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Abstract. In the present manuscript, we propose the modification of Jain operators
which the generalization of Szdsz-Mirakyan operators. These new class operators are
linear positive operators of discrete type depending on a real parameters. We give
theorem of degree of approximation and the Voronovskaya asymptotic formula.
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1 Introduction

In [1], Patel and Mishra introduced following sequence of positive linear operators, for
feC(]0,0));,0<u<l;1<y<e

P#l’ ﬂ(f,x):iwyﬁ(k,nx)f<§), (1.1)

k=0
where
1 ,Yf(nerky)
k! '

In the particular case, v =e the operators (1.1) equal to Jain operators [2]. Also, for y=e
and y =0, the operators (1.1) turns to classical the Szasz-Mirakyan operators. Therefore,

w(%v)(k,nx) = nx(log’y)k(nx—i—ky)
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the above operators is the generalization of Szadsz-Mirakyan operators via Jain opera-
tors. The relation between the local smoothness of function and local approximation, the
degree of approximation and the statistical convergence of the Jain operators was studied
by Agratini [3]. Umar and Razi [4] studied Kantorovich-type extension of Jain operators.
Durrmeyer type generalization of Jain operators and its approximation properties was
elaborated by Tarabie [5], Mishra and Patel [6], Patel and Mishra [7] and Agratini [8].
Some related work in this area can be found in [9-16]. Motivated by such operators, we
further generalized following modification of the operators (1.1) as: For f € C(]0,0));
nelN; 1<y<e;0<u<1;

a d k
Pn (f,.X') — Pr[zy/ b, Y] (f,x) = Zw(yﬁ)(k,anx)f <b—> , (1.2)
k=0 n

where w,, ,(k,a,x) as defined in (1.1) and (a,),_; and (b, ), are given increasing and

a
unbounded numerical sequence such that a, >1, b, > 1 and <b_n> is nondecreasing and
n

Ay an
E—H—o(bn). (1.3)

Along the paper, when we will deal with approximation results, the parameters y € [0,1)
and 7y € (1,¢] will be assumed to be a sequence y,, and 1y,, which tends to zero and Euler’s
number e as n — 0o, respectively.

2 Moments of P,

To discuss moments of the operators (1.2), we need following lemmas:

Lemma 2.1 (see [1]). For 0<a <oo, 0<pu<1land1<vy<e. Let

—(a+kp)
() () = (logy)* (atkpe) 1 L. 1)
Then .
Y Wi (ka)=1. (2.2)
k=0

Lemma 2.2 (see [1]). Let 0<a <oo, 0<u<1and 1<y <e. Suppose that

[} 1 . B .
S(ro,p,7) = Y, 77 (logy) (atkp) 7o) 2.3)
k=0""

and
S(1,a,u,v)=1. (2.4)
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Then
S(r,e,p,v)=aS(r—1,a,u,v)+ulogyS(r,a,m,y). (2.5)
Also,
S(rauy) =Y (nlogy)* (a+ku) S(r—1,a+kp,u,7). (2.6)
k=0

For (2.5) and (2.6), when 0 <« < c0 and |ulogy| <1, we have
1

S(La,p,7)= T—plogy’ 279
2
B w plogy

S(Z,tx,y,'y)— (1—]110g’)’)2 (1_V10g,)/)3/ (27b)

a2 Bau’logry (12 +2u*)logy
S(B,a,1,7)= (1—ulogy)® " (1—pulogy)* (1—pulogy)® (2.70)
S p07) = —2 6a’ylogy | 2ap(2+p)logy +9apt (logy)?

AT ~ (1—plogy)*  (1—ulogy)d (1—plogy)®
4 5 2 6 3
| #Hlogy+2°(4+ 1) (log7)* +4pu° (log y)° (2.7d)

(1—plog)”
In the following lemma, we have computed moments up to fourth order.

