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Abstract. Let P(z) be a polynomial of degree n which does not vanish in |z|<k, k≥1.
It is known that for each 0≤ s<n and 1≤R≤k,

M
(

P(s),R
)

≤
( 1

Rs+ks

)[{ d(s)

dx(s)
(1+xn)

}

x=1

](R+k

1+k

)n
M(P,1).

In this paper, we obtain certain extensions and refinements of this inequality by in-
volving binomial coefficients and some of the coefficients of the polynomial P(z).
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1 Introduction and statement of results

Let Pn be the class of polynomials

P(z)=
n

∑
ν=0

aνzν

of degree n, z being a complex variable and P(s)(z) be its sth derivative. For P∈ Pn, let
M(P,R)=max|z|=R |P(z)|. It is well known that

M(P′,1)≤nM(P,1), (1.1)

and

M(P,R)≤RnM(P,1), R≥1. (1.2)
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The inequality (1.1) is a famous result of S. Bernstein (for reference, see [9]) whereas the
inequality (1.2) is a simple consequence of Maximum Modulus Principle (see [8]). It was
shown by Ankeny and Rivlin [1] that if P∈ Pn and P(z) 6= 0 in |z|< 1, then (1.2) can be
replaced by

M(P,R)≤
(Rn+1

2

)

(P,1), R≥1. (1.3)

Recently, Jain [5] obtained a generalization of (1.3) by considering polynomials with no
zeros in |z|< k, k≥1 and simultaneously have taken into consideration the sth derivative
of the polynomial, (0≤ s<n), instead of the polynomial itself. More precisely, he proved
the following result.

Theorem 1.1. If P∈Pn and P(z) 6=0 in |z|< k, k≥1, then for 0≤ s<n,

M
(

P(s),R
)

≤
1

2

{ d(s)

dR(s)
(Rn+kn)

}( 2

1+k

)n
M(P,1) for R≥ k, (1.4)

and

M
(

P(s),R
)

≤
( 1

Rs+ks

)[{ d(s)

dx(s)
(1+xn)

}

x=1

](R+k

1+k

)n
M(P,1) for 1≤R≤ k. (1.5)

Equality holds in (1.4) (with k=1 and s=0) for P(z)= zn+1 and equality holds in (1.5) (with
s=1) for P(z)=(z+k)n .

In this paper, we obtain certain extensions and refinements of the inequality (1.5)
of the above theorem by involving binomial coefficients and some of the coefficients of
polynomial P(z). More precisely, we prove

Theorem 1.2. If P∈Pn and P(z) 6=0 in |z|< k, k>0, then for 0≤ s<n and 0< r≤R≤ k, we
have

M
(

P(s),R
)

≤
{ c(n,s)R+

∣

∣

as
a0

∣

∣ks+1

c(n,s)
(

ks+1+Rs+1
)

+
∣

∣

as
a0

∣

∣

(

ks+1Rs+Rk2s
)

}[{ d(s)

dx(s)
(1+xn)

}

x=1

]

×
{

exp
(

n
∫ R

r

t+ 1
n

∣

∣

a1
a0

∣

∣k2

t2+k2+ 2k2

n

∣

∣

a1
a0

∣

∣t
dt
)}

M(P,r). (1.6)

The result is best possible (with s=1) and equality in (1.6) holds for P(z)=(z+k)n .

Remark 1.1. Since if P(z) 6=0 in |z|< k, k>0, then by Lemma 2.5 (stated in Section 2), we
have for 0≤ s<n,

1

c(n,s)

∣

∣

as

a0

∣

∣ks ≤1, (1.7)
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which can also be taken as equivalent to

c(n,s)ts+1+
∣

∣

as
a0

∣

∣ks+1ts

c(n,s)
(

ks+1+ts+1
)

+
∣

∣

as
a0

∣

∣

(

ks+1ts+tk2s
) ≤

ts

ts+ks
for 0< t≤ k. (1.8)

Since R≤ k, if we take t=R in (1.8), we get

c(n,s)R+
∣

∣

as
a0

∣

∣ks+1

c(n,s)
(

ks+1+Rs+1
)

+
∣

∣

as
a0

∣

∣

(

ks+1Rs+Rk2s
) ≤

1

Rs+ks
. (1.9)

Also

exp
(

n
∫ R

r

t+ 1
n

∣

∣

a1
a0

∣

∣k2

t2+k2+ 2k2

n

∣

∣

a1
a0

∣

∣t
dt
)

