Nand f €L,,p € [1,e|. Then

M (f.x) = / ank NPy, (0 F (1)1, (10)
MO = Y0 [ | M), (11)
i=0 i

Proof. Using Lemma 1 by induction we get (10) and consequently

oo

Y (<1 paslon [ pl (0f ()

k=0

M (f,)

= Z(—l)jpn’k(x)nrﬂ/o ) _ Prkv+r—j(t) f(£)dt

Thus we obtain (11).
Lemma 4. Ifn,x €[0,), v € (—1,), r € Nand f € D}, then the following recurrent
formula holds:

M) (f,x) = My (F0, ).

Proof. 'We perform induction proof with respect to the order r. For r = 0 the identity is

obvious. Let r € N. Using the induction assumption, the property (10) and Lemma 1, we obtain

M) = S M| = S M)

= LW [ PO F 0 (0
k=0 0
= (% L lpus ()~ puala) /0 Priron (0 (@)
= r 2 Z Pnk / f pn k+r+v+1( ) _pn,k+r+v(t)]dt
= (177 Y puslom / WPy ()
k=0 0

= UL Pkl [ SO0
k=0

= Mn7v+r+l (f(rJrl) ,X).
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Let us notice that Lemmas 3,4, as well as the previous ones, can not be formulated for mod-
ification of Szdsz-Mirakyan operators proposed by V.Totik et al., then we have only M,,o(f,.).
To prove the Bernstein type inequality we need the following lemma.

LemmaS5. IfreN,ve (—1,o), p€[l,o)andgc D, then
| x5M)(g,%) I < C || 126 (1) | -

Proof. From (4) we get

r

V&) I < 113 Mayar(8”0) Il

= 0 [ Y pelpasrn O8O o (12)
k=0

| x2 M}

Next using (12) and the known property of Gamma function

Ck+5+v+1)Tk+5+1)

Tk+ DC(k+r+v+1) —
we obtain
RN R Y A WS P O ErlGr
k=0

IN

Cll126 (1) ||n.. -

3 Main Results

Since neither Bernstein type operators nor their Kantorowicz type modifications can be used
for examination of higher orders of smoothness of functions and also since the order of con-
vergency can not be better then O(—), P. L. Butzerl? introduced the combination of Bernstein

n

operators defined by
(2" = 1)B,(f,r,x) =2"By,(f,r—1,x) = B,(f,r—1,x),

where B, (f,0,x) = B,(f,x) is the Bernstein operator. Similar combinations for other operators
of exponential type were later used by C. P. May“o*l 1,

Now we present the definition of combination of Szdsz-Durrmeyer operators. Definition of
this type was proposed by Z. Ditzan® for Bernstein operators. It is a generalization of combi-
nation defined by P. L. Butzer. For the other types operators similar definitions can be found in

[4, 9]. As it was mentioned before we use the ideas introduced by M. Heilmannl® | and later
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applied by D. Zhou!® and Guo S., Li C., Sun Y., Yang G., Yue SI¥). Some of presented results
generalize the theorems from this last paper.

Definition 1. Let r € N. The combination Szasz-Durrmeyer operator is that of the form:

nVrf7 Zal n,7 )

where constants A, n;, a;(n) satisfy the following conditions:

(a)n—n0<n1<---<nr,1§An,

(b)Z|a, n)| <A,

() Zai(”) =1,

(d)Za, =0forke {1,2,---,r—1}.
Now we are going to formulate the theorem which shows that the combination of operators
M, is not only commutativel®, but gives us something more: composition of Szdsz-Durrmeyer

operators is also Szdsz-Durrmeyer operator.
Theorem 1. Letn,m € (0,%0), p € [0,00| and f € L,. Then

Mn,V(Mm.,V(f)) =M m v(f) (13)

n+m’

Proof. Let n,m € (0,e0). First we assume that x # 0. In the calculation we use modified

Bessel function /, in the form:

We have

va(MmN(f’ )5 X)

s [ [ ot
= e 0kFk+v+1)l‘1‘(l+v+1)

« @M o (n+m)( )f( )dsdt

oo 2n\/)_m)2k+v

- 2”’"/ / 2222k+vk'l“k+v+l)

x (2m\/§1,¢)21+v efnxfmxefuz(ner)(
26VID(I+v+1)
S\ v

= 2nm/ / e (ntm) (Zn\/}u)lv(2m\/§u)udu)e_”x_ms(;)7f(s)ds.

