Convergence of the q Analogue of Szász-Beta-Stancu Operators

Yang Xu and Xiaomin Hu^{*}
Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, China

Received 19 December 2014; Accepted (in revised version) 5 March 2015

Abstract

In the present paper, we propose the q analogue of Szász-Beta-Stancu operators. By estimate the moments, we establish direct results in terms of the modulus of smoothness. Investigate the rate of point-wise convergence and weighted approximation properties of the q operators. Voronovskaja type theorem is also obtained. Our results generalize and supplement some convergence results of the q-Szász-Beta operators, thus they improve the existing results.

Key Words: q-Szász-Beta operators, q-analogues, modulus of smoothness, stancu, weighted approximation.

AMS Subject Classifications: 41A25, 41A35, 41A36

1 Introduction

For $f \in C_{\gamma}[0, \infty)$, a new type of Szász-Beta operator studied by Gupta and Noor in [1] is defined as

$$
\begin{equation*}
S_{n}(f ; x)=\int_{0}^{\infty} W_{n}(x, t) f(t)=\sum_{v=1}^{\infty} s_{n, k}(x) \int_{0}^{\infty} f(t) b_{n, k}(t) d t+s_{n, 0}(x) f(0) \tag{1.1}
\end{equation*}
$$

where $W_{n}(x, t)=\sum_{k=1}^{\infty} s_{n, k}(x) b_{n, k}(t)+s_{n, 0}(x) \delta(t), \delta(t)$ being Dirac delta-function and

$$
s_{n, k}(x)=e^{-n x} \frac{(n x)^{k}}{k!}, \quad b_{n, k}(t)=\frac{1}{B(n+1, k)} \frac{t^{k-1}}{(1+t)^{n+k+1}}
$$

are respectively Szász and Beta basis functions. In [1] Gupta and Noor studied some approximation properties for the operators defined in (1.1) and obtained the rate of pointwise convergence, a Voronovskaja type asymptotic formula and an error estimate in simultaneous approximation.

[^0]In 1987, Lupaş introduced a q-analogue of the Bernstein operator and investigated its approximating and shape preserving properties. Ten years later, Phillips [2] proposed another generalization of the classical Bernstein polynomials based on q-integers. He obtained the rate of convergence and Voronovskaya-type asymptotic formula for these new Bernstein operators. An extension to q-calculus of Szász-Mirakyan operators was given by Aral [7] and established a Voronovskaja theorem related to q-derivatives for these operators.

In recent years, the application of q calculus is the most interesting areas of research in the approximation theory. Several authors have proposed the q analogues of different linear positive operators and studied their approximation behaviors. Gupta [5] introduced a q-analogue of usual Bernstein-Durrmeyer operators and established the rate of convergence of these operators. Gupta [6] proposed a generalization of the Baskakov operators based on q integers and estimated the rate of convergence in the weighted norm and some shape preserving properties.

Very recently in [9], Gupta introduced the q-analogue of Szász-Beta operators defined as

$$
\begin{equation*}
S_{n, q}(f(t) ; x)=\sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t) f(q t) d_{q} t+E_{q}\left(-[n]_{q} x\right) f(0), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{n, k}^{q}(x)=\frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} E_{q}\left(-[n]_{q} q^{k} x\right), \quad p_{n, k}^{q}(t)=\frac{1}{B_{q}(n+1, k)} \frac{t^{k-1}}{(1+t)_{q}^{n+k+1}} . \tag{1.3}
\end{equation*}
$$

While for $q=1$, these operators coincide with the Szász-Beta operators defined by (1.1).
First, we give some basic definitions and notations of q-calculus. All of the results can be found in $[10,11]$. Throughout the present paper, we consider q as a real number such that $0<q<1$. For $n \in \mathbb{N}$. The q integer and q factorial are respectively defined as

$$
[n]_{q}=\frac{1-q^{n}}{1-q}, \quad[n]_{q}!= \begin{cases}{[n]_{q}[n-1]_{q} \cdots[1]_{q},} & n \geq 1, \\ 1, & n=0 .\end{cases}
$$

The q-binomial coefficients are given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}, \quad 0 \leq k \leq n .
$$

The q-Jackson integrals and the q-improper integrals are defined as (see [12])

$$
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n}, \quad a>0
$$

and

$$
\begin{equation*}
\int_{0}^{\infty / A} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} f\left(\frac{q^{n}}{A}\right) \frac{q^{n}}{A}, \quad A>0, \tag{1.4}
\end{equation*}
$$

provided the sum converge absolutely.
For $t>0$, the q-Gamma integral (see [12]) is defined by

$$
\begin{equation*}
\Gamma_{q}(t)=\int_{0}^{\frac{1}{1-q}} x^{t-1} E_{q}(-q x) d_{q} x \tag{1.5}
\end{equation*}
$$

where

$$
E_{q}(x)=\sum_{n=0}^{\infty} q^{n(n-1) / 2} \frac{x^{n}}{[n] q!} .
$$

Also

$$
\Gamma_{q}(t+1)=[t]_{q} \Gamma_{q}(t), \quad \Gamma_{q}(1)=1 .
$$

We denote

$$
(1+x)_{q}^{n}= \begin{cases}(1+x)(1+q x) \cdots\left(1+q^{n-1}\right), & n=1,2, \cdots, \\ 1, & n=0 .\end{cases}
$$