=
(R2+k2+ 2k2

n

∣

∣

a1
a0

∣

∣R

r2+k2+ 2k2

n

∣

∣

a1
a0

∣

∣r

)
n
2
=
(R2+k2+2kR|γ|

r2+k2+2kr|γ|

)
n
2
,

where γ= ka1/na0, has absolute value ≤1, according to inequality (2.4) of Lemma 2.5.
Now as

R2+k2+2kR|γ|

r2+k2+2kr|γ|

is an increasing function of |γ| in [0,1], hence

(R2+k2+2kR|γ|

r2+k2+2kr|γ|

)
n
2
≤
(R+k

r+k

)n
. (1.10)

Combining (1.9) and (1.10), the following result immediately follows from Theorem 1.2.

Corollary 1.1. If P∈Pn and P(z) 6=0 in |z|<k, k>0, then for 0≤s<n and 0<r≤R≤k, we
have

M(P(s),R)≤
( 1

Rs+ks

)[{ d(s)

dx(s)
(1+xn)

}

x=1

](R+k

r+k

)n
M(P,r). (1.11)

The result is best possible (with s=1) and equality in (1.11) holds for P(z)=(z+k)n .

Remark 1.2. For r=1, Corollary 1.1 reduces to inequality (1.5).

Next we prove the following theorem which gives an improvement of Corollary 1.1
(for 1≤ s<n), which in turn as a special case provides an improvement and extension of
the inequality (1.5). In fact, we prove

Theorem 1.3. If P∈Pn and P(z) 6=0 in |z|< k, k>0, then for 1≤ s<n and 0< r≤R≤ k, we
have

M
(

P(s),R
)

≤
{ c(n,s)R+ |as|

|a0|−m
ks+1

c(n,s)
(

ks+1+Rs+1
)

+ |as|
|a0|−m

(

ks+1Rs+Rk2s
)

}[{ d(s)

dx(s)
(1+xn)

}

x=1

]

×
{

exp
(

n
∫ R

r

t+ 1
n

|a1|
|a0|−m

k2

t2+k2+ 2k2

n
|a1|

|a0|−m
t
dt
)}

(

M(P,r)−m
)

, (1.12)

where m=min|z|=k |P(z)|.
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The result is best possible (with s=1) and equality in (1.12) holds for P(z)=(z+k)n .

Remark 1.3. Since P(z) 6=0 in |z|<k, k>0, therefore, for every λ with |λ|<1, it follows by
Rouche’s theorem that the polynomial P(z)−λm, has no zeros in |z|< k, k>0 and hence
applying inequality (2.4) of Lemma 2.5 (stated in Section 2), we get

c(n,s)|a0−λm|≥ |as |k
s. (1.13)

If in (1.13), we choose the argument of λ suitably and note |a0|>m, from Lemma 2.3, we
get

c(n,s)(|a0|−|λ|m)≥|as |k
s . (1.14)

If we let |λ|→1 in (1.14), we get

1

c(n,s)

|as|

|a0|−m
ks ≤1,

which further implies by using the same arguments as in Remark 1.1, that

c(n,s)R+ |as|
|a0|−m

ks+1

c(n,s)
(

ks+1+Rs+1
)

+ |as|
|a0|−m

(

ks+1Rs+Rk2s
)

≤
1

Rs+ks
, (1.15)

and

exp
(

n
∫ R

r

t+ 1
n

|a1|
|a0|−m

k2

t2+k2+ 2k2

n
|a1|

|a0|−m
t
dt
)

≤
(R+k

r+k

)n
. (1.16)

Now, using (1.15) and (1.16) in (1.12), the following improvement of Corollary 1.1 (for
1≤ s<n) and hence of inequality (1.5) immediately follows from Theorem 1.3.

Corollary 1.2. If P∈Pn and P(z) 6=0 in |z|<k, k>0, then for 1≤s<n and 0<r≤R≤k, we
have

M(P(s),R)≤
( 1

Rs+ks

)[{ d(s)

dx(s)
(1+xn)

}

x=1

](R+k

r+k

)n(

M(P,r)−m
)

, (1.17)

where m=min|z|=k |P(z)|.

The result is best possible (with s=1) and equality in (1.17) holds for P(z)=(z+k)n .

