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Abstract. In this work, we will prove the existence of bounded solutions in W
1,p
0 (Ω)∩

L∞(Ω) for nonlinear elliptic equations − div(a(x,u,∇u))+g(x,u,∇u)+H(x,∇u)= f ,
where a, g and H are Carathéodory functions which satisfy some conditions, and the
right hand side f belongs to W−1,q(Ω).
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1 Introduction

Let Ω be a regular bounded domain of R
N, N>1 and let us consider the problem:

{

− div
(

a(x,u,∇u)
)

+g(x,u,∇u)+H(x,∇u)= f in D
′(Ω),

u∈W
1,p
0 (Ω)∩L∞(Ω),

(1.1)

where −div(a(x,u,∇u)) is a Leray-Lions operator acting from W
1,p
0 (Ω) into its dual

W−1,p′(Ω) with p>1 and 1
p +

1
p′ =1, g is a nonlinearity which satisfies the growth condi-

tion and also it satisfies a sign condition (i.e., it is an absorption of a lower order term)
and H is a reaction term on which suitable hypothesis are made. Moreover the source
term f belongs to W−1,q(Ω) where q> N

p−1 and q≥ p′ .

When H≡0, in [3] the authors were interested by the existence of the W1,2
0 (Ω)∩L∞(Ω)

solutions of −(aijuxj
)xi

+a0u=g(x,u,∇u) with |g|≤C0+b(|u|)|∇u|2 where aij is bounded
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measurable, a0 > 0 and b is a function on R
+, also they were interested by an existence

result for −△pu+g(x,u,∇u)+a0|u|p−1sign(u)= f −divF with |g|≤C0+C1|∇u|p where
a0,C0 and C1 are strictly positive, f and F are suitably integrable in [5]. For −(aijuxj

)xi
=

g(x,u,∇u)−div f with g is satisfying |g| ≤ b+|∇u|p for p= 2, when f and b is suitably

integrable, an existence result can be found in [10]. The W
1,p
0 (Ω)∩L∞(Ω) solution of

−△pu = g(x,u,∇u) where g is satisfying |g| ≤ b+|∇u|p and b is a suitably integrable

study in [6]. In [11] the existence of the W
1,p
0 (Ω)∩L∞(Ω) solution of −div(|∇u|p−1∇u)=

|∇u|p+g−div f with g and f are suitably integrable. Let us point out that more works
in this direction can be found in [4, 18]. Recently in [21] when H ≡ 0, the authors have
proved the existence of bounded solutions of unilateral problems associated with the
Dirichlet problems (1.1) in the setting of Orlicz Sobolev space without any restriction on
the N-function of the Orlicz spaces, where the function g(x,u,∇u) is not satisfying the
sign condition.

In the case H is not necessarily the null function, the existence result for the problem

(1.1) where u∈W
1,p
0 (Ω) was firstly proved in [8] in the case where the functions g does

not depend on the gradient and it was secondly proved in [14] using the rearrangement
techniques. The existence result of equations with this type with a measure data have
been given in [1] and has also been studied in [20] in the case of unilateral problems with
L1-data.

The scope of the present work is to obtain the uniform L∞−estimates for the solutions
of strongly nonlinear elliptic equations (1.1), we based on rearrangement properties [13].
This method has been successfully applied to nonlinear elliptic problems with p-growth
in the gradient by Ferone et al. [11]. Such an estimate allows us to prove the existence of
a solution of (1.1) see [14]. The smallness conditions on the measure of Ω and some norm
of b1, b, and f are essential in the L∞−estimates.

Let us briefly summarize the contents of this article. Section 2, contains some pre-
liminary results concerned with the rearrangement propriety. In Section 3, we give the
assumption on the data and we show the existence of our result (Theorem 3.1).

2 Preliminary results

We recall here some standard notations and properties which will be used through the
paper. Let Ω⊂R

N be a bounded domain, and let ω : Ω→R be a measurable function.
If one denotes by |E| the lebesgue measure of a set E, one can define the distribution
function µω(t) of ω as:

µω(t)= |{x∈Ω : ω> t}|, t≥0.

