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Abstract. The main purpose of this paper is to prove a collection of new fixed point the-

orems and existence theorems for the nonlinear operator equation F(x) = αx (α ≥ 1) for

so-called 1-set weakly contractive operators on unbounded domains in Banach spaces. We

also introduce the concept of weakly semi-closed operator at the origin and obtain a series

of new fixed point theorems and the existence theorems for the nonlinear operator equation

F(x) = αx (α ≥ 1) for such class of operators. As consequences, the main results general-

ize and improve the relevant results, which are obtained by O’Regan and A. Ben Amar and

M. Mnif in 1998 and 2009 respectively. In addition, we get the famous fixed point theorems

of Leray-Schauder, Altman, Petryshyn and Rothe type in the case of weakly sequentially

continuous, 1-set weakly contractive (µ-nonexpansive) and weakly semi-closed operators

at the origin and their generalizations. The main condition in our results is formulated in

terms of axiomatic measures of weak compactness.
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1 Introduction

The famous fixed point theorems of Leray-Schauder, Altman, Petryshyn and Rothe type for

completely continuous operators take an important role in the study of fixed point theory. Since

1-set contractive mappings are a broader class of operators including completely continuous

operators, the study of fixed point problems for 1-set contractive operators especially from a

closed convex subset into itself has been one of the main objects of research in nonlinear func-

tional analysis and was started by Sadovskii[23] Petryshyn[21,22] , and Nussbaum[18] . Since then,

whether a 1-set contractive mapping defined on the closure of bounded open subset of a Ba-

nach space has a fixed point, has become an interesting problem[16,17,26,28] . For example, in [16]

the author defined the fixed point index of 1-set-contractive operators, introduced the concept of

semi-closed 1-set-contractive operator and obtained some fixed point theorems of such a class of

operators. These studies are mainly based on the potential tool of degree theory in terms of Ku-

ratowskii measure of noncompactness. Because the weak topology is the convenient and natural

setting to investigate the existence problems of fixed points and eigenvectors for operators and

solutions of various kinds of nonlinear differential equations and nonlinear integral equations

in Banach spaces, the above mentioned results cannot be easily applied. These equations can

be transformed into fixed point problems and nonlinear operator equations involving a broader

class of nonlinear operators, in which the operators have the property that the image of any set

in a certain sense more weakly compact than the original set itself. The major problem to face

is that an infinite dimensional Banach space equipped with its weak topology does not admit

open bounded sets. That is, a weakly closed and bounded subset has an empty weak interior

and thus coincides with its weak boundary which yields very difficult the verification of the

boundary conditions. To this interest, we introduce the concept of weakly semi-closed operator

at the origin (see Definition 2.6). The notion of the measure of weak noncompactness was intro-

duced by De Blasi in 1977, see [9]). This index has found applications in operator theory (see

[14, 15]) and many existence results for weak solutions of differential and integral equations in

Banach spaces (see [8, 20, 25] and other). Recall that weak solutions of the Cauchy problem

in reflexive Banach spaces were investigated by Szép[25] and weak solutions of nonlinear inte-

gral equations in these spaces by O’Regan[20]. But, it is not easy to construct some formulas

which allow to express the measure of weak noncompactness in a convenient form. This is the

reason for introducing the notion of axiomatic measures of weak noncompactness, see [4]. In

this paper, we prove a collection of new fixed point theorems and existence theorems for the

nonlinear operator equation F(x) = αx (α ≥ 1) for so-called 1-set weakly contractive operators

on unbounded domains in Banach spaces. We also introduce the concept of weakly semi-closed
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operator at the origin (see Definition 2.6) and obtain a series of new fixed point theorems and

the existence theorems for the nonlinear operator equation F(x) = αx (α ≥ 1) for such class of

operators in the case of 1-set weakly contractive operators. As consequences, the main results

generalize and improve the relevant results, which were obtained by O’Regan and A. Ben Amar

and M. Mnif in 1998 and 2009 respectively. In addition, we get the famous fixed point theorems

of Leray-Schauder, Altman, Petryshyn and Rothe type in the case of weakly sequentially contin-

uous, 1-set weakly contractive (µ-nonexpansive) and weakly semi-closed operators at the origin

and their generalizations. The main condition in our results is formulated in terms of axiomatic

measures of weak compactness. In addition, our arguments and methods are elementary in the

sense that without any recourse to degree theory or theory of homotopy-extensions.