Remark 1.4. The inequalities (1.11) and (1.17) were also recently proved by Mir (see [7]).
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2 Lemmas

For the proof of these theorems, we need the following lemmas.
The first lemma is due to Aziz and Rather [2].

Lemma 2.1. If P∈Pn and P(z) 6=0 in |z|< k, k≥1, then for 1≤ s<n, we have

M
(

P(s),1
)

≤n(n−1)···(n−s+1)
{ c(n,s)+

∣

∣

as
a0

∣

∣ks+1

c(n,s)
(

ks+1+1
)

+
∣

∣

as
a0

∣

∣

(

ks+1+k2s
)

}

M(P,1), (2.1)

where c(n, j) are the binomial coefficients defined by

c(n, j)=
n!

j!(n− j)!
, 0!=1.

From Lemma 2.1, we easily get

Lemma 2.2. If P∈Pn and P(z) 6=0 in |z|< k, k≥1, then for 0≤ s<n, we have

M
(

P(s),1
)

≤
{ c(n,s)+

∣

∣

as
a0

∣

∣ks+1

c(n,s)
(

ks+1+1
)

+
∣

∣

as
a0

∣

∣

(

ks+1+k2s
)

}[{ d(s)

dx(s)
(1+xn)

}

x=1

]

M(P,1). (2.2)

Lemma 2.3. If P∈Pn and P(z) 6=0 in |z|<k, k>0, then |P(z)|>m for |z|<k, and in particular

|a0|>m,

where m=min|z|=k |P(z)|.

The above lemma is due to Gardner, Govil and Musukula [4].

Lemma 2.4. If P∈Pn and P(z) 6=0 in |z|< k, k≥1, then for 1≤ s<n we have

M
(

P(s),1
)

≤
{ c(n,s)+ |as|

|a0|−m
ks+1

c(n,s)
(

ks+1+1
)

+ |as|
|a0|−m

(

ks+1+k2s
)

}[{ d(s)

dx(s)
(1+xn)

}

x=1

](

M(P,1)−m
)

, (2.3)

where m=min|z|=k |P(z)|.

The above lemma is due to Mir [7].

Lemma 2.5. If P∈Pn and P(z) 6=0 in |z|< k, k>0, then for 0≤ s<n, we have

1

c(n,s)

∣

∣

∣

as

a0

∣

∣

∣
ks ≤1. (2.4)
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Proof. Since

P(z)=
n

∑
ν=0

aνzν 6=0

in |z|< k, k>0. Let z1,z2,··· ,zn be the zeros of P(z), then |zν|≥ k; 1≤ν≤n, and we have

(−1)
an−1

an
=ω(n,1)=∑z1, (2.5a)

(−1)2 an−2

an
=ω(n,2)=∑z1z2,··· , (2.5b)

(−1)n−s as

an
=ω(n,n−s)=∑z1z2 ···zn−s,··· , (2.5c)

(−1)n a0

an
=ω(n,n)= z1z2 ···zn, (2.5d)

where ω(n,s) is the sum of all possible products of z1,z2,··· ,zn taken s at a time. From
(2.5c) and (2.5d), we get

∣

∣

∣

as

a0

∣

∣

∣
=
∣

∣

∣

as

an

∣

∣

∣

∣

∣

∣

an

a0

∣

∣

∣
=
∣

∣

∣

ω(n,n−s)

ω(n,n)

∣

∣

∣

=
∣

∣

∣

∑z1z2 ···zn−s

z1z2 ···zn

∣

∣

∣
=
∣

∣

∣∑
1

z1z2 ···zs

∣

∣

∣

≤∑
∣

∣

∣

1

z1

∣

∣

∣

∣

∣

∣

1

z2

∣

∣

∣
···

∣

∣

∣

1

zs

∣

∣

∣
≤ c(n,s)

1

ks
,

which completes the proof of Lemma 2.5.

Lemma 2.6. If

P(z)= a0+
n

∑
ν=µ

aνzν, 1≤µ≤n,

is a polynomial of degree n having no zeros in |z|< k, k>0, then for 0< r≤R≤ k, we have

M(P,R)≤
{

exp
(

n
∫ R

r

tµ+ µ
n

∣

∣

aµ

a0

∣

∣kµ+1tµ−1

tµ+1+kµ+1+ µ
n

∣

∣

aµ

a0

∣

∣(kµ+1tµ+k2µt)
dt
)}

M(P,r). (2.6)

The above result is due to Jain [6].