Lemma 2.3. The operators P,, n >1, defined by (1.1) satisfy the following relations

Pu(1,x)=1,
apxlogy
by(1—plogy)”
’ a%x2(log’y)2 anxlogry
Pu(t5,%) = 75 27T 2 3/
bi(1—plogy)? ~ bi(1—ulogy)
a,x*(logy)® | 3azx*(logy)?

P, (t,x)=

3 _
Falfx) = b3(1—pulogy)®  b3(1—plogy)*
xa,logy(14-2ulogy+2u*(logy)> —2u* (logy)*)
+ 3 5 4
b3 (1—plog7y)
4.4 4 3.3 3
Po(t,x) = n¥(087)" | 6,x"(log)

 bi(1—plogy)*  bi(1—plogy)®
N azx*(logy)? (7+8ulogy+2u* (logy ) —2u* (log v)*)
b (1—plogy)®
L ((log7y)+8pu(logy)?+6u*(log7)®)
b (1—plogy)”
L X ((12p*(logy)* —16p° (logy)> +6u°(logy)®)(1—log7))
b (1—plogy)”
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Using equalities (2.2), (2.7a) to (2.7d), one can archived proof of the above lemma.
Lemma 2.4. Let the operator Py, be defined by relation as (1.1) and let ¢, =t—x be given by

_ aylogy _
Ao = (5o )
Po( )= 2 aylogy _q 2 ayxlogy
Pt by (1—plogy) by (1—plogy)’’
Py (g% 1) = x (3a%u(10g7)3 a,(logy)®  3ajlogy?
Prx) = b3(1-plogy)®  b3(1—plogy)® b3(1-plogy)®
3a,logy _1> 3a,x%logy ( anlogy _1>
by (1—plogy) b7 (1—plogy)? \ bu(1—plogy)
nx(log7) (1+2u(log ) +2u* (logy)* —2u* (logy)*)
b (1—plogy)°
Pa(gh ) =i (1- day(logy)®  Baiu(logy)*  4a;p?(logy)’
Pt b3(1—plogy)® * b3(1—-plogy)®  b3(1—plogy)®

7

ay (log)* 6ay(logy)*  6au(logy)®  4a,logy >
bi(1—plogy)* * bi(1—plogy)® bi(1—plogy)® b(1—ulogy)
+x3( 6a,(logy)®  12a5(logy)* | 12a5p(logy)° 6a,logy )

bp(1-plogy)® b (1—plogy)®  by(1—plogy)®  bi(1—plogy)?
N 2( 8aup(logy)?  4daylogy  8auu‘(logy)*

by(1—plogy)®> bi(1—plogy)® b(1—plogy)®

8ap*(logy)® | az(log)? (7+8u(logy) +2u*(logy)® —2u (logy)*) )
b (1—plog)® b (1—plog7)°
N anxlogy (1+8ulogy+6u*(logy)?)
b (1—plog)?
anxlogy (2(1-logy)(logy)* (64 —8u°logy +3u°(log7)?))
_|_
by (1—plogy)?
Proof of the above lemma, follows from the linearity of the operators P, and Lemma
2.3.
By equality (1.3), lim,, oy =0 and lim,, ..y, =€, we obtain

lirnb Py(¢y,x)=0,

hm by Py(@2,x) =x,
3.

&Lr)r.}ob P, (¢7,x)=0,
4.\ _n.2

&Lr)r.}ob Py(¢y,x)=3x".

The above equality can be verified for the case v, =e in [17, page 5].



236 P. Patel and V. N. Mishra / Anal. Theory Appl., 32 (2016), pp. 232-241

3 Direct theorem

Consider the Banach space B, ([0,00))={f:[0,00) = R:|f(x)| < M(1+x")}, for some M>0
and r>0. By C,([0,c0)), we denote the subspace of all continuous functions to B, ([0,00)).
Also, C;(]0,00)) is a subspace of all functions f € C,([0,00)), for which lim; Lf(), is

1+
finite. The norm on C; ([0,00)) is || f|| =SUP, [0 00 %

The convergence property of the operator (1.1) is proved in the following theorem:

Theorem 3.1. If f € C,([0,00)) and p, —0, v, — e as n — oo, then the sequence P, converges
uniformly to f(x) in [c,d], where 0 <c <d < co.