2 Preliminaries

For a subset Ω of a Banach space E , the weak closure, the convex hull, and the closed

convex hull of Ω in E are denoted by, Ωw, convΩ and convΩ respectively. If U ⊆ Ω ⊆ E , the

weak boundary in the relative topology of Ω is denoted by ∂ΩU . A set Ω in E is called a wedge

if ax+ by ∈ Ω whenever a,b ∈ [0,∞) and x,y ∈ Ω.

Let E be a Banach space, B(E) the collection of all nonempty bounded subsets of E and

W(E) the subset of B(E) consisting of all relatively weakly compact subsets of E . Finally, let

BE denote the closed unit ball of E .

The measure of weak noncompactness of De Blasi [9] is defined in the following way

β (Ω) = inf{ε > 0 : there exists a weakly compact set D such that Ω ⊆ D + εBE},

where Ω ∈B(E). This function possesses several useful properties [9]. Foe example, β (BE) = 1

whenever E is nonreflexive and β (BE) = 0 otherwise.

There exists also an axiomatic approach in defining of measures of noncompactness [4]. Let

us recollect this definition.

Definition 2.1. A function µ : B(E)−→R+ is said to be a measure of weak noncompactness

if it satisfies the following conditions

(1) µ(Ω) = 0 ⇐⇒ Ω ∈ W(E).

(2) µ(conv(Ω)) = µ(Ω),

(3) Ω1 ⊆ Ω2 =⇒ µ(Ω1) ≤ µ(Ω2),

(4) µ(Ω1 ∪Ω2) = max{µ(Ω1),µ(Ω2)},

(5) µ(Ω1 + Ω2) ≤ µ(Ω1)+ µ(Ω2),

(6) µ(λΩ) = |λ |µ(Ω),λ ∈ R.
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Let us mention that in the paper [4] a measure of weak non compactness in the above sense

is called to be regular. For more examples and properties of measures of weak noncompactness

we refer to [1, 4, 5, 14, 15].

Throughout this article we consider µ a measure of weak noncompactness on E .

Definition 2.2. Let D be a nonempty subset of Banach space E . If F maps D into E , we say

that

(a) F is µ-condensing if F is bounded and µ(F(V )) < µ(V ) for all bounded subsets V of D

with µ(V ) > 0,

(b) F is µ-nonexpansive if F is bounded and µ(F(V )) ≤ µ(V ) for all bounded subsets V of

D.

Definition 2.3. Let E be a Banach space. An operator F : E −→ E is said to be weakly

compact if F(D) is relatively weakly compact for every bounded subset D ⊂ E.

Definition 2.4. Let E be a Banach space. An operator F : E −→ E is said to be weakly

sequentially continuous on E if for every sequence (xn)n with xn
w

−→ x, we have F(xn)
w

−→ F(x),

here
w

−→ denotes weak convergence.

Remark 2.1. In many situations while it is easy to show that a map between Banach spaces

is weakly sequentially continuous, it is considerably more difficult to show that is weakly contin-

uous. One of the reasons for this is the failure in general of the Lebesgue dominated convergence

theorem for nets. So it is useful to have fixed point theorems for weakly sequentially continuous

maps.

Remark 2.2. One of the advantages of the weak topology of a Banach space E is the fact

that if a set D is weakly compact, then every sequentially weakly continuous map F : D −→ E

is weakly continuous. This is an immediately consequence of Eberlein-Šmulian’s theorem.

Definition 2.5. A subset D of a Banach space is called weakly sequentially closed if, when-

ever xn ∈ D for all n ∈ N and xn
w

−→ x, then x ∈ D.

