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Abstract. In this paper, we consider an operator D, which maps a polynomial P(z)
in to Dy P(z):=np(z)+ («—z)P'(z), where a € € and obtain some L? inequalities for
lucanary polynomials having zeros in |z| <k <1. Our results yields several generaliza-
tions and refinements of many known results and also provide an alternative proof of
a result due to Dewan et al. [7], which is independent of Laguerre’s theorem.
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1 Introduction

Let P, be the class of polynomials

P(z)=) a,z"

v=0

of degree n. For P € P,, define

(LR
1Pl ={ 5 [ 1P}, o

|IP|lc :=max|P(z)|, m:=min|P(z)| and m:=min|P(z)|.
|z|=1 |z|=k |z|=1
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For fixed y, 1 <p <n, let P, ,, denote the class of polynomials

n
P(z)=a,z"+ Z Ap_pz"
v=p

of degree n having all zeros in |z| <k, k<1.
If P € P,, then according to the following well-known Bernstein’s inequality (for ref-
erence see [5]), we have

[[P"]leo < 1[I Plco- (1.1)

Equality holds in (1.1) if and only if P(z) has all its zeros at the origin.
For the class of polynomials P € P, having all zeros in |z| <1, Turdn [14] proved that

n
1P lloo = 5 1P lco- (1.2)

Inequality (1.2) was refined by Aziz and Dawood [1] and they proved under the same
hypothesis that

n
1P o2 5 { 1Pl }. (13)

Both the inequalities (1.2) and (1.3) are best possible and become equality for polynomials
P(z) =az"+ B, where |a| =|B|. As an extension of (1.2), it was shown by Malik [12], that
if P€ P, 1, then

n

P>
1Pl >

1Plle, 14)
where as the corresponding extension of (1.3) and a refinement of (1.4) was given by
Govil [9] who under the same hypothesis proved that
, n m
> — — 0. .
1P/l = 7 { 1Pl s | (15)

In the literature, there already exist some refinements and generalizations of all the above
inequalities, for example see Aziz and Shah [4], Dewan, Mir and Yadav [8], Govil, Rah-
man and Schemeisser [10], Dewan, Singh and Lal [6], etc.

Aziz and Shah [4] (see also Dewan, Mir and Yadav [8]) generalized inequality (1.5)
and proved that, if P € Py ;,, then

n
P'|eo>
1P oo

{IPllot 5 }- (L6)

For u =1, inequality (1.6) reduces to inequality (1.5).
For a complex number « and for P € P, let

DyP(z)=nP(z)+ (a—z)P'(z).
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Note that D,P(z) is a polynomial of degree at most n—1. This is the so-called polar
derivative of P(z) with respect to a (see [13]). It generalizes the ordinary derivative in the

following sense
lim {%(Z)} =P'(z).

Aziz and Rather [3] extended (1.4) to the polar derivative of a polynomial and proved
that if P € P, 1, then for every complex number a with |a| >k,

| —k
1+k

IDsPllo 2 (=7 ) [P 17)

Recently, Dewan et al. [7] generalized as well as refined inequality (1.7) by proving that
if P € P, ;,, then for every a € € with |a] >s,,,

| —s,,
14kH

IDuPll 2 () IPl 18)

where

_ nlay, K2 4 gy [ KT

= . 1.9
n|an|k?’—1+y]an_y] (1.9)

Su

In the same paper, Dewan et al. [7] extended (1.6) to the polar derivative and proved that
if P € P, ;,, then for a € € with |a| >k, we have

| — Ay mn [ |a|k' 4+ A,
> — —— .
PPz (S ) 1Pt S () (110

where

 (Iaa] = 88 )20+ il o
(1.11)

B .
n(laal = ) o 4 el

If we divide both sides of (1.11) by |«| and let |a| — co, we recover (1.6).

The main aim of this paper is to provide an L7 analogue of (1.10) and to present a
proof of it independent of Laguerre’s theorem. Firstly, we shall present the following
extension of inequality (1.8).

Theorem 1.1. If P& P, ,, then for every a € € with |a| >s,, and for every 7y >0, we have

(o)

where s, is as defined in (1.9).

P
<I1+k'z]., 112
5op | <1+l (.12
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« (eig)‘ <||DyP||oo, 0< 60 <271, the following result
easily follows from Theorem 1.1.

Corollary 1.1. If P€ P, ,, then for every a € C with lac| > s, and for every v >0, we have
(1|~ ) [1Plly < 11+K"2[] | DaPl o (113)

If we let v — o0 in (1.13) and note that ||1+k¥z||, — (1+k"), we get (1.8). Also, if
we divide both sides of (1.13) by |a| and then let |a| — oo, we get a result of Aziz and
Rather [3].