The decreasing rearrangement ω∗ of ω is defined as the generalized inverse function of
µω:

ω∗(s)= inf{t≥0 : µω(t)≤ s}, s∈ [0,|Ω|].
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We recall that ω and ω∗ are equimeasurable, i.e.,

µω(t)=µω∗(t), t∈R
+.

This implies that for any Borel function ψ it holds that

∫

Ω
ψ(ω(x))dx=

∫ |Ω|

0
ψ(ω∗(s))ds,

and, in particular,

||ω∗||Lp(0,|Ω|)= ||ω||Lp(Ω), 1≤ p<∞. (2.1)

The theory of rearrangements is well known and exhaustive treatments of it can be found
for example in [9, 13, 15]. Now we recall two notions which allow us to define a ”gener-
alized” concept of rearrangement of a function f with respect to a given function ω.

Definition 2.1 (see [2]). Let f ∈ L1(Ω) and ω ∈ L1(Ω). We will say that a function
f ω ∈ L1(0,|Ω|) is a pseudo-rearrangement of f with respect to ω if there exists a fam-
ily {D(s)}s∈(0,|Ω|) of subsets of Ω satisfying the properties:

(i) |D(s)|= s,

(ii) s1< s2⇒D(s1)⊂D(s2),

(iii) D(s)={x∈Ω : ω(x)> t} if s=µω(t),

such that

f ω(s)=
d

ds

∫

D(s)
f (x) in D

′(Ω).

Definition 2.2 (see [16]). Let f ∈L1(Ω) and ω∈L1(Ω). The following limit exists:

lim
λց0

(ω+λ f )∗−ω∗

λ
= f ∗ω,

where the convergence is in Lp(Ω)-weak, if f ∈ Lp(Ω),1≤ p<∞, and in L∞(Ω)−weak∗,
if f ∈ L∞(Ω). The function f ∗ω is called the relative rearrangement of f with respect to ω.
Moreover, one has

f ∗ω(s)=
dG

ds
in D

′(Ω),

where

G(s)=
∫

{ω>ω∗(s)}
f (x)dx+

∫ s−|{ω>ω∗(s)}|

0
( f |{ω=ω∗(s)})(σ)dσ.
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The two notions are equivalent in some precise sense (see [9]). For this reason we will
denote f ω and f ∗ω by Fω. We only recall a few results which hold for both the pseudo-
and the relative rearrangements.

If f and ω are non-negative and ω ∈ W1,1
0 (Ω) it is possible to prove the following

properties:

−
d

dt

∫

{ω>t}
f (x)dx=Fω(µω(t))(−µ′

ω(t)) for a.e. t>0, (2.2a)

||Fω ||Lp(0,|Ω|)≤|| f ||Lp (Ω), 1≤ p<∞. (2.2b)

The proofs of (2.2a) and (2.2b) can be found in [2] (for pseudo-rearrangements) and in [17,
19] (for relative rearrangements). We finally recall the following chain of inequalities

which holds for any non-negative ω∈W
1,p
0 (Ω):

NC1/N
N µω(t)

1−1/N ≤−
d

dt

∫

{ω>t}
|∇ω|dx

≤(−µ′
ω(t))

1/p′
(

−
d

dt

∫

{ω>t}
|∇ω|pdx

)1/p

, (2.3)

where CN denotes the measure of the unit ball in R
N. It is a consequence of the Fleming-

Rishel formula [12], the isoperimetric inequality [7] and the Hölder’s inequality.

3 Main results

Let us now give the precise hypotheses on the problem (1.1), we assume that the follow-
ing assumptions: Ω is a bounded open set of R

N (N>1 ), 1< p<+∞, let a :Ω×R×R
N→

R
N be a Carathéodory function, such that

[a(x,s,ξ)−a(x,s,η)](ξ−η)>0 for all (ξ,η)∈R
N×R

N , with ξ 6=η, (3.1a)

a(x,s,ξ)ξ≥α|ξ|p , (3.1b)

where α is a strictly positive constant

|a(x,s,ξ)|≤β(d(x)+|s|p−1+|ξ|p−1), (3.2)

for a.e. x∈Ω, all (s,ξ)∈R×R
N , a positive function d(x)∈Lp′(Ω), 1< p≤N, and β>0.