Definition 2.6. Let D be a nonempty weakly closed set of a Banach space E and F : D −→ E

a weakly sequentially continuous operator. F is said to be weakly semi-closed operator at θ if

the conditions xn ∈ D, xn −F(xn)−→ θ imply that there exists x ∈ D such that F(x) = x (here θ

means the zero vector of the space E).

It should be noted that this class of operators, as special cases, includes the weakly se-

quentially continuous operators which are weakly compact, weakly contractive, µ-condensing,

(I −F)(D) is weakly sequentially closed and others.

The following fixed point result stated in [7] as an analogue of Sadovskii’s fixed point
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result[2], will be used throughout this section. The proof follows from O. Arino, S. Gautier

and J. P. Penot theorem [3].

Theorem 2.1. Let Ω be a non-empty, convex closed set in a Banach space E. Assume

F : Ω −→ Ω is a weakly sequentially continuous and µ-condensing mapping. In addition,

suppose that F(Ω) is bounded. Then F has a fixed point.

Remark 2.3. Theorem 2.1 extends and improves many relevant and recent results in [6, 19,

11] and others.

3 Main Results

We start this section by stating some interesting facts of a weakly sequentially and µ-

condensing operators which are useful in the sequel.

Lemma 3.1. Let C be a nonempty weakly closed set of a Banach space E and F : C −→ E

a weakly sequentially continuous and µ-condensing operator with F(C) is bounded, then

(a) for all weakly compact subset K of E, (I −F)−1(K) is weakly compact.

(b) I −F maps weakly closed subset of C onto weakly sequentially closed sets in E.

Proof. (a) Let K ⊂ E be a nonempty weakly compact set and let D = (I −F)−1(K). Since

I −F is weakly sequentially continuous, D is weakly sequentially closed. Moreover, we have

µ(D) ≤ µ(K)+ µ(F(D)) = µ(F(D)).

Since F is µ-condensing, it follows that µ(D) = 0. Let x ∈ C, be weakly adherent to D. Since

Dw is weakly compact, by Eberlein-Šmulian theorem [10, theorem 8.12.4, p. 549], there exists

a sequence (xn)n ⊂ D such that xn
w

−→ x, so x ∈ D. Hence Dw = D and D is a weakly closed

subset of C. Therefore D is weakly compact.

(b) Let D ⊂C be a weakly closed set and consider xn ∈ (I −F)(D) such that xn
w

−→ x in E .

We have xn = (I −F)(un),∀n ≥ 1 with un ∈ D. The set K = {xn}w is weakly compact and so

(I−F)−1(K) is weakly compact. Therefore, we may assume that un
w

−→ u in D, for some u ∈ D.

Due to the weak sequential continuity of I −F , we have x = (I −F)(u) and so x ∈ (I −F)(D).

Accordingly (I −F)(D) is weakly sequentially closed.

Now, we are ready to investigate a class of operator equations for a broader class of nonlinear

weakly sequentially continuous operators, in which the operators have the property that the

image of any set is in a certain sense more weakly compact than the original set itself .

Proposition 3.1. Let Ω be a nonempty unbounded closed convex subset of a Banach space

E . Suppose that F : Ω −→ Ω is weakly sequentially continuous µ-nonexpansive operator and
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F(Ω) is bounded. In addition, assume that F is weakly semi-closed at θ . Then F has a fixed

point in Ω.

Proof. Let x0 be a fixed element of Ω. Define Fn = tnF +(1− tn)x0 n = 1,2, . . ., where (tn)n

is a sequence of (0,1) such that tn −→ 1. Since x0 ∈ Ω and Ω is convex, it follows that Fn maps

Ω into itself. Clearly Fn is weakly sequentially continuous and Fn(Ω) is bounded. Let X be an

arbitrary bounded subset of Ω. Then we have

µ(Fn(X)) = µ(tnF(X)+{(1− tn)x0}) ≤ tnµ(F(X))+ µ({(1− tn)x0}) ≤ tnµ(X).

