On Growth of Polynomials with Restricted Zeros

Abdullah Mir* and G. N. Parrey
${ }^{1}$ Department of Mathematics, University of Kashmir, Srinagar, 190006, India
${ }^{2}$ Department of Mathematics, Islamia College of Science and Commerce, Srinagar, 190002, India

Received 14 November 2015; Accepted (in revised version) 6 May 2016

Abstract. Let $P(z)$ be a polynomial of degree n which does not vanish in $|z|<k, k \geq 1$. It is known that for each $0 \leq s<n$ and $1 \leq R \leq k$,

$$
M\left(P^{(s)}, R\right) \leq\left(\frac{1}{R^{s}+k^{s}}\right)\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(\frac{R+k}{1+k}\right)^{n} M(P, 1)
$$

In this paper, we obtain certain extensions and refinements of this inequality by involving binomial coefficients and some of the coefficients of the polynomial $P(z)$.

Key Words: Polynomial, maximum modulus princple, zeros.
AMS Subject Classifications: 30A10, 30C10, 30C15

1 Introduction and statement of results

Let P_{n} be the class of polynomials

$$
P(z)=\sum_{v=0}^{n} a_{v} z^{v}
$$

of degree n, z being a complex variable and $P^{(s)}(z)$ be its $s^{\text {th }}$ derivative. For $P \in P_{n}$, let $M(P, R)=\max _{|z|=R}|P(z)|$. It is well known that

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \leq n M(P, 1) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M(P, R) \leq R^{n} M(P, 1), \quad R \geq 1 \tag{1.2}
\end{equation*}
$$

[^0]The inequality (1.1) is a famous result of S. Bernstein (for reference, see [9]) whereas the inequality (1.2) is a simple consequence of Maximum Modulus Principle (see [8]). It was shown by Ankeny and Rivlin [1] that if $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<1$, then (1.2) can be replaced by

$$
\begin{equation*}
M(P, R) \leq\left(\frac{R^{n}+1}{2}\right)(P, 1), \quad R \geq 1 . \tag{1.3}
\end{equation*}
$$

Recently, Jain [5] obtained a generalization of (1.3) by considering polynomials with no zeros in $|z|<k, k \geq 1$ and simultaneously have taken into consideration the $s^{\text {th }}$ derivative of the polynomial, $(0 \leq s<n)$, instead of the polynomial itself. More precisely, he proved the following result.

Theorem 1.1. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $0 \leq s<n$,

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq \frac{1}{2}\left\{\frac{d^{(s)}}{d R^{(s)}}\left(R^{n}+k^{n}\right)\right\}\left(\frac{2}{1+k}\right)^{n} M(P, 1) \quad \text { for } R \geq k \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq\left(\frac{1}{R^{s}+k^{s}}\right)\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(\frac{R+k}{1+k}\right)^{n} M(P, 1) \quad \text { for } 1 \leq R \leq k \tag{1.5}
\end{equation*}
$$

Equality holds in (1.4) (with $k=1$ and $s=0$) for $P(z)=z^{n}+1$ and equality holds in (1.5) (with $s=1$) for $P(z)=(z+k)^{n}$.

In this paper, we obtain certain extensions and refinements of the inequality (1.5) of the above theorem by involving binomial coefficients and some of the coefficients of polynomial $P(z)$. More precisely, we prove

Theorem 1.2. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $0 \leq s<n$ and $0<r \leq R \leq k$, we have

$$
\begin{align*}
M\left(P^{(s)}, R\right) \leq\{ & \left.\frac{c(n, s) R+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{\left.c(n, s)\left(k^{s+1}+R^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1} R^{s}+R k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] \\
& \times\left\{\exp \left(n \int_{r}^{R} \frac{t+\frac{1}{n}\left|\frac{a_{0}}{a_{0}}\right| k^{2}}{t^{2}+k^{2}+\frac{2 k^{2}}{n}\left|\frac{a_{1}}{a_{0}}\right| t} d t\right)\right\} M(P, r) \tag{1.6}
\end{align*}
$$

The result is best possible (with $s=1$) and equality in (1.6) holds for $P(z)=(z+k)^{n}$.
Remark 1.1. Since if $P(z) \neq 0$ in $|z|<k, k>0$, then by Lemma 2.5 (stated in Section 2), we have for $0 \leq s<n$,

$$
\begin{equation*}
\frac{1}{c(n, s)}\left|\frac{a_{s}}{a_{0}}\right| k^{s} \leq 1 \tag{1.7}
\end{equation*}
$$

which can also be taken as equivalent to

$$
\begin{equation*}
\frac{c(n, s) t^{s+1}+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1} t^{s}}{c(n, s)\left(k^{s+1}+t^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right|\left(k^{s+1} t^{s}+t k^{2 s}\right)} \leq \frac{t^{s}}{t^{s}+k^{s}} \quad \text { for } 0<t \leq k . \tag{1.8}
\end{equation*}
$$