Furthermore, let g(x,s,ξ) : Ω×R×R
N → R and H(x,ξ) : Ω×R

N → R are two
Carathéodory functions which satisfy, for almost every x∈Ω and for all s∈R, ξ∈R

N , the
following conditions:

g(x,s,ξ)s≥0, (3.3a)

|g(x,s,ξ)|≤b1(x)+b2(x)|ξ|p, (3.3b)
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where b1(x)∈ Lm(Ω), m>
N
p , and b1(x)≥0 a.e. |b2(x)|≤λ a.e. in Ω, where λ is a strictly

positive constant.

|H(x,ξ)|≤b(x)|ξ|p−1 , (3.4)

where b(x) is positive and belongs to Lr(Ω) with r>N.
Finally, for the right hand side, we assume that

f ∈W−1,q(Ω), q≥ p′ and q>
N

p−1
. (3.5)

We recall that if f ∈W−1,p′(Ω) there exist f0, f1,··· , fN ∈Lp′(Ω) such that :

〈 f ,v〉=
∫

Ω
f0v+∑

i

∫

Ω
fi

∂v

∂xi
, ∀v∈W

1,p
0 (Ω)∩L∞(Ω),

since Ω is bounded, we can assume that f0=0 and we set f =( f1, f2,··· , fN), | f |=(∑ f 2
i )

1
2 .

Now, we give the following results which will be used in our main result.

Lemma 3.1. When f satisfies (3.5) and when assumptions (3.1a)-(3.4) are satisfied, there exists
a weak solution u of (1.1) in the following sense:

∫

Ω
a(x,u,∇u)∇vdx+

∫

Ω

(

g(x,u,∇u)+H(x,∇u)
)

vdx= 〈 f ,v〉,

for all v∈W
1,p
0 (Ω)∩L∞(Ω).

The proof of this Lemma see [14].

Remark 3.1. The duality product between f and v make sense since q≥ p′ so W−1,q(Ω)⊂
W−1,p′(Ω). Note also that (3.1a), (3.3a) are not required to obtain our results. However,
these hypotheses are needed for the existence result (see [14]).

Our main results are collected in the following theorem:

Theorem 3.1. Let u be a solution of (1.1) under the assumptions (3.1b)-(3.2) and (3.3b)-(3.5).
If b1, b and f satisfy the inequality

1

(NC1/N
N )p′

Nσ(p−1)

pσ−N

( p′

α
|Ω|

p
N − 1

m ||b1||m+
p′

p
|Ω|

p
N −

p
r ||b||

p
r +
( λp′

αp′+1

+
1

α2p′

)

|Ω|
p
N − p′

q || f ||
q
q

)p′/p
+

p′

αp′/pNC1/N
N

(

N(q(p−1)−1)

q(p−1)+N

)1− p′

qp

|Ω|
1
N − p′

qp || f ||
p′/p
q

≤
αp′(p−1)

λp′αp′−1+1
, (3.6)

where σ=min(m, r
p ,

q
p′ ), then there exists a constant M>0, which depends only on N, p, p′, q,

r, |Ω|, || f ||Lq(Ω), ||b||Lr(Ω) and ||b1||Lm(Ω), such that

||u||L∞(Ω)≤M. (3.7)
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Proof. The proof of Theorem 3.1 is done in two steps. In this step, we prove the decreasing

rearrangement of ω= ek|u|−1
k satisfies the following differential inequality:

(−ω∗(s))′≤
[(−ω∗(s))′]1/p

NC1/N
N s1−1/N

(

∫ s

0
ψ∗(τ)(kω∗(τ)+1)p−1dτ

)1/p

+
kω∗(s)+1

αp′/pNC1/N
N s1−1/N

(

Fω(s)
)1/p

, (3.8)

where ψ∗ is the decreasing rearrangement of

ψ=
p′

α
b1(x)+

p′

p
|b|p+

(

λp′

αp′+1
+

1

α2p′

)

| f |p
′

and Fω is a pseudo-rearrangement (or the relative rearrangement) of | f |p
′

with respect to
ω.