So, if µ(X) 6= 0 we have

µ(Fn(X)) < µ(X).

Therefore Fn is µ-condensing on Ω. From Theorem 2.1, Fn has a fixed point, say, xn in Ω.

Consequently, ‖xn −F(xn)‖ = ‖(tn −1)(F(xn)− x0)‖ −→ 0 as n −→ ∞, since tn −→ 1 as n −→

∞ and F(Ω) is bounded. Since F is weakly semi-closed at θ , there exists x ∈ Ω such that

F(x) = x. Accordingly, F has a fixed point in Ω.

Theorem 3.2. Let Ω be a closed wedge of a Banach space E, x0 ∈ Ω, U a weakly open

subset of Ω such that x0 ∈ U and α ≥ 1. Suppose that F : Uw −→ Ω is weakly sequentially

continuous, µ-condensing operator and F(Uw) is bounded. Then, either

(A1) the operator equation F(x) = αx has a solution in Uw, or

(A2) there is a point x ∈ ∂ΩU and k > α with Fx−αx0 = k(x− x0). ♦

Proof. Suppose (A2) does not hold. If (A2) is satisfied for k = α , then the theorem is

trivial. In conclusion, we can consider that the supposition is not satisfied for any x ∈ ∂ΩU and

any k ≥ α . Let D be the set defined by

D =

{

x ∈Uw : x =
λ

α
F(x)+ (1−λ )x0, for some λ ∈ [0,1]

}

.

D is non-empty and bounded, because x0 ∈ D and F(Uw) is bounded. We have D ⊂ conv({x0}∪

(
1
α

F(D))). Because the set {x0} is weakly compact and α ≥ 1, then µ(D) 6= 0 implies

µ(D) ≤ µ(conv({x0}∪ (
1
α

F(D))) ≤
1
α

(F(D)) < µ(D),

which is a contradiction. Hence, µ(D) = 0 and D is relatively weakly compact. Now, we

prove that D is weakly closed. The weak sequentially continuity of F implies that D is weakly

sequentially closed. For that, let (xn)n a sequence of D such that xn
w

−→ x, x ∈ Uw. For all
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n ∈ N, there exists a λn ∈ [0,1] such that xn =
λn

α
F(xn)+ (1−λn)x0. λn ∈ [0,1], we can extract

a subsequence (λn j
) j such that λn j

−→ λ ∈ [0,1]. So,
λn j

α
F(xn j

) + (1−λn j
)x0

w
−→

λ

α
F(x) +

(1− λ )x0. Hence x =
λ

α
F(x) + (1− λ )x0 and x ∈ D. Let x ∈ Uw, be weakly adherent to D.

Since Dw is weakly compact, by Eberlein-Šmulian theorem [10, theorem 8.12.4, p. 549], there

exists a sequence (xn)n ⊂ D such that xn
w

−→ x, so x ∈ D. Hence Dw = D and D is a weakly

closed subset of Uw. Therefore D is weakly compact. We prove that D ∩ (Ω \U) = /0. In

fact, let x ∈ D, then there exists λ ∈ (0,1] such that x =
λ

α
F(x) + (1− λ )x0 (if λ = 0 then

x = x0 /∈ Ω\U ). So, F(x)−αx0 =
α

λ
(x− x0) and thus x /∈ Ω\U (

α

λ
≥ α). Because E endowed

with its weak topology is a Hausdorff locally convex space, we have that E is completely regular

[24, p. 16]. Since D∩ (Ω\U) = /0, Then by [12, p. 146], there is a weakly continuous function

ϕ : Ω −→ [0,1], such that ϕ(x) = 1 for x ∈ D and ϕ(x) = 0 for x ∈ Ω\U . Since Ω is a wedge,

x0 ∈ Ω, we can define the operator F∗ : Ω −→ Ω by :

F∗(x) =











ϕ(x)