Since $R \leq k$, if we take $t=R$ in (1.8), we get

$$
\begin{equation*}
\frac{c(n, s) R+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right|\left(k^{s+1} R^{s}+R k^{2 s}\right)} \leq \frac{1}{R^{s}+k^{s}} . \tag{1.9}
\end{equation*}
$$

Also

$$
\exp \left(n \int_{r}^{R} \frac{t+\frac{1}{n}\left|\frac{a_{1}}{a_{0}}\right| k^{2}}{t^{2}+k^{2}+\frac{2 k^{2}}{n}\left|\frac{a_{1}}{a_{0}}\right| t} d t\right)=\left(\frac{R^{2}+k^{2}+\frac{2 k^{2}}{n}\left|\frac{a_{1}}{a_{0}}\right| R}{r^{2}+k^{2}+\frac{2 k^{2}}{n}\left|\frac{a_{1}}{a_{0}}\right| r}\right)^{\frac{n}{2}}=\left(\frac{R^{2}+k^{2}+2 k R|\gamma|}{r^{2}+k^{2}+2 k r|\gamma|}\right)^{\frac{n}{2}}
$$

where $\gamma=k a_{1} / n a_{0}$, has absolute value ≤ 1, according to inequality (2.4) of Lemma 2.5.
Now as

$$
\frac{R^{2}+k^{2}+2 k R|\gamma|}{r^{2}+k^{2}+2 k r|\gamma|}
$$

is an increasing function of $|\gamma|$ in $[0,1]$, hence

$$
\begin{equation*}
\left(\frac{R^{2}+k^{2}+2 k R|\gamma|}{r^{2}+k^{2}+2 k r|\gamma|}\right)^{\frac{n}{2}} \leq\left(\frac{R+k}{r+k}\right)^{n} . \tag{1.10}
\end{equation*}
$$

Combining (1.9) and (1.10), the following result immediately follows from Theorem 1.2.
Corollary 1.1. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $0 \leq s<n$ and $0<r \leq R \leq k$, we have

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq\left(\frac{1}{R^{s}+k^{s}}\right)\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(\frac{R+k}{r+k}\right)^{n} M(P, r) \tag{1.11}
\end{equation*}
$$

The result is best possible (with $s=1$) and equality in (1.11) holds for $P(z)=(z+k)^{n}$.
Remark 1.2. For $r=1$, Corollary 1.1 reduces to inequality (1.5).
Next we prove the following theorem which gives an improvement of Corollary 1.1 (for $1 \leq s<n$), which in turn as a special case provides an improvement and extension of the inequality (1.5). In fact, we prove
Theorem 1.3. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $1 \leq s<n$ and $0<r \leq R \leq k$, we have

$$
\left.\left.\begin{array}{rl}
M\left(P^{(s)}, R\right) \leq\{ & \left.\frac{c(n, s) R+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m} k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\frac{\left|a_{s}\right|}{\mid a_{0}-m}\left(k^{s+1} R^{s}+R k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] \\
& \times\left\{\operatorname { e x p } \left(n \int_{r}^{R} \frac{t+\frac{1}{n}\left|a_{1}\right|}{a^{2} \mid-m} k^{2}\right.\right. \tag{1.12}\\
t^{2}+k^{2}+\frac{2 k^{2}}{n} \frac{\left|a_{1}\right|}{\left|a_{0}\right|-m} t
\end{array} t\right)\right\}(M(P, r)-m),
$$

where $m=\min _{|z|=k}|P(z)|$.