Let us define two real functions φ1(z), φ2(z), z∈R, as follows:







φ1(z)= ek(p−1)|z| sign(z),

φ2(z)=
(ekz−1)

k
,

(3.9)

where

k=
λp′

α(p−1)
+

1

αp′(p−1)
,

we observe that φ2(0)=0 and for z 6=0, φ′
1(z)>0, φ′

2(z)>0,

φ1(z)φ
′
2(|z|) sign(z)= |φ′

2(|z|)|
p, (3.10a)

φ′
1(z)−

(

λp′

α
+

1

αp′

)

|φ1(z)|=0. (3.10b)

Furthermore, for t>0, h>0, let us put

St,h(z)=











sign(z), if |z|> t+h,

((|z|−t)/h) sign(z), if t< |z|≤ t+h,

0, if |z|≤ t.

(3.11)

We use in (1.1) the test function v∈W
1,p
0 (Ω)∩L∞(Ω) defined by

v=φ1(u)St,h(ω)=φ1(u)St,h(φ2(|u|)), (3.12)
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where ω= ek|u|−1
k . Using (3.11) we have

1

h

∫

{t<ω≤t+h}
a(x,u,∇u)∇uφ1(u)φ

′
2(|u|)sign (u)dx

+
∫

{ω>t}

(

(g(x,u,∇u)+H(x,∇u))φ1(u)+a(x,u,∇u)∇uφ′
1(u)

)

St,h(ω)dx

=
∫

{ω>t}

N

∑
i=1

fi
∂u

∂xi
φ′

1(u)St,h(ω)dx+
1

h

∫

{t<ω≤t+h}

N

∑
i=1

fi
∂u

∂xi
φ1(u)φ

′
2(|u|)sign (u)dx. (3.13)

Taking into account (3.10a) and Young’s inequality, it follows that

1

h

∫

{t<ω≤t+h}
a(x,u,∇u)∇uφ1(u)φ

′
2(|u|)sign(u)dx

+
∫

{ω>t}

(

(g(x,u,∇u)+H(x,∇u))φ1(u)+a(x,u,∇u)∇uφ′
1(u)

)

St,h(ω)dx

≤
α−p′/p

p′

∫

{ω>t}
| f |p

′
φ′

1(u)St,h(ω)dx+
α

p

∫

{ω>t}
|∇u|pφ′

1(u)St,h(ω)dx

+
α−p′/p

p′h

∫

{t<ω≤t+h}
| f |p

′
|φ′

2(|u|)|
pdx+

α

ph

∫

{t<ω≤t+h}
|∇u|p|φ′

2(|u|)|
pdx,

using (3.3b), (3.4) and the ellipticity condition (3.1b), we obtain

α

h

∫

{t<ω≤t+h}
|∇u|p|φ′

2(|u|)|
pdx

≤
∫

{ω>t}

((

b1(x)+b2(x)|∇u|p+b(x)|∇u|p−1
)

φ1(u)−α|∇u|pφ′
1(u)

)

St,h(ω)dx

+
α−p′/p

p′

∫

{ω>t}
| f |p

′
φ′

1(u)St,h(ω)dx+
α

p

∫

{ω>t}
|∇u|pφ′

1(u)St,h(ω)dx

+
α−p′/p

p′h

∫

{t<ω≤t+h}
| f |p

′
|φ′

2(|u|)|
pdx+

α

ph

∫

{t<ω≤t+h}
|∇u|p|φ′

2(|u|)|
pdx.