The q-Beta integral is defined by

$$
\begin{equation*}
B_{q}(t, s)=K(A, t) \int_{0}^{\infty / A} \frac{x^{t-1}}{(1+x)_{q}^{n+k}} d_{q} x, \tag{1.6}
\end{equation*}
$$

where

$$
K(x, t)=\frac{1}{x+1} x^{t}\left(1+\frac{1}{x}\right)_{q}^{t}(1+x)_{q}^{1-t} .
$$

It was observed in that $K(x, t)$ is a q-constant i.e., $K(q x, t)=K(x, t)$. In particular for any positive integer n, one has

$$
\begin{equation*}
K(x, n)=q^{\frac{n(n-1)}{2}}, \quad K(x, 0)=1 \quad \text { and } \quad B_{q}(t, s)=\frac{\Gamma_{q}(t) \Gamma_{q}(s)}{\Gamma_{q}(t+s)} . \tag{1.7}
\end{equation*}
$$

For details on q-Beta function, we refer the readers to [19]. Inspired by the Stancu type generalization of q-Baskakov operators. For $0 \leq \alpha \leq \beta$ we introduce the q-Szász-BetaStancu operators defined as

$$
\begin{align*}
& S_{n, q}^{\alpha, \beta}(f(t) ; x) \\
= & \sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t) f\left(\frac{q[n]_{q} t+\alpha}{[n]_{q}+\beta}\right) d_{q} t+E_{q}\left(-[n]_{q} x\right) f\left(\frac{\alpha}{[n]_{q}+\beta}\right), \tag{1.8}
\end{align*}
$$

where $s_{n, k}^{q}(x)$ and $p_{n, k}^{q}(t)$ are given by (1.3). For $\alpha=\beta=0$, we get (1.2). In the present paper, we study the direct theorem, rate of approximation and Voronovskaja type asymptotic formula for the operators $S_{n, q}^{\alpha, \beta}$.

2 Moment estimates

Lemma 2.1 (see [9]). For $S_{n, q}\left(t^{m} ; x\right), m=0,1,2$, one has
(i) $S_{n, q}(1 ; x)=1$;
(ii) $S_{n, q}(t ; x)=x$;
(iii) $S_{n, q}\left(t^{2} ; x\right)=\frac{[n]_{q} x^{2}+[2]_{q} x}{q[n-1]_{q}}$ for $n>1$.

Lemma 2.2. The following equalities hold:
(i) $S_{n, q}^{\alpha, \beta}(1 ; x)=1$;
(ii) $S_{n, q}^{\alpha, \beta}(t ; x)=\frac{[n]_{q} x+\alpha}{[n]_{q}+\beta}$;
(iii) $S_{n, q}^{\alpha, \beta}\left(t^{2} ; x\right)=\frac{[n]_{q}^{3} x^{2}}{\left.q[n-1]_{q}(n]_{q}+\beta\right)^{2}}+\left(\frac{[2]_{q}[n]_{q}^{2}}{q[n-1]_{q}}+2 \alpha[n]_{q}\right) \frac{x}{\left([n]_{q}+\beta\right)^{2}}+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}$ for $n>1$.

Proof. Obviously the $S_{n, q}^{\alpha, \beta}$ are well defined on the function $1, t, t^{2}$. By Lemma 2.1, we estimate the moments as follows: First, for $f(t)=1$, we have

$$
S_{n, q}^{\alpha, \beta}(1 ; x)=\sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t) d_{q} t+E_{q}\left(-[n]_{q} x\right)=S_{n, q}(1 ; x)=1 .
$$

Next, we estimate the first order moment

$$
\begin{aligned}
S_{n, q}^{\alpha, \beta}(t ; x)= & \sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t) \frac{q[n]_{q} t+\alpha}{[n]_{q}+\beta} d_{q} t+E_{q}\left(-[n]_{q} x\right) \frac{\alpha}{[n]_{q}+\beta} \\
= & \frac{[n]_{q}}{[n]_{q}+\beta} \sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t) q t d_{q} t \\
& +\frac{\alpha}{[n]_{q}+\beta}\left(\sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t) d_{q} t+E_{q}\left(-[n]_{q} x\right)\right) \\
= & \frac{[n]_{q}}{[n]_{q}+\beta} S_{n, q}(t ; x)+\frac{\alpha}{[n]_{q}+\beta} S_{n, q}(1 ; x) \\
= & \frac{[n]_{q} x+\alpha}{[n]_{q}+\beta} .
\end{aligned}
$$