The above transformations are available because of the uniform convergency of corresponding

)2 £(s)ududs

=@«

integrals and series. Using

® 2 1 &2 ab
/0 ia Iy (au)I, (bu)udu = 7:2°¢ iz I, (2—c2

),
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a>0,b>0,c>0, we get

Mo (Mg (£,).3) = o [ mitteony, (MWE) (x)gﬂs)ds

n+m

nm- [* _ 2, (G ) 2K () 2Kty

_ ()
nemh ¢ Z + 2%VEID (k+ v + 1)
= M%,V(fax)'

f(s)ds

Thus the proof of (13) is done for x # 0. If x = 0, then using

) v )
—u?c. v+1 b B
e " u Ty (bu)du = ———e*
/0 v (bu) (20)v+1
b >0, ¢ > 0, in the similar way we obtain (13).
Observe that the composition of combination Szasz-Durrmeyer operators is also the combi-
nation of the same type.

Remark 2. If n,m € (0,00), r € N and M,y ,(f,x) is the combination Szdsz-Durrmeyer

operators, i. e. satisfy conditions of the definition 1, then M ﬁﬁwvf( f,x) is the combination of
the same type.
Now we present Bernstein type inequality.

Theorem 2. Letr € N, x, n € [0,00) and f € Le.. Then the inequality holds
| XM () < | F

1
Proof. Let f € L., r € N, n € [0,00). We consider two cases. Let us start with x € [0, —].
n

Then from Lemma 3 we obtain
MU (f Loy 0,1]
| xZM, v (f,x )HL < Cllxzn" Y Myyoi(f,x) )
‘]‘7

< Cnt Z | (1) My () 17
=

< Cnt | flle. -

1
Now let x € (—,o0). Then taking into account (10) we have
n

A

ro(r o) %7""
| 2 M) (S, )HL < szzp,,k X) sy (0 f(0)dt [

N

< [/l szank 1,
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and next from Lemma 1 and the formula (6) it follows that

, r [i] o , . 1o
ML) 1<) f ILY E btk ) () pa () [

0,j=0k=0

(14)

Finally

7]

Z 1Y 5 ()5 () 1 £
]:

k=0

M) (o) [

IN
S 1 M\

< Cn?fL. -

Remark 3.3. Let us notice that in the above proof the character C is used for different
constants in order to simplify the notation. This agreement is valid later on.

Theorem 3. Let f € L., n € N. Then the following inequality holds

1
Moy (F3) = FO)] < Con(fi] =+ ), (1)

where C is a constant depending on v and r.

Proof. Let us start with an observation that
Mn,v,r((t—x)S,x) =0 for se{1,2,---,r—1}

and
va’r(l,x) == 1

for the fixed function g € D,. Using Taylor’s expansion

r—1 —x i t
0= S0+ o [ (=g wan

i=0
we obtain
My (8,%) —8(x)| = [Mny,(g(t) —g(x),x)|
r— 1 _
+an,<2—' )(t—x +/ Y (t—u)~ 1g()( )du,x)
r—1
< Y lai(m) Mo (1t —xI",2) || 8 |1
i=1
< Zlaz m)| 18" . /T2 (x)
X 1 2
< g | (—+—2) .
n n
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We use Lemma 2 to explain the last inequality. Let f € L., and g € D.,. Then
My (f,2) = f)] < [Muy e (f = 8X) | 4 My (8:%) — g ()| + | f(x) — 8(x)]

1)\2
@D gl +c 60 I (24

r
2

]

IN

N

~— S|

_ oy (2L
< cll -l 1 e (240

M,y -(f,%) — f(x)| < CK,(f, m)

and the thesis by using properties of the K-functional.

Finally we get

Theorem4. Letn,x €[0,00), V€ (—1,00),r€Nand f € L, &t € (0,r). Then the following
conditions are equivalent:

(i) There exists constant C independent of x and n such that
My ()~ F)] < Cn8 (et 1),

(ii) o (f,h) = O(h%).

Proof.

(ii) = (i)

Leth=n"2 (x+ %) : and using Theorem 3, we obtain (i).

(H)=(ii)

Leth € (0,00) and x € (%,oo). If 2rh > %, then

MY I O

|ALS ()] <27 f ..

A
e
|

IN

(8rh)*2" || f || < Ch“*.

Let us consider the case, 2rh < %. Let s € (0,4), and by the definition the sequence

| rt.1
6n(x,t)—max{;,n 2(x+§)2}.