By (3.10b) and Young’s inequality, it follows that

1

h

∫

{t<ω≤t+h}
|∇u|p|φ′

2(|u|)|
pdx

≤
∫

{ω>t}

(

λp′

α
|φ1(u)|−φ′

1(u)+
1

αp′
|φ1(u)|

)

|∇u|pSt,h(ω)dx

+
∫

{ω>t}

(

p′

α
b1(x)+

p′

p
|b|p+

(

λp′

αp′+1
+

1

α2p′

)

| f |p
′

)

|φ1(u)|St,h(ω)dx

+
1

αp′h

∫

{t<ω≤t+h}
| f |p

′
|φ′

2(|u|)|
pdx.
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Using (3.10b) and the definition of φ1, φ2 in (3.9), the above inequality gives:

1

h

∫

{t<ω≤t+h}
|∇ω|pdx

≤
∫

{ω>t}
ψ(kω+1)p−1St,h(ω)dx+

1

αp′h

∫

{t<ω≤t+h}
| f |p

′
(kω+1)pdx, (3.14)

where

ψ=
p′

α
b1(x)+

p′

p
|b|p+

(

λp′

αp′+1
+

1

α2p′

)

| f |p
′
.

Letting h go to 0 in a standard way we get:

−
d

dt

∫

{ω>t}
|∇ω|pdx≤

∫

{ω>t}
ψ(kω+1)p−1dx+

(kt+1)p

αp′

(

−
d

dt

∫

{ω>t}
| f |p

′
dx

)

.

Using Hardy-Littlewood’s inequality and the inequality (2.2a). It follows that

−
d

dt

∫

{ω>t}
|∇ω|pdx

≤
∫ µω(t)

0
ψ∗(s)(kω∗(s)+1)p−1ds+

(kt+1)p

αp′
(−µ′

ω(t))Fω(µω(t)), (3.15)

where Fω is a pseudo-rearrangement (or the relative rearrangement) of | f |p
′

with respect
to ω. Combining (2.3) and (3.15), we obtain

NC1/N
N µω(t)

1−1/N

≤(−µ′
ω(t))

1/p′
(

∫ µω(t)

0
ψ∗(s)(kω∗(s)+1)p−1ds

)1/p
+

kt+1

αp′/p
(−µ′

ω(t))
(

Fω(µω(t))
)1/p

and then, using the definition of ω∗(s), we have:

(−ω∗(s))′

≤
[(−ω∗(s))′]1/p

NC1/N
N s1−1/N

(

∫ s

0
ψ∗(τ)(kω∗(τ)+1)p−1dτ

)1/p
+

kω∗(s)+1

αp′/pNC1/N
N s1−1/N

(

Fω(s)
)1/p

that is (3.8).
We prove the following inequality (3.7) under assumption (3.6). By Young’s inequality

and (3.8) implies:

(−ω∗(s))′

≤
1

p
(−ω∗(s))′+

1

p′(NC1/N
N s1−1/N)p′

×

(

∫ s

0
ψ∗(τ)

(

( λp′

α(p−1)
+

1

αp′(p−1)

)

ω∗(τ)+1

)p−1

dτ

)p′/p

+
1

αp′/pNC1/N
N s1−1/N

(

( λp′

α(p−1)
+

1

αp′(p−1)

)

ω∗(s)+1

)

(Fω(s))
1/p,
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we deduce that,

(−ω∗(s))′

≤
1

(NC1/N
N s1−1/N)p′

(

∫ s

0
ψ∗(τ)

(

( λp′

α(p−1)
+

1

αp′(p−1)

)

ω∗(τ)+1

)p−1

dτ

)p′/p

+
p′

αp′/pNC1/N
N s1−1/N

(

( λp′

α(p−1)
+

1

αp′(p−1)

)

ω∗(s)+1

)

(Fω(s))
1/p.