The result is best possible (with $s=1$) and equality in (1.12) holds for $P(z)=(z+k)^{n}$.
Remark 1.3. Since $P(z) \neq 0$ in $|z|<k, k>0$, therefore, for every λ with $|\lambda|<1$, it follows by Rouche's theorem that the polynomial $P(z)-\lambda m$, has no zeros in $|z|<k, k>0$ and hence applying inequality (2.4) of Lemma 2.5 (stated in Section 2), we get

$$
\begin{equation*}
c(n, s)\left|a_{0}-\lambda m\right| \geq\left|a_{s}\right| k^{s} . \tag{1.13}
\end{equation*}
$$

If in (1.13), we choose the argument of λ suitably and note $\left|a_{0}\right|>m$, from Lemma 2.3, we get

$$
\begin{equation*}
c(n, s)\left(\left|a_{0}\right|-|\lambda| m\right) \geq\left|a_{s}\right| k^{s} . \tag{1.14}
\end{equation*}
$$

If we let $|\lambda| \rightarrow 1$ in (1.14), we get

$$
\frac{1}{c(n, s)} \frac{\left|a_{s}\right|}{\left|a_{0}\right|-m} k^{s} \leq 1,
$$

which further implies by using the same arguments as in Remark 1.1, that

$$
\begin{equation*}
\frac{c(n, s) R+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m} k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m}\left(k^{s+1} R^{s}+R k^{2 s}\right)} \leq \frac{1}{R^{s}+k^{s}} \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\exp \left(n \int_{r}^{R} \frac{t+\frac{1}{n} \left\lvert\, \frac{\left|a_{1}\right| \mid}{\left|a_{1}\right|-m} k^{2}\right.}{t^{2}+k^{2}+\frac{2 k^{2}}{n} \frac{\left|a_{1}\right|}{\left|a_{0}\right|-m} t} d t\right) \leq\left(\frac{R+k}{r+k}\right)^{n} \tag{1.16}
\end{equation*}
$$

Now, using (1.15) and (1.16) in (1.12), the following improvement of Corollary 1.1 (for $1 \leq s<n$) and hence of inequality (1.5) immediately follows from Theorem 1.3.

Corollary 1.2. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $1 \leq s<n$ and $0<r \leq R \leq k$, we have

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq\left(\frac{1}{R^{s}+k^{s}}\right)\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(\frac{R+k}{r+k}\right)^{n}(M(P, r)-m) \tag{1.17}
\end{equation*}
$$

where $m=\min _{|z|=k}|P(z)|$.
The result is best possible (with $s=1$) and equality in (1.17) holds for $P(z)=(z+k)^{n}$.
Remark 1.4. The inequalities (1.11) and (1.17) were also recently proved by Mir (see [7]).

2 Lemmas

For the proof of these theorems, we need the following lemmas.
The first lemma is due to Aziz and Rather [2].
Lemma 2.1. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $1 \leq s<n$, we have

$$
\begin{equation*}
M\left(P^{(s)}, 1\right) \leq n(n-1) \cdots(n-s+1)\left\{\frac{c(n, s)+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(k^{s+1}+1\right)+\left|\frac{a_{s}}{a_{0}}\right|\left(k^{s+1}+k^{2 s}\right)}\right\} M(P, 1), \tag{2.1}
\end{equation*}
$$

where $c(n, j)$ are the binomial coefficients defined by

$$
c(n, j)=\frac{n!}{j!(n-j)!}, \quad 0!=1 .
$$

From Lemma 2.1, we easily get
Lemma 2.2. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $0 \leq s<n$, we have

$$
\begin{equation*}
M\left(P^{(s)}, 1\right) \leq\left\{\frac{c(n, s)+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(k^{s+1}+1\right)+\left|\frac{a_{s}}{a_{0}}\right|\left(k^{s+1}+k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] M(P, 1) . \tag{2.2}
\end{equation*}
$$

Lemma 2.3. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then $|P(z)|>m$ for $|z|<k$, and in particular

$$
\left|a_{0}\right|>m,
$$

where $m=\min _{|z|=k}|P(z)|$.
The above lemma is due to Gardner, Govil and Musukula [4].
Lemma 2.4. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $1 \leq s<n$ we have

$$
\begin{align*}
& M\left(P^{(s)}, 1\right) \\
\leq & \left\{\frac{c(n, s)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m} k^{s+1}}{c(n, s)\left(k^{s+1}+1\right)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m}\left(k^{s+1}+k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right](M(P, 1)-m), \tag{2.3}
\end{align*}
$$

where $m=\min _{|z|=k}|P(z)|$.
The above lemma is due to Mir [7].
Lemma 2.5. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $0 \leq s<n$, we have

$$
\begin{equation*}
\frac{1}{c(n, s)}\left|\frac{a_{s}}{a_{0}}\right| k^{s} \leq 1 . \tag{2.4}
\end{equation*}
$$