Finally, for $n>1$,

$$
\begin{aligned}
S_{n, q}^{\alpha, \beta}\left(t^{2} ; x\right) & =\sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t)\left(\frac{q[n]_{q} t+\alpha}{[n]_{q}+\beta}\right)^{2} d_{q} t+E_{q}\left(-[n]_{q} x\right)\left(\frac{\alpha}{[n]_{q}+\beta}\right)^{2} \\
& =\frac{[n]_{q}^{2}}{\left([n]_{q}+\beta\right)^{2}} \sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t) q^{2} t^{2} d_{q} t
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 \alpha[n]_{q}}{\left([n]_{q}+\beta\right)^{2}} \sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t) q t d_{q} t \\
& +\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}\left(\sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t) d_{q} t+E_{q}\left(-[n]_{q} x\right)\right) \\
= & \frac{[n]_{q}^{2}}{\left([n]_{q}+\beta\right)^{2}} S_{n, q}\left(t^{2} ; x\right)+\frac{2 \alpha[n]_{q}}{\left([n]_{q}+\beta\right)^{2}} S_{n, q}(t ; x)+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}} S_{n, q}(1 ; x) \\
= & \frac{[n]_{q}^{3} x^{2}}{q[n-1]_{q}\left([n]_{q}+\beta\right)^{2}}+\left(\frac{[2]_{q}[n]_{q}^{2}}{q[n-1]_{q}}+2 \alpha[n]_{q}\right) \frac{x}{\left([n]_{q}+\beta\right)^{2}}+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}} .
\end{aligned}
$$

Thus, we complete the proof.
Remark 2.1. Let $n>1$ and $x \in[0, \infty)$, then for every $q \in(0,1)$, we have

$$
\begin{aligned}
& S_{n, q}^{\alpha, \beta}((t-x) ; x)=\frac{\alpha-\beta x}{[n]_{q}+\beta^{\prime}}, \\
& \begin{aligned}
I_{n, \alpha, \beta}= & S_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right)= \\
& \frac{[n]_{q}^{3} x^{2}}{q[n-1]_{q}\left([n]_{q}+\beta\right)^{2}}+\left(\frac{[2]_{q}[n]_{q}^{2}}{q[n-1]_{q}}+2 \alpha[n]_{q}\right) \frac{x}{\left([n]_{q}+\beta\right)^{2}} \\
& +\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}-\frac{2 x\left([n]_{q} x+\alpha\right)}{[n]_{q}+\beta}+x^{2} \\
= & \left(\frac{[n]_{q}^{3}}{q[n-1]_{q}\left([n]_{q}+\beta\right)^{2}}+1-\frac{2[n]_{q}}{[n]_{q}+\beta}\right) x^{2}+\left[\left(\frac{[2]_{q}[n]_{q}^{2}}{q[n-1]_{q}}+2 \alpha[n]_{q}\right) \frac{1}{[n]_{q}+\beta}-2 \alpha\right] \frac{x}{[n]_{q}+\beta} \\
\quad & +\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}} .
\end{aligned}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
S_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right) \leq\left(\frac{[n]_{q}}{q[n-1]_{q}}-1\right) x^{2}+\frac{[2]_{q}}{q[n-1]_{q}} x+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}} . \tag{2.1}
\end{equation*}
$$

3 Direct theorem

By $C_{B}[0, \infty)$ we denote the class of all real valued continuous bounded functions f defined on $[0, \infty)$. The norm on this space is given by

$$
\|f\|=\sup _{x \in[0, \infty)}|f| .
$$

We denote the usual modulus of continuity of $f \in C_{B}[0, \infty)$ as

$$
\omega(f, \delta)=\sup _{0<h \leq \delta} \sup _{x \in[0, \infty)}|f(x+h)-f(x)|
$$

and the second order modulus of smoothness of f as

$$
\omega_{2}(f, \sqrt{\delta})=\sup _{0<h \leq \sqrt{\delta}} \sup _{x \in[0, \infty)}|f(x+2 h)-2 f(x+h)+f(x)| .
$$

The K-functional are defined as

$$
K_{2}(f, \delta)=\inf \left\{\|f-g\|+\delta\left\|g^{\prime \prime}\right\|\right\},
$$

where $\delta>0$ and $W^{2}=\left\{g \in C_{B}[0, \infty): g^{\prime}, g^{\prime \prime} \in C_{B}[0, \infty)\right\}$. By [14, pp. 177, Theorem 2.4], there exist an absolute constant $C>0$ such that

$$
K_{2}(f, \delta) \leq C \omega_{2}(f, \sqrt{\delta}) .
$$

Theorem 3.1. Let $f \in C_{B}[0, \infty)$ and $q \in[0,1)$. Then for every $x \in[0, \infty)$ and $n>1$, there exists an absolute constant $C>0$ such that

$$
\left|S_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right| \leq C \omega_{2}\left(f, \frac{\delta_{n}(x)}{2}\right)+\omega\left(f, \frac{\alpha-\beta x}{[n]_{q}+\beta}\right)
$$

where

$$
\delta_{n}(x)=\left[I_{n, \alpha, \beta}+\left(\frac{\alpha-\beta x}{[n]_{q}+\beta}\right)^{2}\right]^{\frac{1}{2}} .
$$