From the assumption we have

r r o r 1 2
My, (fix+(5—0t) = fx+(5-0D0)] < Cn 2 (x+(5-0)t+=
’ 2 2 2 n
o rt 1)\?2
< Cn 2 (X‘FE"F—)
o toc
< C(no‘—i—n 7(x—|—%)7)

IN
Q
[\

&

—

=
~

~
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fori e {0,1,---,r}. Using the above estimation we get

< B | sl G =i = rct (5 =)

Y| | Mavrltie+ G =)

IN

c4’(5 (x,2))*
[ [ MOt E .
2 i=1

For fixed h > 0, we choose fj, € D), such that the following conditions hold:

NIN

H f_fh HLWS 2Kr(fahr) S 2er(fah))

| £ < B KA (f ) < 2C0,(f, ).
Then

|/7 /7 Afox+ Zu )duy - - duy|
- - i=1
v L -
Z‘a, ’/ , / t[‘Mn;,V(f_fh7x+ Zuz)‘
3 /s i=1

+ |M'(l,r7)\/(fh)x+ ZM,’)| ]dl,tl . -dur

i=1

IN

From Lemma 4 we obtain

r—1 r
Zla, I/ / M (fx+ Y w)dur ---du, < AF | £ |1
2 i=1

< 207 wp(f,h).

Moreover, using the formula (11) from Lemma 3 we get

M, (f = )] < ALY (~1) Moy (If = fil %)
J=0 i
< ) Il f=fille -

Using (21) we obtain

r—1
P= Yl [ uir- it L)
i=0 2 2 Jj=

< ACa) || f = fi e -

(16)

(17

(18)

(19)

(20)

1)

(22)



Anal. Theory Appl., Vol. 27, No.2 (2011)

On the other hand from Theorem 2 we also have

= 5 5o r
Fo< Ylal)| [ [nf 1= il G Y )iy
i=0 - -2 j=1

L
2

. [ 5 r
- Ar+1n§/ / 1= fi e 4 Y ) duy - du,
) Z

s L
2 2

and we get

r
2

r 1
TSA™ S | = o O (x4 )

Using (22) and (24) we obtain

2

: 1\ "2
I<CA™™ | fF—full t'min{nr,n7 (x—i—r—) 2}.

Finally the formulas (16), (19), (20) and (25) imply

AL (fx) < C{(8u(x,1))* +1" 0, (f,h) +1" (8u(x,1)) @ (f, 1) } -

1
Let 6 € (0, 8—) We consider n € N, such that
r
On(x,1) <6 <268,(x,1).

Thus
AL (f,x)| < CL{8% + 18w, (f,5)} .

Taking supremum we obtain
o (f,h) <C{6“ + 16" w:(f,8)}

and the condition (ii) by [1].

177

(23)

(24)

(25)

(26)

Theorem 5. Let f € Lo,r e N, € (0,r),v € (—1,00). The following conditions are equiv-

alent:

(i) There exists a constant C independent on x and n such that

MO < C (min{n, f}) o

(ii) a)r(fv h) - O(ha)
Proof.
()= (1)
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Let x, n € (0,%0) and g € DZ,. By estimations similar to once used in the proof of Theorem 4

and by Lemma 4 we obtain

MO (F,x)] < MUV — g,x)|+ M) (g,%)]
Clmin{n",n>x 3} || f—g I + 1 & |l.]

r 1 _r _r 1 r r
Cn (x4 =) 2 f =g o +n 2 (et )2 Il Il ]

r 1 r r 1 r
Cn?(x+—) 2K (fin ™2 (x+-)2).
n n

IN A

IN

IN

Taking infimum for g € D., we get

M) (f,%)] §Cn%(x+%)75w,(f,n7%(x+%)%). 27)

)

And finally the formula (27) and assumption (ii) give us the thesis.
()= (i)

Using Theorem 1 we have

Al(f,x) < !Z(,) ' ){M;;";n,vr(ﬂer(J—%)) f(er(j—%)t)!
=0\

+‘Zal van ) )‘—114‘[2

From Theorem 3 we obtain

I < i ' Ca),(f,\/[x+(j_§),+n—1]n—1
=0\
< 4 Cw,(f,0u(x,1)).

Using Lemmas 3 and 4 by steps similar to the proof of Theorem 4 we get
r—1 % r
s Rlai l/ o [ (M () Yy ) -y
3 I3 =

Z jai (n) | min{ || My (f, ) |1t

IN

Ot—r

[— /: < Zr' ) HX%M’(l;)V(f7x) I|L.. duy -+ - du, }

2 2

ST

Consequently, we obtain

ra N 2
L < Z]a, )| min{C(An)"~%",C(An) 2 C 2 (x—i—%) ’ 1"}

< Ct’(6n(x,t)) e
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1
If 6 € (0, 8—), let us take n € IV, that
r

Then

Sa(x,1) < 8 < 28,(x,1).

A(f.x) <2°C3 (o, (f,8)+h6%7T),

hence

o (f,h) <2°C (@,(f,8) +h8%).

And finally using the results from [1] we obtain (ii).

4 Conclusions

In the paper we consider the generalized family of operators (v € (—1,00)). Thanks to this

approach we are able not only to prove the interesting results which can not be formulated for

v = 0, but also simplify the already existing proof by reformulating the known theorems as

special cases of the generalized versions. Further results involving other types of operators are

in preparation.
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