Proof. Since P, is a positive linear operator for 0 <y, <1 and 1<y, <e, it is sufficient, by
Korovkin's result [18], to verify the uniform convergence for test functions f(t) =1,t and
t2.

It is clear that

P,(1,x)=1.
Going to f(t)=t,
, : axlog(yn)
1 Pn t, =1 - n n .
lim (t,x) n%bn(l—ynlog(yn)) x as pp,—0 and y,—e

Proceeding to the function f(t) =12, it can easily be shown that
lim P, (#*,x) = lim

< a5 x*(log(vn))* a,x10g(vn) >
TN n—oo \ b3(1—pnlog(yn))? b2 (1—plog(vn))?
=x* as uy—0 and y,—e,

and hence by Korovkin’s theorem the proof of theorem is complete. O

Let the space Cp([0,00)) of all continuous and bounded functions be endowed with
the norm || f||=sup{|f(x)|:x€[0,00) }. Further let us consider the following K-functional:

Kz(fﬁ)Zgienvgz{\\f—gll+<5Hg”H}/ (3.1)

where § >0 and W?={g€ Cp([0,00)):¢’,g” € C([0,00)) }. By the method as given in [19,
pp- 177, Theorem 2.4], there exists an absolute constant C >0 such that

Ka(f,8) < Cawn(f,V3), (3.2)

where
wz(f,\/g): sup sup |f(x+2h)—=2f(x+h)+f(x)] (3.3)
0<h</3x€[0,00)

is the second order modulus of smoothness of f € Cp([0,00)). Also, we set

w(f, V)= sup sup |f(x+h)—f(x)|. (3.4)

0<h<+/5x€[0,00)
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Theorem 3.2. For f € Cp([0,00)), we have

|Pa(f,x)— f(x)| <Cwr (f, \/Pn(¢§,x)+ (x(% —1))2)

1—ulogy
aylogy 1 >
by (1—plogy) '

+wq (f,x

where C is positive constant.

Proof. We are introducing the auxiliary operators as follows

Pull ) =Pulf )~ (5 1oL 5 (x)

237

for every x € [0,00). The operators P, are linear and preserves the linear functions, there-

fore
P,(t—x,x)=0.

Let g€ W2 and x,t € [0,00). By Taylor’s expansion, we have

Applying P, we get

Pa(g,x) —g(x) =g (x) Py (t—x,2) + P, </

and applying (3.5), we get

Hence,

[Pu(gx) —g(x)| <

Py, (/xt(t—u)g”(u)du,x> ‘

apxlogy

b (1—plog?) ﬂnXIOg’)’ ) "
- o7 d
+/x <bn(1—ulog7) v g

anxlogy

bn (1—plogy)
<P(g20)llg" I+ [

apxlogy > ,,
— 57 __y u
(bn(l—#logv) g )

< [pn<<o§,x>+ ((m_l—fgﬂ”))] 8”1l

du

(3.5)
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Also, we have |P,(f,x)| <||f||. Using these, we get
[Pu(f2) = ()| <|Pu(f— %) = (f =&) (x) | +| Pu (g, %) =g (x)]
! <bn (= >_f (x)‘

(1—plogy)
lo 2
<4 _ Pn 2, an10gy _1>> "
<allr=gll+ | Plob 0+ (x (it -1 ) |l
aylogy
e <f’x b, (1—plog7y) 1')

Hence, taking infimum on the right hand side over all g€ W?, we get

aylogy _1'>
by(1—plogy) '

+wq (f,x

In view of (3.2), we get

IPaf) = f(x) | <Cavn (f\/ Pulg)+ (» (WQ))

a,logy _1D
bn(1—plogy) '