Proof. For $x \in[0, \infty)$, we consider the auxiliary operators $\overline{S_{n, q}^{\alpha, \beta}}$, which is defined by

$$
\begin{equation*}
\overline{S_{n, q}^{\alpha, \beta}(f ; x)}=S_{n, q}^{\alpha, \beta}(f ; x)-f\left(\frac{[n]_{q} x+\alpha}{[n]_{q}+\beta}\right)+f(x) . \tag{3.1}
\end{equation*}
$$

We can learn from Lemma 2.2 that these operators $\overline{S_{n, q}}$ are linear and vanish the linear function:

$$
\begin{equation*}
\overline{S_{n, q}^{\alpha, \beta}}(t-x ; x)=0 . \tag{3.2}
\end{equation*}
$$

Let $g \in W^{2}$ and $x, t \in[0, \infty)$, by Taylor's expansion, we have

$$
g(t)=g(x)+g(x)^{\prime}(t-x)+\int_{x}^{t}(t-u) g(u)^{\prime \prime} d u .
$$

Applying (3.2), we get

$$
\overline{S_{n, q}^{\alpha, \beta}}(g ; x)=g(x)+\overline{S_{n, q}^{\alpha, \beta}}\left(\int_{x}^{t}(t-u) g(u)^{\prime \prime} d u ; x\right) .
$$

Hence, by (3.1), we have

$$
\begin{align*}
\left|\overline{S_{n, q}^{\alpha, \beta}}(g ; x)-g(x)\right| & \leq\left|S_{n, q}^{\alpha, \beta}\left(\int_{x}^{t}(t-u) g(u)^{\prime \prime} d u ; x\right)\right|+\left|\int_{x}^{\frac{\left[n \eta_{q} x+\alpha\right.}{\left[n q_{q}+\beta\right.}}\left(\frac{[n]_{q} x+\alpha}{[n]_{q}+\beta}-u\right) g(u)^{\prime \prime} d u\right| \\
& \leq S_{n, q}^{\alpha, \beta}\left(\left|\int_{x}^{t}(t-u) g(t)^{\prime \prime} d u\right| ; x\right)+\int_{x}^{\frac{\left[n \eta_{q} x+\alpha\right.}{n q_{q}+\beta}}\left|\frac{[n]_{q} x+\alpha}{[n]_{q}+\beta}-u\right|\left|g(u)^{\prime \prime}\right| d u \\
& \leq\left[S_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right)+\left(\frac{\alpha-\beta x}{[n]_{q} x+\beta}\right)^{2}\right]\left\|g^{\prime \prime}\right\| \\
& =\left(I_{n, \alpha, \beta}+\left(\frac{\alpha-\beta x}{[n]_{q} x+\beta}\right)^{2}\right)\left\|g^{\prime \prime}\right\| \\
& =\delta_{n}(x)^{2}\left\|g^{\prime \prime}\right\| . \tag{3.3}
\end{align*}
$$

On the other hand, from (1.8) we know

$$
\begin{align*}
& \left|S_{n, q}^{\alpha, \beta}(f(t) ; x)\right| \\
\leq & \sum_{k=1}^{\infty} q^{\frac{3 k^{2}-3 k}{2}} s_{n, k}^{q}(x) \int_{0}^{\infty / A} p_{n, k}^{q}(t)\left|f\left(\frac{q[n]_{q} t+\alpha}{[n]_{q}+\beta}\right)\right| d_{q} t+E_{q}\left(-[n]_{q} x\right)\left|f\left(\frac{\alpha}{[n]_{q}+\beta}\right)\right| \\
\leq & \|f\|, \tag{3.4}
\end{align*}
$$

then by (3.1), we have

$$
\begin{equation*}
\left|\overline{S_{n, q}^{\alpha, \beta}}(f ; x)\right| \leq\left|S_{n, q}^{\alpha, \beta}(f ; x)\right|+2\|f\| \leq 3\|f\| . \tag{3.5}
\end{equation*}
$$

Now using (3.1), (3.3) and (3.5), we have

$$
\begin{aligned}
&\left|S_{n, q}^{\alpha, \beta}(f(t) ; x)-f(x)\right| \leq \leq \overline{S_{n, q}^{\alpha, \beta}}(f-g ; x)-(f-g)(x)\left|+\left|\overline{S_{n, q}^{\alpha, \beta}}(g ; x)-g(x)\right|\right. \\
& \quad+\left|f\left(\frac{[n]_{q} x+\alpha}{[n]_{q}+\beta}\right)-f(x)\right| \\
& \leq 4\|f-g\|+\delta_{n}(x)^{2}\left\|g^{\prime \prime}\right\|+\left|f\left(\frac{[n]_{q} x+\alpha}{[n]_{q}+\beta}\right)-f(x)\right| .
\end{aligned}
$$

Thus, taking the infimum on the right hand over all $g \in W^{2}$, we get

$$
\left|S_{n, q}^{\alpha, \beta}(f(t) ; x)-f(x)\right| \leq C K_{2}\left(f, \frac{\delta_{n}(x)^{2}}{4}\right)+\omega\left(f, \frac{\alpha-\beta x}{[n]_{q}+\beta}\right) .
$$

In view of $K_{2}\left(f, \delta_{n}(x)\right) \leq C \omega_{2}(f, \sqrt{\delta})$, we get

$$
\left|S_{n, q}^{\alpha, \beta}(f(t) ; x)-f(x)\right| \leq C \omega_{2}\left(f, \frac{\delta_{n}(x)}{2}\right)+\omega\left(f, \frac{\alpha-\beta x}{[n]_{q}+\beta}\right) .
$$

This completes the proof of the theorem.