Proof. Since

$$
P(z)=\sum_{v=0}^{n} a_{v} z^{v} \neq 0
$$

in $|z|<k, k>0$. Let $z_{1}, z_{2}, \cdots, z_{n}$ be the zeros of $P(z)$, then $\left|z_{v}\right| \geq k ; 1 \leq v \leq n$, and we have

$$
\begin{align*}
& (-1) \frac{a_{n-1}}{a_{n}}=\omega(n, 1)=\sum z_{1}, \tag{2.5a}\\
& (-1)^{2} \frac{a_{n-2}}{a_{n}}=\omega(n, 2)=\sum z_{1} z_{2}, \cdots, \tag{2.5b}\\
& (-1)^{n-s} \frac{a_{s}}{a_{n}}=\omega(n, n-s)=\sum z_{1} z_{2} \cdots z_{n-s}, \cdots, \tag{2.5c}\\
& (-1)^{n} \frac{a_{0}}{a_{n}}=\omega(n, n)=z_{1} z_{2} \cdots z_{n}, \tag{2.5d}
\end{align*}
$$

where $\omega(n, s)$ is the sum of all possible products of $z_{1}, z_{2}, \cdots, z_{n}$ taken s at a time. From (2.5c) and (2.5d), we get

$$
\begin{aligned}
\left|\frac{a_{s}}{a_{0}}\right| & =\left|\frac{a_{s}}{a_{n}}\right|\left|\frac{a_{n}}{a_{0}}\right|=\left|\frac{\omega(n, n-s)}{\omega(n, n)}\right| \\
& =\left|\frac{\sum z_{1} z_{2} \cdots z_{n-s}}{z_{1} z_{2} \cdots z_{n}}\right|=\left|\sum \frac{1}{z_{1} z_{2} \cdots z_{s}}\right| \\
& \leq \sum\left|\frac{1}{z_{1}}\right|\left|\frac{1}{z_{2}}\right| \cdots\left|\frac{1}{z_{s}}\right| \leq c(n, s) \frac{1}{k^{s}},
\end{aligned}
$$

which completes the proof of Lemma 2.5.
Lemma 2.6. If

$$
P(z)=a_{0}+\sum_{v=\mu}^{n} a_{v} z^{v}, \quad 1 \leq \mu \leq n,
$$

is a polynomial of degree n having no zeros in $|z|<k, k>0$, then for $0<r \leq R \leq k$, we have

$$
\begin{equation*}
M(P, R) \leq\left\{\exp \left(n \int_{r}^{R} \frac{t^{\mu}+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1} t^{\mu-1}}{t^{\mu+1}+k^{\mu+1}+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right|\left(k^{\mu+1} t^{\mu}+k^{2 \mu} t\right)} d t\right)\right\} M(P, r) \tag{2.6}
\end{equation*}
$$

The above result is due to Jain [6].
Lemma 2.7. If

$$
P(z)=a_{0}+\sum_{v=\mu}^{n} a_{v} z^{v}, \quad 1 \leq \mu \leq n,
$$

is a polynomial of degree n having no zeros in $|z|<k, k>0$, then for $0<r \leq R \leq k$, we have

$$
\begin{align*}
& M(P, R) \leq\left\{\exp \left(n \int_{r}^{R} \frac{t^{\mu}+\frac{\mu}{n} \frac{\left|a_{\mu}\right|}{\left|a_{0}\right|-m} k^{\mu+1} t^{\mu-1}}{t^{\mu+1}+k^{\mu+1}+\frac{\mu}{n} \frac{\left|a_{\mu}\right|}{\left|a_{0}\right|-m}\left(k^{\mu+1} t^{\mu}+k^{2 \mu} t\right)} d t\right)\right\} M(P, r) \\
& -\left[\left\{\exp \left(n \int_{r}^{R} \frac{\left.t^{\mu}+\frac{\mu}{n}\left|\frac{\left|a_{\mu}\right|}{n}\right| a_{0} \right\rvert\,-m}{} k^{\mu+1} t^{\mu-1} t^{\mu+1}+k^{\mu+1}+\frac{\mu}{n} \frac{\left|a_{\mu}\right|-m}{\left|a_{0}\right|-m}\left(k^{\mu+1} t^{\mu}+k^{2 \mu} t\right) \quad d t\right)\right\}-1\right] m, \tag{2.7}
\end{align*}
$$

where $m=\min _{|z|=k}|P(z)|$.
The above lemma is due to Chanam and Dewan [3].