α
F(x)+ (1−ϕ(x))x0, if x ∈Uw,

θ , if x ∈ Ω\Uw

Clearly, F∗(Ω) is bounded. Because ∂ΩU = ∂ΩUw, ϕ is weakly continuous and F is weakly

sequentially continuous, we have that F∗ is weakly sequentially continuous. Let X ⊂ Ω, be

bounded. Then, since

F∗(X) ⊂ conv({x0}∪F(X ∩U)),

we have

µ(F∗(X)) ≤ µ(conv({x0}∪ (
1
α

F(X ∩U))) ≤ µ(F(X)),(α ≥ 1)

and µ(F∗(X)) < µ(X) if µ(X) 6= 0. So, F∗ is µ-condensing. Therefore by Theorem 2.1 F∗ has

a fixed point x1 ∈ Ω. If x1 6∈U , ϕ(x1) = 0 and x1 = x0, which contradicts the hypothesis x0 ∈U .

Then x1 ∈ U and x1 =
ϕ(x1)

α
F(x1) + (1−ϕ(x1))x0, which implies that x1 ∈ D. Accordingly,

ϕ(x1) = 1 and so F(x1) = αx1 and the proof is complete.

Remark 3.1. If either α = 1 or x0 = θ , then we obtain the same conclusion by only assuming

that Ω is a nonempty unbounded closed convex subset of E .

Remark 3.2. (a) Theorem 3.1 extends and improves Theorem 3.3 in [7].

(b) Theorem 3.1 extends and improves Theorem 2.3 in [19] and shows that the condition

Uw is weakly compact in the statement of this theorem is redundant.
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Corollary 3.3. Let Ω be a closed wedge of a Banach space E, x0 ∈ Ω, U a weakly open

subset of Ω such that x0 ∈ U and α ≥ 1. Suppose that F : Uw −→ Ω is weakly sequentially

continuous, µ-condensing operator and F(Uw) is bounded. Assume that

Fx−αx0 6= k(x− x0), for all x ∈ ∂ΩU,k > α ,

then the equation F(x) = αx has at least a solution in Uw.

Corollary 3.4. Let Ω be a closed wedge of a Banach space E, x0 ∈ Ω, U a weakly open

subset of Ω such that x0 ∈ U and α ≥ 1. Suppose that F : Uw −→ Ω is weakly sequentially

continuous, weakly compact operator and F(Uw) is bounded. Assume that

F(x)−αx0 6= k(x− x0), for all x ∈ ∂ΩU,k > α ,

then the equation F(x) = αx has at least a solution in Uw.

Proof. This is an immediate consequence of Corollary 3.1 since F is clearly µ-condensing.

Remark 3.3. The conditions that F is a weakly compact operator and F(Uw) is bounded in

the statement of Corollary 3.2 can be removed if we assume that Uw is weakly compact which

improve and extend Theorem 3.1 in [7].

Corollary 3.5. Let Ω be a nonempty unbounded closed convex set of a Banach space E,

x0 ∈ Ω, U a weakly open subset of Ω such that x0 ∈ U. Suppose that F : Uw −→ Ω is weakly

sequentially continuous, µ-condensing operator and F(Uw) is bounded. Assume that

F(x)− x0 6= k(x− x0), for all x ∈ ∂ΩU,k > 1,

then F has a fixed point in Uw.

Theorem 3.6. Let Ω be a closed wedge of a Banach space E, x0 ∈ Ω, U a weakly open

subset of Ω such that x0 ∈ U and α ≥ 1. Suppose that F : Uw −→ Ω is weakly sequentially

continuous µ-nonexpansive operator and F(Uw) is bounded. In addition, assume that F is

weakly semi-closed at θ . Then, either

(A1) the operator equation F(x) = αx has a solution in Uw, or

(A2) there is a point x ∈ ∂ΩU and k > α with F(x)−αx0 = k(x− x0).