4 Rate of approximation

Let $H_{x^{2}}[0, \infty)$ be the set of all functions f defined on $[0, \infty)$ satisfying the condition $|f(x)| \leq$ $M_{f}\left(1+x^{2}\right)$, where M_{f} is a constant depending only on f. By $C_{x^{2}}[0, \infty)$ we denote the subspace of all continuous functions belonging to $H_{x^{2}}[0, \infty)$. Let $C_{x^{2}}^{*}[0, \infty)$ be the subspace of all functions $f \in C_{x^{2}}[0, \infty)$, for which $\lim _{|x| \rightarrow \infty} \frac{f(x)}{1+x^{2}}$ is finite. The norm on $C_{x^{2}}^{*}[0, \infty)$ is defined by

$$
\|f\|_{x^{2}}=\sup _{x \in[0, \infty)} \frac{f(x)}{1+x^{2}}
$$

The modulus of continuity of f on the closed interval $[0, a], a>0$ is

$$
\omega_{a}(f, \delta)=\sup _{|t-x| \leq \delta} \sup _{x, t \in[0, a)}|f(x+h)-f(x)| .
$$

We can see that for a function $f \in C_{x^{2}}[0, \infty)$, the modulus of continuity $\omega_{a}(f, \delta)$ tends to zero.

Theorem 4.1. Let $q=q_{n}$ satisfies $0<q_{n}<1$ and let $q_{n} \rightarrow 1$ as $n \rightarrow \infty$. For each $f \in C_{x^{2}}^{*}[0, \infty)$, we have

$$
\lim _{n \rightarrow \infty}\left\|S_{n, q_{n}}^{\alpha, \beta}(f)-f(x)\right\|_{x^{2}}=0
$$

Proof. Using the Korovkin's theorem in [15], it is sufficient to verify the following three conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S_{n, q_{n}}^{\alpha, \beta}\left(t^{v} ; x\right)-x^{v}\right\|_{x^{2}}=0 \quad \text { for } \quad v=0,1,2 \tag{4.1}
\end{equation*}
$$

since $S_{n, q_{n}}^{\alpha, \beta}(1, x)=1,(4.1)$ holds for $v=0$. By Lemma 2.2, we have for $n>1$

$$
\begin{align*}
\left\|S_{n, q_{n}}^{\alpha, \beta}(t ; x)-x\right\|_{x^{2}} & =\sup _{x \in[0, \infty)}\left(\frac{[n]_{q_{n}} x+\alpha}{[n]_{q_{n}}+\beta}-x\right) \frac{1}{1+x^{2}} \\
& =\frac{\alpha}{[n]_{q_{n}}+\beta} \sup _{x \in[0, \infty)} \frac{1}{1+x^{2}}-\frac{\beta}{[n]_{q_{n}}+\beta} \sup _{x \in[0, \infty)} \frac{x}{1+x^{2}} \\
& \leq \frac{\alpha}{[n]_{q_{n}}+\beta} . \tag{4.2}
\end{align*}
$$

Thus

$$
\lim _{n \rightarrow \infty}\left\|S_{n, q_{n}}^{\alpha, \beta}(t ; x)-x\right\|_{x^{2}}=0
$$

Similarly, we have

$$
\begin{aligned}
& \left\|S_{n, q_{n}}^{\alpha, \beta}\left(t^{2} ; x\right)-x^{2}\right\|_{x^{2}} \\
= & \sup _{x \in[0, \infty)}\left[\left(\frac{[n]_{q_{n}}^{3}}{\left.q_{n}[n-1]_{q_{n}}(n n]_{q_{n}}+\beta\right)^{2}}-1\right) x^{2}+\left(\frac{[2]_{q_{n}}[n]_{q_{n}}^{2}}{q_{n}[n-1]_{q_{n}}}+2 \alpha[n]_{q_{n}}\right) \frac{x}{\left([n]_{q_{n}}+\beta\right)^{2}}\right. \\
& \left.+\frac{\alpha^{2}}{\left([n]_{q_{n}}+\beta\right)^{2}}\right] \frac{1}{1+x^{2}} \\
\leq & \left(\frac{[n]_{q_{n}}^{3}}{q_{n}[n-1]_{q_{n}}\left([n]_{q_{n}}+\beta\right)^{2}}-1\right) \sup _{x \in[0, \infty)} \frac{x^{2}}{1+x^{2}} \\
& +\left(\frac{[2]_{q_{n}}[n]_{q_{n}}^{2}}{q_{n}[n-1]_{q_{n}}}+2 \alpha[n]_{q_{n}}\right) \frac{1}{\left([n]_{q_{n}}+\beta\right)^{2}} \sup _{x \in[0, \infty)} \frac{x}{1+x^{2}}+\frac{\alpha^{2}}{\left([n]_{q_{n}}+\beta\right)^{2}} \sup _{x \in[0, \infty)} \frac{1}{1+x^{2}},
\end{aligned}
$$

which implies that

$$
\lim _{n \rightarrow \infty}\left\|S_{n, q_{n}}^{\alpha, \beta}\left(t^{2} ; x\right)-x^{2}\right\|_{x^{2}}=0
$$