3 Proofs of theorems

Proof of Theorem 1.2. Since $P(z) \neq 0$ in $|z|<k, k>0$, the polynomial $P(R z)$ has no zero in $|z|<k / R, k / R \geq 1$. Hence using Lemma 2.2, we have for $0 \leq s<n$,

$$
\begin{aligned}
R^{s} M\left(P^{(s)}, R\right) \leq & \left\{\frac{c(n, s)+\left|\frac{a_{s}}{a_{0}}\right| R^{s}\left(\frac{k}{R}\right)^{s+1}}{c(n, s)\left(1+\left(\frac{k}{R}\right)^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right| R^{s}\left(\left(\frac{k}{R}\right)^{s+1}+\left(\frac{k}{R}\right)^{s}\right)}\right\} \\
& \times\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] M(P, R),
\end{aligned}
$$

which gives

$$
\begin{align*}
M\left(P^{(s)}, R\right) \leq\{ & \left.\frac{c(n, s) R+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right|\left(k^{s+1} R^{s}+R k^{2 s}\right)}\right\} \\
& \times\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] M(P, R) . \tag{3.1}
\end{align*}
$$

Now, if $0<r \leq R \leq k$, then by Lemma 2.6, we obtain for $\mu=1$,

$$
\begin{equation*}
M(P, R) \leq\left\{\exp \left(n \int_{r}^{R} \frac{t+\frac{1}{n}\left|\frac{a_{1}}{a_{0}}\right| k^{2}}{t^{2}+k^{2}+\frac{2}{n}\left|\frac{a_{1}}{a_{0}}\right| k^{2} t} d t\right)\right\} M(P, r) \tag{3.2}
\end{equation*}
$$

Combining (3.1) and (3.2), we obtain

$$
\begin{aligned}
M\left(P^{(s)}, R\right) \leq\{ & \left.\frac{c(n, s) R+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{\left.c(n, s)\left(k^{s+1}+R^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1} R^{s}+R k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] \\
& \times\left\{\exp \left(n \int_{r}^{R} \frac{t+\frac{1}{n}\left|\frac{a_{0}}{a_{0}}\right| k^{2}}{t^{2}+k^{2}+\frac{2^{2}}{n}\left|\frac{a_{1}}{a_{0}}\right| t} d t\right)\right\} M(P, r),
\end{aligned}
$$

which proves Theorem 1.2.
Proof of Theorem 1.3. Since $P(z)$ has no zero in $|z|<k, k>0$, the polynomial $P(R z)$ has no zero in $|z|<k / R, k / R \geq 1$. Hence using Lemma 2.4, we have for $1 \leq s<n$,

$$
\begin{align*}
R^{s} M\left(P^{(s)}, R\right) \leq\{ & \left.\frac{c(n, s)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m^{\prime}} R^{s}\left(\frac{k}{R}\right)^{s+1}}{c(n, s)\left(1+\left(\frac{k}{R}\right)^{s+1}\right)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m^{\prime}} R^{s}\left(\left(\frac{k}{R}\right)^{s+1}+\left(\frac{k}{R}\right)^{2 s}\right)}\right\} \\
& \times\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(M(P, R)-m^{\prime}\right), \tag{3.3}
\end{align*}
$$

where $m^{\prime}=\min _{|z|=\frac{k}{R}}|P(R z)|=\min _{|z|=k}|P(z)|=m$. This gives

$$
\begin{align*}
M\left(P^{(s)}, R\right) \leq\{ & \left.\frac{c(n, s) R+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m} k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m}\left(k^{s+1} R^{s}+R k^{2 s}\right)}\right\} \\
& \times\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right](M(P, R)-m) . \tag{3.4}
\end{align*}
$$

The above inequality when combined with Lemma 2.7 (for $\mu=1$) gives inequality (1.12) and this completes the proof of Theorem 1.3.

References

[1] N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math., 5(1955), 849-852.
[2] A. Aziz and N. A. Rather, Some Zygmund type L^{q} inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14-29.
[3] B. Chanam and K. K. Dewan, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., 336 (2007), 171-179.
[4] R. B. Gardner, N. K. Govil and S. R. Musukula, Rate of growth of polynomials not vanishing inside a circle, J. Ineq. Pure Appl. Math., 6(2) (2005), 1-9.
[5] V. K. Jain, A generalization of Ankeny and Rivlin's result on the maximum modulus of polynomials not vanishing in the interior of the unit circle, Turk. J. Math., 31 (2007), 89-94.
[6] V. K. Jain, On maximum modulus of polynomials with zeros outside a circle, Glasnik Mate., 29 (1994), 267-274.
[7] A. Mir, Inequalities for the growth and derivatives of a polynomial, African Diaspora J. Math., 18 (2015), 18-25.
[8] Q. I. Rahman and G. Shmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
[9] A. C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47 (1941), 565-579.

[^0]: *Corresponding author. Email address: mabdullah_mir@yahoo.co.in (A. Mir)