By Lemma 2.2, we have

1

n

An

<Kkt,

which further implies s, <k*. Therefore Theorem 1.1 holds for every a € € with |a| > k¥
as well. We immediately get the following useful consequence from Theorem 1.1.

Corollary 1.2. If P€ P, ;,, then for every a € C with |x| > k" and for every >0, we have

n(|¢x|—k”>

Next, we shall prove the following more general result which as a special case pro-
vides a proof of inequality (1.10) independent of Laguerre’s theorem.

4

P
5 ‘ <|I1+kz],. (1.14)
Y

Theorem 1.2. If P€ P, ,,, then for every a, B € C with |a|>k", | B| <1 and for each v >0, we have

p_mpz
(1= 40) | - | <l 115)
K
where A, is defined by formula (1.11).
Remark 1.2. Since
. n—1
‘D“P(ele) Dé,ane ‘< HD P_ﬂ(ﬁﬂ’l]{#‘ , 0§9<27-[/
we get from inequality (1.15) that
mpz apmnz" 1
n<|¢x|— ) P f ’ < |1+kz]|, DaP—ﬁT (1.16)
0% o0

If we let -y — o0 in (1.16) and note that ||1+k”z|\7 — (1+Kk"), we get

)|

apmnz1
kn

HDKP— (1.17)

o 1+k?’
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Let zo be on |z[ =1 such that |P(zo)| =max;|_1 |P(z)|, then from (1.17), we get

apmnz] la|— A mpzy
D,P 70‘ 3 ‘ Pz — TPZ0
H * (Z>}Z:zo k1= ( 1+kP‘ ) (=0) =
| - m|p|
>n(B 2 I - 2L g
Since the polynomial P(z)— m,ff " has all zeros in |z| <k, k<1, where | B| <1, therefore by
the Guass-Lucas theorem, the polynomial P'(z)— % also has all its zeros in |z| <k,
k<1 and hence
n—1
|P’(z)]2% for |z|>k. (1.19)
Because if (1.19) is not true, then there is a point z=zy with |zg| >k such that
mn|zo|" !
< 2l
If we take f= e 1) , so that || <1, then with this choice of B, we have
o mnpz!
P (Z()) — i = 0,
where |zo| >k, which contradicts the fact that all the zeros of P’(z) — m”ﬁ 2 lie in |z| <k,
k<1.
Also for |z| =

|DoP(2)|=[nP(z) + (x—2z)P'()]
>|a||P'(z)|—[nP(z) —zP'(2)]
=la||P'(z)| = |Q'(2)].

Combining this inequality with Lemma 2.3, we get for |z| =1 and |a| >k,

[DaP(2)] = (Joe| = k)| P'(z )Hkn o (1.20)
Inequality (1.20) in conjunction with (1.19) gives for |z| =1 and |a| > k¥,
almn
|DyP(z)| > | 1’«1 (1.21)

If in (1.18), we choose the argument of  such that

o) -5 =|fowr), |-

mn|B||af|zo|" "
k" ’
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which easily follows from (1.21), we obtain

mn| || |zo|" " ] = Ay | = Ay \ m[B]
_ > — : :
HD"‘P(Z)}FZO kn —”( T+kF )'P(‘ZO)’ ”( 1+kv > e (122
Since zg lies on [z| =1 and [P(z)| =max;_|P(z)], inequality (1.22) is equivalent to
] = Ay ] = A\ m|B| | mn|pl|a|
> _
HD”‘P(Z)}Z:ZO 2 1+ kA >f§i’f|P(z)| d 1+kF ) o e (1)

Now, if in (1.23) we make |f| —1, we get

(")

x| —A
max|D,XP(z)]>n(| | V)max]P(z)]—k T

z]=1 1+kt J z1=1 km

which is (1.10) and this proves the required claim.

2 Lemmas

We need the following lemmas to prove the theorems.

Lemma 2.1. If PE Py, then on |z| =1,

Q' (2)| <K![P'(2)], 2.1)

where here and throughout this paper Q(z) =z"P(1).

The above lemma is due to Aziz and Shah [4]. The following lemma is due to Aziz
and Rather [2].