This completes the proof of the Theorem 4.1.
Theorem 4.2. Let $f \in C_{x^{2}}[0, \infty), q \in(0,1)$ and $\omega_{a+1}(f, \delta)$ be its modulus of continuity on the finite interval $[0, a+1] \subset[0, \infty)$, where $a>0$, then for every $n>1$, we have

$$
\begin{aligned}
&\left\|S_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{c[0, q]} \\
& \leq 6 M_{f}\left(1+a^{2}\right)\left[\left(\frac{[n]_{q}}{q[n-1]_{q}}-1\right) x^{2}+\frac{[2]_{q}}{q[n-1]_{q}} x+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}\right] \\
& \quad+2 \omega_{a+1}\left(f,\left[\left(\frac{[n]_{q}}{q[n-1]_{q}}-1\right) x^{2}+\frac{[2]_{q}}{q[n-1]_{q}} x+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}\right]^{\frac{1}{2}}\right) .
\end{aligned}
$$

Proof. For $x \in[0, a]$, when $t \leq a+1$, we have

$$
\begin{equation*}
|f(t)-f(x)| \leq \omega_{a+1}(f,|t-x|) \leq\left(1+\frac{|t-x|}{\delta}\right) \omega_{a+1}(f, \delta) \tag{4.3}
\end{equation*}
$$

with $\delta>0$. When $t>a+1$, since $t-x>1$, we have

$$
\begin{equation*}
|f(t)-f(x)| \leq M_{f}\left(2+x^{2}+t^{2}\right) \leq 6 M_{f}\left(1+a^{2}\right)(t-x)^{2} . \tag{4.4}
\end{equation*}
$$

From (4.3) and (4.4), for $x \in[0, a]$ and $t>0$, we have

$$
|f(t)-f(x)| \leq 6 M_{f}\left(1+a^{2}\right)(t-x)^{2}+\left(1+\frac{|t-x|}{\delta}\right) \omega_{a+1}(f, \delta)
$$

Hence, by Lemma 2.2 and Schwartz's inequality, we have for every $q \in(0,1), x \in[0, a]$

$$
\begin{aligned}
& \left|S_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right| \\
\leq & S_{n, q}^{\alpha, \beta}(|f(t)-f(x)| ; x) \\
\leq & 6 M_{f}\left(1+a^{2}\right) S_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right)+\omega_{a+1}(f, \delta)\left(1+\frac{1}{\delta}\left(S_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right)\right)^{\frac{1}{2}}\right) \\
\leq & 6 M_{f}\left(1+a^{2}\right)\left[\left(\frac{[n]_{q}}{q[n-1]_{q}}-1\right) x^{2}+\frac{[2]_{q}}{q[n-1]_{q}} x+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}\right] \\
& +\omega_{a+1}(f, \delta)\left(1+\frac{1}{\delta}\left[\left(\frac{[n]_{q}}{q[n-1]_{q}}-1\right) x^{2}+\frac{[2]_{q}}{q[n-1]_{q}} x+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}\right]^{\frac{1}{2}}\right) .
\end{aligned}
$$

By taking

$$
\delta=\left[\left(\frac{[n]_{q}}{q[n-1]_{q}}-1\right) x^{2}+\frac{[2]_{q}}{q[n-1]_{q}} x+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}\right]^{\frac{1}{2}},
$$

we have the desired result.

5 Pointwise estimates

We say a function $f \in C[0, \infty)$ is in Lip α on $D, D \subset[0, \infty), \alpha \in(0,1]$, if f satisfies the condition

$$
|f(t)-f(x)| \leq M_{f}|t-x|^{\alpha}, \quad t \in[0, \infty) \quad \text { and } \quad x \in D,
$$

where M_{f} is a constant depending only on α and f. Now, we give some pointwise estimates for the rate of convergence of the q analogues of Szász-Beta-Stancu operators.