Integrating between 0 and |Ω| we have

∫ |Ω|

0
(−ω∗(s))′ds

≤
∫ |Ω|

0

1

(NC1/N
N s1−1/N)p′

×

(

∫ s

0
ψ∗(τ)

(

( λp′

α(p−1)
+

1

αp′(p−1)

)

ω∗(τ)+1

)p−1

dτ

)p′/p

ds

+
∫ |Ω|

0

p′

αp′/pNC1/N
N s1−1/N

(

( λp′

α(p−1)
+

1

αp′(p−1)

)

ω∗(s)+1

)

(Fω(s))
1/pds.

Since ω∗(|Ω|)=0, we obtain

ω∗(0)≤
∫ |Ω|

0

(

1

(NC1/N
N s1−1/N)p

∫ s

0
ψ∗(τ)dτ

)p′/p

ds×

(

( λp′

α(p−1)
+

1

αp′(p−1)

)

ω∗(0)+1

)(p−1)p′/p

+
∫ |Ω|

0

p′

αp′/p NC1/N
N s1−1/N

(Fω(s))
1/pds

(

( λp′

α(p−1)
+

1

αp′(p−1)

)

ω∗(0)+1

)

≤





∫ |Ω|

0

(

1

(NC1/N
N s1−1/N)p

∫ s

0
ψ∗(τ)dτ

)p′/p

ds+
∫ |Ω|

0

p′

αp′/p NC1/N
N s1−1/N

(Fω(s))
1/pds





×

(

( λp′

α(p−1)
+

1

αp′(p−1)

)

ω∗(0)+1

)

,

since ω∗ attains its maximum at 0, we can write

||ω||L∞(Ω)≤
( λp′

α(p−1)
+

1

αp′(p−1)

)

A||ω||L∞(Ω)+A, (3.16)

where

A=
∫ |Ω|

0





(

1

(NC1/N
N s1−1/N)p

∫ s

0
ψ∗(τ)dτ

)p′/p

+
p′

αp′/pNC1/N
N s1−1/N

(Fω(s))
1/p



ds.
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Lemma 3.2. Under assumption (3.6), we have

( λp′

α(p−1)
+

1

αp′(p−1)

)

A<1,

where A is bounded, more precisely

A≤
1

(NC1/N
N )p′

Nσ(p−1)

pσ−N

×

(

p′

α
|Ω|

p
N − 1

m ||b1||Lm(Ω)+
p′

p
|Ω|

p
N − p

r ||b||
p

Lr(Ω)
+
( λp′

αp′+1
+

1

α2p′

)

|Ω|
p
N − p′

q || f ||
q

Lq(Ω)

)p′/p

+
p′

αp′/pNC1/N
N

(

N(q(p−1)−1)

q(p−1)−N

)1−
p′

qp

|Ω|
1
N − p′

qp || f ||
p′

p

Lq(Ω)
.

This lemma will be proved below.

In view of Lemma 3.2 and (3.16), we have (3.7). This complete the proof of Theorem
3.1.

Proof of Lemma 3.2. By using the Hölder’s inequality and (2.1), we obtain

∫ s

0
ψ∗(τ)dτ≤||ψ||Lσ(Ω)s

1−1/σ

≤
( p′

α
|Ω|

1
σ−

1
m ||b1||Lm(Ω)+

p′

p
|Ω|

1
σ−

p
r ||b||

p

Lr(Ω)

+
( λp′

αp′+1
+

1

α2p′

)

|Ω|1/σ− p′

q || f ||
p′

Lp′ (Ω)

)

s1−1/σ

≤
( p′

α
|Ω|

1
σ−

1
m ||b1||Lm(Ω)+

p′

p
|Ω|

1
σ−

p
r ||b||

p

Lr(Ω)

+
( λp′

αp′+1
+

1

α2p′

)

|Ω|1/σ− p′

q || f ||
q

Lq(Ω)

)

s1−1/σ, (3.17)

where σ = min(m, r
p ,

q
p′ ). Furthermore taking into account the fact that q > p′ property

(2.2b) gives

∫ |Ω|

0

1

s1−1/N
(Fω(s))

1/pds

≤
(N(q(p−1)−1)

q(p−1)−N

)1− p′

qp
|Ω|

1
N − p′

qp ||Fω ||
1
p

Lq/p′(0,|Ω|)