Lemma 2.2. If P€ Py, then on |z| =1,

Q' (2)| <sp|P'(2)] (2.2)
and
Pl An—p
al o <KW, (2.3)

where s, is defined by the formula (1.9).
Lemma 2.3. If PE Py, then on |z| =1,
nm
Q' (2)| <K*[P(2)| =15

kn—m

(2.4)
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Lemma 2.4. If P € P, with all its zeros in |z| <kk >0, then |Q(z)| > f for |z| < 1 and in
particular

m

| > 25 (2.5)
Lemma 2.5. If P € Py, then
A, <KkH, (2.6)
where Ay, is defined by the formula (1.1).
Lemma 2.6. The function
Su(x)= nfjf;;f’ ny;“_{:l 2.7)
where k<1 and y >1, is a non-increasing function of x.
The above Lemmas 2.3-2.6 are due to Dewan et al. [7].
3 Proof of theorems
Proof of Theorem 1.1. If L
Q(z)=z"P %) ,
then —
P(z)=2"Q(3)
and it can be easily verified that for |z| =1,
Q' (2)| =[nP(z) —zP'(2)| 3.1
and
|P'(2)| = nQ(z) —zQ'(2)|. (32)

As P(z) has all its zeros in |z| <k, therefore, by using Lemma 2.1 and (3.2), we have for
lz[=1,

Q' (2)| <K'[nQ(z) —zQ'(2)]. (3.3)
Now for every complex number « with |a| > Sy, we have

IDoP(z)| = [nP(z) + (a—2)P'(2)| 2 [a||P'(2) | = [nP(z) —zP' (2)],
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which on using (3.1) and Lemma 2.2 gives for |z| =1,
IDuP(2)| = || [P'(2)| Q" (2)| = (] =5, [P (2)]. (34)

Again since P(z) has all its zeros in |z| <k, k<1, it follows by the Guass-Lucas theorem
that all the zeros of P’(z) also lie in |z| <k, k <1. This implies that the polynomial

Z"lp <i) =nQ(z) —zQ'(z)

Z

has all its zeros in |z| > % > 1. Therefore, it follows from (3.3) that the function

_ 2Q'(z)
Kt (nQ(z2) —2Q'(2))
is analytic for |z| <1 and |W(z)| <1 for |z| <1. Furthermore, W(0) =0 and so the func-

tion 1+k*W(z) is subordinate to the function 1+k*z for |z| <1. Hence by a well-known
property of sub-ordination [11], we have for each >0,

W(z)

Y

21 Y 21 .
/ 1R W ()| d@g/ [1+ke| ' do. (3.5)
0 0

Now

nQ(z)
nQ(z) —zQ'(z)’

which gives with the help of (3.2) that for |z| =1,

14+ W(z) =

n|Q(z)| =[1+K"W(2)|[P'(2)]. (36)
Since |P(z)|=|Q(z)| for |z| =1, therefore from (3.6), we get

n|P(z)|

| ,(Z)’:W for ’Z’:]. (37)

From (3.4) and (3.7), we deduce that for each v >0 and 0<6 <27,

27
n(Jal=s,)" |

The above inequality in conjunction with (3.5) gives

P(eig)

! 2 W (007
/ < 4 1 .
BP0 a0< [ [1+kW(e)|"do

Y

P(e) < |14k,

(=50 [ o
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Equivalently, we write

P
_ < M
n(!a! S}l>HDaPH,Y_H1+k ZH'}”

which proves Theorem 1.1 completely. U
Proof of Theorem 1.2. By hypothesis, the polynomial

n
P(z)=a,z"+ Z an—yz"%, 1<u<n,
o=
has all its zeros in |z| <k, k<1. If P(z) has a zero on |z| =k, then m =0 and the result
follows from Theorem 1.1 in this case. Henceforth, we suppose that all the zeros of P(z)
lie in |z| <k, k<1, so that m > 0.
Now m < |P(z)| for |z| =k, therefore, if B is any complex number with || <1, then

m,Bz

(<|p )| for |z|=

Since all the zeros of P(z) lie in |z| <k, it follows by Rouche’s theorem that all the zeros

of P(z)— mﬁz also lie in |z| <k, k<1. Hence we can apply Theorem 1.1 to P(z) — mﬁz and
obtain for ]lezkf‘zs and y >0,
p—mE
n(lol=5) | | <, 69
(1) D, (P—"f) Iy
where
n et pt|ap—p |k
Sy = . (3.9)
n\a, — 7k

Since for every  with |8| <1, we have

an— k” —| ”|_ﬂ—|aﬂ _k_” (3-10)

and |a,| > £ by Lemma 2.4. Now combining (3.9), (3.10) and Lemma 2.6, we have for
every f with |B| <1,

n(ran|—%)k2ﬂ+man_yrkﬂ

n(lan| = 5 )kt plan |
=Ay. (3.11)
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Further by Lemma 2.5, we have A, <k#, it follows from (3.8) and (3.11)) that for every a
with |a| >k* and ¥ >0,

p_ mpz"
n(|a|—A H—k <|[1+k"z|., (3.12)
< V) D“P_mnalglz 1 N v
which is inequality (1.15) and this completes the proof of Theorem 1.2. O
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