Theorem 5.1. Let $f \in \operatorname{Lip} \alpha, \alpha \in(0,1], D \subset[0, \infty)$, then

$$
\left|S_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right| \leq M_{f}\left(\left[\left(\frac{[n]_{q}}{q[n-1]_{q}}-1\right) x^{2}+\frac{[2]_{q}}{q[n-1]_{q}} x+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}\right]^{\frac{\alpha}{2}}+2 d^{\alpha}(x, D)\right),
$$

where $d(x, D)$ represents the distance between x and D.
Proof. For $x_{0} \in \bar{D}$, the closure of the set D in $[0, \infty)$, we have

$$
|f(t)-f(x)| \leq\left|f(t)-f\left(x_{0}\right)\right|+\left|f\left(x_{0}\right)-f(x)\right|, \quad x \in[0, \infty),
$$

so we have

$$
\begin{align*}
\left|S_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right| & \leq S_{n, q}^{\alpha, \beta}\left(\left|f(t)-f\left(x_{0}\right)\right| ; x\right)+\left|f\left(x_{0}\right)-f(x)\right| \\
& \leq M_{f} S_{n, q}^{\alpha, \beta}\left(\left|t-x_{0}\right|^{\alpha} ; x\right)+M_{f}\left|x_{0}-x\right|^{\alpha} . \tag{5.1}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
S_{n, q}^{\alpha, \beta}\left(|t-x|^{\alpha} ; x\right) \leq\left(S_{n, q}^{\alpha, \beta}\left(|t-x|^{2} ; x\right)\right)^{\frac{\alpha}{2}}\left(S_{n, q}^{\alpha, \beta}(1 ; x)\right)^{1-\frac{\alpha}{2}} \tag{5.2}
\end{equation*}
$$

and

$$
S_{n, q}^{\alpha, \beta}\left(\left|t-x_{0}\right|^{\alpha} ; x\right) \leq\left(S_{n, q}^{\alpha, \beta}\left(|t-x|^{2} ; x\right)\right)^{\frac{\alpha}{2}}+\left|x_{0}-x\right|^{\alpha} .
$$

Using (5.1), (5.2) and the inequality (2.1), we have

$$
\begin{aligned}
\left|S_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right| & \leq M_{f}\left(S_{n, q}^{\alpha, \beta}\left(|t-x|^{2} ; x\right)\right)^{\frac{\alpha}{2}}+2 M_{f}\left|x_{0}-x\right|^{\alpha} \\
& \leq M_{f}\left[\left(\left(_{n, q}^{\alpha, \beta},|t-x|^{2} ; x\right)\right)^{\frac{\alpha}{2}}+2 d^{\alpha}(x, D)\right] \\
& \leq M_{f}\left(\left[\left(\frac{[n]_{q}}{q[n-1]_{q}}-1\right) x^{2}+\frac{[2]_{q}}{q[n-1]_{q}} x+\frac{\alpha^{2}}{\left([n]_{q}+\beta\right)^{2}}\right]^{\frac{\alpha}{2}}+2 d^{\alpha}(x, D)\right) .
\end{aligned}
$$

Thus the result holds.

6 Voronovskaja type theorem

Lemma 6.1. Let $q=q_{n}$ satisfies $0<q_{n}<1$ and let $q_{n} \rightarrow 1, q_{n}^{n} \rightarrow \lambda$ as $n \rightarrow \infty$. For each $x \in[0, \infty)$, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}[n]_{q_{n}} S_{n, q_{n}}^{\alpha, \beta}((t-x) ; x)=\alpha-\beta x, \\
& \lim _{n \rightarrow \infty}[n]_{q_{n}} S_{n, q_{n}}^{\alpha, \beta}\left((t-x)^{2} ; x\right)=2 x
\end{aligned}
$$

Using Lemma 2.2 and making necessary process we can easily get the proof of this Lemma so we omit it.

Theorem 6.1. Let $q_{n} \rightarrow 1, q_{n}^{n} \rightarrow \lambda$, as $n \rightarrow \infty, f \in C_{x^{2}}^{*}[0, \infty)$, and $f^{\prime}, f^{\prime \prime} \in C_{x^{2}}^{*}[0, \infty)$, then we have

$$
\lim _{n \rightarrow \infty}[n]_{q_{n}}\left(S_{n, q_{n}}^{\alpha, \beta}(f ; x)-f(x)\right)=(\alpha-\beta x) f^{\prime}(x)+x f^{\prime \prime}(x)
$$

Proof. Using Taylor's expansion, we get

$$
f(t)-f(x)=f^{\prime}(x)(t-x)+\frac{1}{2} f^{\prime \prime}(x)(t-x)^{2}+r(t, x)(t-x)^{2}
$$

where $r(t, x)$ is Peano form of the remainder, and $r(t, x) \rightarrow 0$ as $t \rightarrow x$. By applying the operator $S_{n, q_{n}}^{\alpha, \beta}(f ; x)$ to the above relation, we obtain

$$
\begin{aligned}
& S_{n, q_{n}}^{\alpha, \beta}(f ; x)-f(x) \\
= & f^{\prime}(x) S_{n, q_{n}}^{\alpha, \beta}((t-x) ; x)+\frac{1}{2} f^{\prime \prime}(x) S_{n, q_{n}}^{\alpha, \beta}\left((t-x)^{2} ; x\right)+S_{n, q_{n}}^{\alpha, \beta}\left(r(t, x)(t-x)^{2} ; x\right) .
\end{aligned}
$$