≤
(N(q(p−1)−1)

q(p−1)−N

)1−
p′

qp
|Ω|

1
N −

p′

qp || f ||
p′

p

Lq(Ω)
. (3.18)
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Or we have

A=
∫ |Ω|

0

[( 1

(NC1/N
N s1−1/N)p

∫ s

0
ψ∗(τ)dτ

)p′/p
+

p′

αp′/pNC1/N
N s1−1/N

(Fω(s))
1/p
]

ds

=
∫ |Ω|

0

( 1

NC1/N
N

)p′ 1

s(1−1/N)p′

(

∫ s

0
ψ∗(τ)dτ

)p′/p
ds

+
p′

αp′/pNC1/N
N

∫ |Ω|

0

1

s1−1/N
(Fω(s))

1/pds

≤
1

(NC1/N
N )p′

∫ |Ω|

0

[ 1

s(1−1/N)p′
×
(( p′

α
|Ω|

1
σ−

1
m ||b1||Lm(Ω)+

p′

p
|Ω|

1
σ −

p
r ||b||

p

Lr(Ω)

+
( λp′

αp′+1
+

1

α2p′

)

|Ω|1/σ− p′

q || f ||
q

Lq(Ω)

)

s1−1/σ
)p′/p]

ds

+
p′

αp′/pNC1/N
N

(N(q(p−1)−1)

q(p−1)−N

)1− p′

qp
|Ω|

1
N − p′

qp || f ||
p′

p

Lq(Ω)
.

Using (3.17) and (3.18), we can estimate the quantity A in (3.16), obtaining that under
assumption (3.6) the following inequality holds:

( λp′

α(p−1)
+

1

αp′(p−1)

)

A<1.

Then, we have

A≤
1

(NC1/N
N )p′

Nσ(p−1)

pσ−N
|Ω|

pσ−N
Nσ(p−1)

×

(

p′

α
|Ω|

1
σ−

1
m ||b1||Lm(Ω)+

p′

p
|Ω|

1
σ−

p
r ||b||

p

Lr(Ω)

+
( λp′

αp′+1
+

1

α2p′

)

|Ω|1/σ−
p′

q || f ||
q

Lq(Ω)

)p′/p

+
p′

αp′/pNC1/N
N

(

N(q(p−1)−1)

q(p−1)−N

)1− p′

qp

|Ω|
1
N −

p′

qp || f ||
p′

p

Lq(Ω)

≤
1

(NC1/N
N )p′

Nσ(p−1)

pσ−N

(

p′

α
|Ω|

( pσ−N
Nσ(p−1)

p

p′
)+( 1

σ −
1
m )
||b1||Lm(Ω)

+
p′

p
|Ω|

(
pσ−N

Nσ(p−1)
p

p′
)+( 1

σ−
p
r )||b||

p

Lr(Ω)

+
( λp′

αp′+1
+

1

α2p′

)

|Ω|
( pσ−N

Nσ(p−1)
p

p′
)+(1/σ− p′

q )|| f ||
q

Lq(Ω)

)p′/p
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+
p′

αp′/pNC1/N
N

(

N(q(p−1)−1)

q(p−1)−N

)1− p′

qp

|Ω|
1
N − p′

qp || f ||
p′

p

Lq(Ω)

≤
1

(NC1/N
N )p′

Nσ(p−1)

pσ−N

×

(

p′

α
|Ω|

p
N − 1

m ||b1||Lm(Ω)+
p′

p
|Ω|

p
N − p

r ||b||
p

Lr(Ω)

+
( λp′

αp′+1
+

1

α2p′

)

|Ω|
p
N − p′

q || f ||
q

Lq(Ω)

)p′/p

+
p′

αp′/pNC1/N
N

(

N(q(p−1)−1)

q(p−1)−N

)1−
p′

qp

|Ω|
1
N − p′

qp || f ||
p′

p

Lq(Ω)
.

Thus, we complete the proof. �
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