Proof. Suppose (A2) does not hold. Let Fn =
tn

α
F +(1− tn)x0 n = 1,2, · · · , where (tn)n is a

sequence of (0,1) such that tn −→ 1. Since x0 ∈ Ω and Ω is a wedge, it follows that Fn maps Uw
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into Ω. Clearly Fn(Uw) is bounded. Suppose that λnFn(yn)+(1−λn)x0 = yn for some yn ∈ ∂ΩU

and for some λn ∈ (0,1). So,

yn = λnFn(yn)+ (1−λn)x0,

=
λntn

α
F(yn)+ λn(1−λn)x0 +(1−λn)x0,

=
λntn

α
F(yn)+ (1−λntnx0).

Hence F(yn)−αx0 =
α

λntn
(yn − x0), a contradiction with the fact that

α

λntn
> α . Let X be an

arbitrary bounded subset of Uw. Then we have

µ(Fn(X)) = µ(
tn

α
F(X)+{(1− tn)x0}) ≤

tn

α
µ(F(X))+ µ({(1− tn)x0}) ≤ tnµ(X).

So, if µ(X) 6= 0 we have

µ(Fn(X)) < µ(X).

Therefore Fn is µ-condensing on Uw (note that α ≥ 1). From Corollary 3.3, Fn has a fixed point,

say, xn in Uw. Therefore, ‖xn −
1
α

F(xn)‖ = (1− tn)‖
1
α

F(xn)− x0‖ −→ 0 as n −→ ∞, since

tn −→ 1 as n −→ ∞ and F(Uw) is bounded. Since
1
α

F is either µ-condensing (if α > 1) or

µ-nonexpansive (if α = 1), by Lemma 3.1 and condition that F is weakly semi-closed at θ , we

obtain that there exists a point x1 in Uw such that θ = (I−
1
α

F)(x1). Thus F(x1) = αx1.

Corollary 3.7. Let Ω be a closed wedge of a Banach space E, x0 ∈ Ω, U a weakly open

subset of Ω such that x0 ∈ U and α ≥ 1. Suppose that F : Uw −→ Ω is weakly sequentially

continuous µ-nonexpansive operator weakly semi-closed at θ and F(Uw) is bounded. In addi-

tion we suppose that F satisfies the following condition

F(x)−αx0 6= k(x− x0), for all x ∈ ∂ΩU,k > α , (3.1)

then the equation F(x) = αx has at least one solution in Uw.

Corollary 3.8. Let Ω be a nonempty unbounded closed convex subset of a Banach space

E and U a weakly open subset of Ω. Suppose F : Uw −→ Ω is weakly sequentially continuous

µ-nonexpansive operator weakly semi-closed at θ and F(Uw) is bounded. In addition, assume

that there exists x0 ∈U such that

x 6= λF(x)+ (1−λ )x0 for all x ∈ ∂ΩU,λ ∈ (0,1)

then F has a fixed point in Uw.

Proof. It suffices to apply Corollary 3.4 with α = 1.
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Corollary 3.9. Let Ω be a nonempty unbounded closed convex of a Banach space E, U a

weakly open subset of Ω such that θ ∈ U. Suppose F : Uw −→ Ω is weakly sequentially con-

tinuous µ-nonexpansive operator weakly semi-closed at θ and F(Uw) is bounded. In addition,

assume that F satisfies the Leray-Schauder boundary condition

λF(x) 6= x for all x ∈ ∂ΩU,λ ∈ (0,1) (L-S)

then F has a fixed point in Uw.

Proof. It suffices to apply Corollary 3.5 with x0 = θ .

Remark 3.4. Corollary 3.6 generalizes the famous Leray -Schauder’s theorem to the case of

weakly sequentially continuous, µ-nonexpansive and semi-weakly closed operator at θ .

Theorem 3.10. Let E, Ω, U and F be as the same as in Corollary 3.6. In addition, assume

that

‖F(x)‖ ≤ ‖x‖, for all x ∈ ∂ΩU, (3.2)

then F has a fixed point in Uw.

Proof. It suffices to prove that (3.2) implies the condition (L− S). Suppose the contrary.