Applying Cauchy-Schwarz inequality, we have

$$
[n]_{q_{n}} n_{n, q_{n}}^{\alpha, \beta}\left(r(t, x)(t-x)^{2} ; x\right) \leq \sqrt{S_{n, q_{n}}^{\alpha, \beta}\left(r(t, x)^{2} ; x\right)} \sqrt{[n]_{q_{n}}^{2} S_{n, q_{n}}^{\alpha, \beta}\left((t-x)^{4} ; x\right)} .
$$

It's easy to observe that

$$
\lim _{n \rightarrow \infty} S_{n, q_{n}}^{\alpha, \beta}\left(r(t, x)^{2}, x\right)=0,
$$

and using Lemma 2.2 and making necessary process, we know $\lim _{n \rightarrow \infty}[n]_{q_{n}}^{2} S_{n, q_{n}}^{\alpha, \beta}((t-$ $\left.x)^{4}, x\right)$ is finite. So we get

$$
\lim _{n \rightarrow \infty}[n]_{q_{n}} S_{n, q_{n}}^{\alpha, \beta}\left(r(t, x)(t-x)^{2} ; x\right)=0 .
$$

Therefore, using Lemma 6.1, we yield

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}[n]_{q_{n}}\left(S_{n, q_{n}}^{\alpha, \beta}(f ; x)-f(x)\right) \\
= & f^{\prime}(x) \lim _{n \rightarrow \infty}[n]_{q_{n}} S_{n, q_{n}}^{\alpha, \beta}((t-x) ; x)+\frac{1}{2} f^{\prime \prime}(x) \lim _{n \rightarrow \infty}[n]_{q_{n}} S_{n, q_{n}}^{\alpha, \beta}\left((t-x)^{2} ; x\right) \\
& +\lim _{n \rightarrow \infty}[n]_{q_{n}} S_{n, q_{n}}^{\alpha, \beta}\left(r(t, x)(t-x)^{2} ; x\right) \\
= & (\alpha-\beta x) f^{\prime}(x)+x f^{\prime \prime}(x),
\end{aligned}
$$

which complete the proof.

Acknowledgments

The authors thank the referees for their careful review of the paper and their great help to improve the quality of this paper.

References

[1] V. Gupta and M. A. Noor, Convergence of derivatives for certain mixed Szăsz-Beta operators, J. Math. Anal. Appl., 321 (2006), 1-9.
[2] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), 511-518.
[3] T. Trif, Meyer-König and Zeller operators based on the q-integer, Rev. Anal. Numér. Approx., 29 (2000), 221-229.
[4] O. Doğru and O. Duman, Statistical approximation of Meyer-König and Zeller operators based on the q-integer, Publ. Math. Debrecen., 68 (2006), 199-214.
[5] V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 197 (2008), 172-178.
[6] A. Aral and V. Gupta, Generalized q-Baskakov operators, Math. Slovaca, 61 (2011), 619-634.
[7] A. Aral, A generalization of Szász-Mirakian operators based on the q-integer, Math. Comput. Model., 47 (2008), 1052-1062.
[8] N. I. Mahmudov, On q-Parametric Szász-Mirakjan Operators, Mediterr. J. Math., 7 (2010), 297-311.
[9] V. Gupta and A. Aral, Convergence of the q analogue of Săsz-Beta operators, Appl. Math. Comput., 216 (2010), 374-380.
[10] G. Gasper and M. Rahman, Basic Hypergeometrik Series, Encyclopedia of Mathematics and its Applications, Vol 35, Cambridge University Press, Cambridge, UK, 1990.
[11] V. G. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.
[12] T. H. Koornwinder, q-Special functions, a tutorial, in: M. Gerstenhaber, J. Stasheff (Eds.), Deformation Theory and Quantum Groups with Applications to Mathematical Physics, in: Contemp. Math., Vol. 134, Amer. Math. Soc., 1992.
[13] V. Gupta. A note on q-Baskakov-Szász operators, Lobachevskii J. Math., 31 (2010), 359-366.
[14] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
[15] A. D. Gadzhiev, Theorems of the type of P. P. Korovkin type theorems, Math. Zametki, 20(5) (1976), 781-786; Math Notes, 20(5-6) (1976), 996-998.
[16] D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13(8) (1968), 1173-1194.
[17] D. K. Verma and P. N. Agrawal, Approximation by Baskakov-Durrmeyer-Stancu Operators Based on q-Integers, Lobachevskii J. Math., 34 (2013), 187-196.
[18] P. Maheshwari and D. Sharma, Approximation by q-Baskakov-Beta-Stancu operators, Rrnd. Circ. Mat. Palermo, 61 (2012), 297-305.
[19] A. De Sole and V. G.Kac, On integral representations of $q-\gamma$ and $q-\beta$ functions, Rend. Mat. Accad. Lincei, 9(16) (2005), 11-29.
[20] Ïsmet Yüksel and ÜIkü Dinlemez, Voronovskaja type approximation theorem for q-Szászbeta operators, Appl. Math. Comput., 235 (2014), 555-559.

[^0]: ${ }^{*}$ Corresponding author. Email addresses: sunnyxu2013@163.com (Y. Xu), xmhu@hdu. edu.cn (X. M. Hu)