+ w1 <f,x

This completes the proof of the theorem. O
We know that a continuous function f defined on I satisfies the condition
[f()=fW)<Mylx—yl",  (xy) €IXE,
it called locally Lipyy on E (0<7 <1, ECI), where M is a constant depending only on f.
Theorem 3.3. Let E be any subset of [0,00). If f is locally Lip 1 on E, then we have
|Pu(f, %) = f (x)| < MyC (1, 1,780, b)) max{x""?, x"} +2Md" (x,E),

where

1
B anlogy 2 anlogy
C(U/V/)’;an/bn)_<<bn(]——ylog'y) 1) TR {A—jlog)?

and d(x,E) is the distance between x and E defines as

d(x,E)=inf{|x—y|:y€E}.
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Proof. Since f is continuous,

[f () =f(y)| < Mplx—y|"
holds for any x >0 and y € E, E is closure of E C (—o0,00). Let (x,x0) € [0,00) x E be such
that |x—xo|=d(x,E).

Using linear properties of P, inequality (A+B)"<A"+B" (A>0,B>0,0<a<1) and
Holder’s inequality, we get

|Pu(f,x) = f(x) | <Pu(|f = f(x0)[,x) +|f (x0) — f(x)]|
SMan(’(t—x)+(X—XQ)|;7,X)+MJI|XQ—X’W
§Mf(Pn(|t—x|’7,x)+]x—xo|’7)—|—Mf]xo—x|’7

/2
<My ((Pu(g3 )" +2)x—xo]")
a,logy 2 ayxlogy "
| (2 <¢_1> L axlogy N\ o
/ (( by (1 plogy) b3 (1 plogy)? =2l

<My (Clp gy, by max{ 2172 1y 4210 1),

which is required results. U
Now, we establish the Voronovskaja type asymptotic formula for the operators P,.

In this section, we denoted C"([a,b]) as the set of all real-valued r-times continuously

differentiable functions on the interval [4,b], (r € IN) and it is a subspace of C([a,b]). The
norm on the space C"([a,b]) can be defined as

A e ey = LF o+ ILF s+ 4+ L ®ll (o £ €C([a,b])-

17l c((a,p)) Tepresents the sup-norm of the function |}, ).

Theorem 3.4. Let f,f',f" € C([0,00)) and let the operator P, be defined as in (1.2). If u, —0
and vy, — e as n— oo holds, then

lim by (Pa(f,2) = f(x)) = 3£ (x), ¥ x>0.
Proof. Let f,f',f" €C(]0,00)) and x € [0,c0) be fixed. By the Taylor’s formula, we have
f(#) Zf(x)+f'(x)(f—x)+%f”(x)(f—x)2+f(f;x)(f—x)2/ (3:6)

where r(t;x) is the Peano form of the remainder, 7(-;x) € C?([0,00)) and lim;_,,7(t,x) =0.
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We apply P, to Eq. (3.6), we get

Pu(f,2) = f(x) =f'(2) Pu((t =), ) + %f”(x)Pn((f—x)Z/X) +Pa(r(£x)(t=2)% %)

—f(x) {x <M?—l—cflggv)_1>] Py (r(E5) (= )2, %)

f'0) |2 _alogy _\' alogy
T2 |\ n—utegn) ) TR-logy)?|

In the second term P, (r(t;x)(t—x)?,x) applying the Cauchy-Schwartz inequality, we have

0 [Pa(r{t5) (=22, %) < Pl (=)0 Palr(62),%). (37)

We have marked that }imr(t,x) =0. Inharmony with y, —0 and 7y, —e as n— o0, we have
—x

lim P,(r(t,x),x)=0. (3.8)

n—00

On the basis of (3.7) and (3.8), we get that

. o f 1"
Tim b, (Pl ) — £ (1) = 3f"(x), Vx>0,
Hence, the proof is completed. O
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