Lemma 2.7. If

P(z)= a0+
n

∑
ν=µ

aνzν, 1≤µ≤n,
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is a polynomial of degree n having no zeros in |z|< k, k>0, then for 0< r≤R≤ k, we have

M(P,R)≤
{

exp
(

n
∫ R

r

tµ+ µ
n

|aµ|

|a0|−m
kµ+1tµ−1

tµ+1+kµ+1+ µ
n

|aµ|

|a0|−m
(kµ+1tµ+k2µt)

dt
)}

M(P,r)

−
[{

exp
(

n
∫ R

r

tµ+ µ
n

|aµ|
|a0|−m

kµ+1tµ−1

tµ+1+kµ+1+ µ
n

|aµ |
|a0|−m

(kµ+1tµ+k2µt)
dt
)}

−1
]

m, (2.7)

where m=min|z|=k |P(z)|.

The above lemma is due to Chanam and Dewan [3].

3 Proofs of theorems

Proof of Theorem 1.2. Since P(z) 6=0 in |z|< k, k>0, the polynomial P(Rz) has no zero in
|z|< k/R, k/R≥1. Hence using Lemma 2.2, we have for 0≤ s<n,

RsM
(

P(s),R
)

≤
{ c(n,s)+

∣

∣

as
a0

∣

∣Rs
(

k
R

)s+1

c(n,s)
(

1+
(

k
R

)s+1)
+
∣

∣

as
a0

∣

∣Rs
((

k
R

)s+1
+
(

k
R

)s)

}

×
[{ d(s)

dx(s)
(1+xn)

}

x=1

]

M(P,R),

which gives

M
(

P(s),R
)

≤
{ c(n,s)R+

∣

∣

∣

as
a0

∣

∣

∣
ks+1

c(n,s)
(

ks+1+Rs+1
)

+
∣

∣

∣

as
a0

∣

∣

∣

(

ks+1Rs+Rk2s
)

}

×
[{ d(s)

dx(s)
(1+xn)

}

x=1

]

M(P,R). (3.1)

Now, if 0< r≤R≤ k, then by Lemma 2.6, we obtain for µ=1,

M(P,R)≤
{

exp
(

n
∫ R

r

t+ 1
n

∣

∣

a1
a0

∣

∣k2

t2+k2+ 2
n

∣

∣

a1
a0

∣

∣k2t
dt
)}

M(P,r). (3.2)

Combining (3.1) and (3.2), we obtain

M
(

P(s),R
)

≤
{ c(n,s)R+

∣

∣

as
a0

∣

∣ks+1

c(n,s)
(

ks+1+Rs+1
)

+
∣

∣

as
a0

∣

∣

(

ks+1Rs+Rk2s
)

}[{ d(s)

dx(s)
(1+xn)

}

x=1

]

×
{

exp
(

n
∫ R

r

t+ 1
n

∣

∣

a1
a0

∣

∣k2

t2+k2+ 2k2

n

∣

∣

a1
a0

∣

∣t
dt
)}

M(P,r),



188 A. Mir and G. N. Parrey / Anal. Theory Appl., 32 (2016), pp. 181-188

which proves Theorem 1.2. �

Proof of Theorem 1.3. Since P(z) has no zero in |z|< k, k>0, the polynomial P(Rz) has no
zero in |z|< k/R, k/R≥1. Hence using Lemma 2.4, we have for 1≤ s<n,

Rs M
(

P(s),R
)

≤
{ c(n,s)+ |as|

|a0|−m′ R
s
(

k
R

)s+1

c(n,s)
(

1+
(

k
R

)s+1)
+ |as|

|a0|−m′ Rs
((

k
R

)s+1
+
(

k
R

)2s)

}

×
[{ d(s)

dx(s)
(1+xn)

}

x=1

]

(

M(P,R)−m′
)

, (3.3)

where m′=min|z|= k
R
|P(Rz)|=min|z|=k |P(z)|=m. This gives

M
(

P(s),R
)

≤
{ c(n,s)R+ |as|

|a0|−m
ks+1

c(n,s)
(

ks+1+Rs+1
)

+ |as|
|a0|−m

(

ks+1Rs+Rk2s
)

}

×
[{ d(s)

dx(s)
(1+xn)

}

x=1

]

(

M(P,R)−m). (3.4)

The above inequality when combined with Lemma 2.7 (for µ=1) gives inequality (1.12)
and this completes the proof of Theorem 1.3. �
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