Then there exists x0 ∈ ∂ΩU,λ0 ∈ (0,1) such that λ0F(x0) = x0. So, ‖F(x)‖ =
1
λ0

‖x0‖ > ‖x0‖,

contradicting with (3.2).

Theorem 3.11. Let Ω be a closed wedge of a Banach space E, U a weakly open subset of

Ω and α ≥ 1. Suppose that F : Uw −→ Ω is weakly sequentially continuous µ-nonexpansive

operator weakly semi-closed at θ and F(Uw) is bounded. In addition, assume that F satisfies

one of the following conditions

(a) θ ∈U, F(x) 6= λx, for x ∈ ∂ΩU,λ > α ,

(b) x0 ∈U,‖F(x)−αx0‖ ≤ α‖x− x0‖ for all x ∈ ∂ΩU,

then the operator equation F(x) = αx has a solution in Uw.

Proof. Suppose that (a) is satisfied. We only need to let x0 = θ in Corollary 3.4. If (b) is

satisfied, we suppose that the operator equation F(x) = αx has no solution in ∂ΩU (otherwise we

are finished). In order to apply Corollary 3.4, we prove that (3.1) is satisfied. Suppose that (3.1)

is not true, that is, there exist k0 > α and x1 ∈ ∂ΩU such that F(x1)−αx0 = k0(x1 − x0). From

(b), we obtain k0‖x1 − x0‖ ≤ α‖x1 − x0‖. Since x1 ∈ ∂ΩU and U is a weakly open subset of Ω,

thus x1 − x0 6= θ . Therefore, ‖x1 − x0‖ 6= 0 and we obtain k0 ≤ α and this contradicts k0 > α .

So (3.1) holds. Accordingly, by Corollary 3.4 the operator equation F(x) = αx has a solution in

Uw.
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Remark 3.5. In Theorem 3.4, if the operator F satisfies the condition (a), then it suffices to

take Ω nonempty unbounded closed convex subset of E .

As a consequence we have the following fixed point result.

Corollary 3.12. Let Ω be a closed wedge of a Banach space E, x0 ∈ Ω, U a weakly open

subset of Ω and α ≥ 1. Suppose that F : Uw −→ Ω is weakly sequentially continuous µ-

nonexpansive operator, weakly semi-closed at θ and F(Uw) is bounded. In addition, assume

that F satisfies one of the following condition

‖F(x)− x0‖ ≤ ‖x− x0‖,

for every x ∈ ∂Ω,U. Then the operator F has a fixed point in Uw.

Proof. In fact, from Theorem 3.4 it suffices to set α = 1.

The next lemma holds easily.

Lemma 3.13. When y > 1 and β > 0, the following inequality holds:

(y−1)β+1 < yβ+1 −1.

Theorem 3.14. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

there exists β > 0 such that

‖F(x)− x‖β+1 ≥ ‖F(x)‖β+1 −‖x‖β+1 (3.3)

for every x ∈ ∂ΩU. Then the operator F has a fixed point in Uw.

We suppose that the operator F has no fixed point in ∂ΩU (otherwise we are finished). In

order to apply Corollary 3.6, we prove that

x 6= λF(x),λ ∈ (0,1), x ∈ ∂ΩU. (3.4)

Suppose that (3.4) is not true, that is, there exist λ0 ∈ (0,1) and x0 ∈Uw), such that λ0F(x0) = x0.

That is F(x0) =
1
λ0

x0. Inserting F(x0) =
1
λ0

x0 into (3.3), we obtain

‖
1
λ0

x0 − x0‖
β+1 ≥ ‖

1
λ0

x0‖
β+1 −‖x0‖

β+1.

This implies

(
1
λ0

−1)β+1‖x0‖
β+1 ≥ (

1

λ
β+1
0

−1)‖x0‖
β+1. (3.5)

Since x0 ∈ ∂ΩU , we see x0 6= θ . Therefore, ‖x0‖
β+1 6= 0 and by (3.5), we obtain

(
1
λ0

−1)β+1 ≥
1

λ
β+1
0

−1,
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and this contradicts Lemma 3.2, since
1
λ0

∈ (1,∞). Hence

x 6= λF(x),λ ∈ (0,1),x ∈ ∂ΩU.

Accordingly, by Corollary 3.6 F has a fixed point in Uw.

Remark 3.6. Theorem 3.5 is a generalization of the famous Altman fixed point theorem in

the case of weakly sequentially, µ-nonexpansive and weakly semi-closed operator at θ .

Corollary 3.15. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

there exists β > 0 and α ≥ 1 such that

‖F(x)−αx‖β+1 ≥ ‖F(x)‖β+1 −‖αx‖β+1 (3.6)

for every x ∈ ∂ΩU. Then the operator equation F(x) = αx has a solution in Uw.

Proof. Using (3.6), we obtain

1

αβ+1
‖F(x)−αx‖β+1 ≥

1

αβ+1
‖F(x)‖β+1 −

1

αβ+1
‖αx‖β+1 for x ∈ ∂ΩU.

So,

‖
1
α

F(x)− x‖β+1 ≥ ‖
1
α

F(x)‖β+1 −‖x‖β+1.

Consequently, the operator
1
α

F , which is weakly sequentially continuous µ-nonexpansive, weakly

semi-closed at θ , satisfies the conditions of Theorem 3.5. It follows from Theorem 3.5 that the

conclusion of Corollary 3.8 holds true.

Theorem 3.16. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

‖F(x)‖ ≤ ‖F(x)− x‖ (3.7)

for every x ∈ ∂ΩU. Then the operator F has a fixed point in Uw.

Proof. It suffices to prove that (3.7) implies (3.6).

Remark 3.7. Theorem 3.6 is a generalization and an analogous of the famous Petryshyn

fixed point theorem in the case of weakly sequentially, µ-nonexpansive and weakly semi-closed

operator at θ .

From Theorem 3.6 we can easily obtain the following

Corollary 3.17. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

there exists α ≥ 1 such that

‖F(x)‖ ≤ ‖F(x)−αx‖ (3.8)

for every x ∈ ∂ΩU. Then the operator equation F(x) = αx has a solution in Uw.
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Similarly, we can obtain the following results by using the above mentioned methods and

we omit their proofs.

Theorem 3.18. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

there exists β ∈]−∞,0(∪(0,1) such that

‖F(x)− x‖β ≤ ‖F(x)‖β −‖x‖β (3.9)

for every x ∈ ∂ΩU. Then the operator F has a fixed point in Uw.

Corollary 3.19. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

there exists β ∈ (−∞,0)∪ (0,1) and α ≥ 1 such that

‖F(x)−αx‖β ≤ ‖F(x)‖β −‖αx‖β (3.10)

for every x ∈ ∂ΩU. Then the operator equation F(x) = αx has a solution in Uw.

Theorem 3.20. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

there exists β > 1 such that

‖F(x)+ x‖β ≤ ‖F(x)‖β +‖x‖β (3.11)

for every x ∈ ∂ΩU. Then the operator F has a fixed point in Uw.

Corollary 3.21. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

there exists β > 1 and α ≥ 1 such that

‖F(x)+ αx‖β ≤ ‖F(x)‖β +‖αx‖β (3.12)

for every x ∈ ∂ΩU. Then the operator equation F(x) = αx has a solution in Uw.

Theorem 3.22. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

there exists β ∈ (−∞,0)∪ (0,1) such that

‖F(x)+ x‖β ≥ ‖F(x)‖β +‖x‖β (3.13)

for every x ∈ ∂ΩU. Then the operator F has a fixed point in Uw.

Corollary 3.23. Let E, Ω, U, F be the same as in Corollary 3.6. In addition, assume that

there exists β ∈ (−∞,0)∪ (0,1) and α ≥ 1 such that

‖F(x)+ αx‖β ≥ ‖F(x)‖β +‖αx‖β (3.14)

for every x ∈ ∂ΩU. Then the operator equation F(x) = αx has a solution in Uw.
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