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1 Introduction

In [1], Patel and Mishra introduced following sequence of positive linear operators, for
f ∈C([0,∞)); 0≤µ<1; 1<γ≤ e

P
[µ, γ]
n ( f ,x)=

∞

∑
k=0

ωµ,γ(k,nx) f
( k

n

)
, (1.1)

where

ω(µ,γ)(k,nx)=nx(logγ)k(nx+kµ)k−1 γ−(nx+kµ)

k!
.

In the particular case, γ= e the operators (1.1) equal to Jain operators [2]. Also, for γ= e
and µ=0, the operators (1.1) turns to classical the Szász-Mirakyan operators. Therefore,
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the above operators is the generalization of Szaász-Mirakyan operators via Jain opera-
tors. The relation between the local smoothness of function and local approximation, the
degree of approximation and the statistical convergence of the Jain operators was studied
by Agratini [3]. Umar and Razi [4] studied Kantorovich-type extension of Jain operators.
Durrmeyer type generalization of Jain operators and its approximation properties was
elaborated by Tarabie [5], Mishra and Patel [6], Patel and Mishra [7] and Agratini [8].
Some related work in this area can be found in [9–16]. Motivated by such operators, we
further generalized following modification of the operators (1.1) as: For f ∈ C([0,∞));
n∈N; 1<γ≤ e; 0≤µ<1;

Pn( f ,x) :=P
[µ,an,bn,γ]
n ( f ,x)=

∞

∑
k=0

ω(µ,γ)(k,anx) f

(
k

bn

)
, (1.2)

where ω(µ,γ)(k,anx) as defined in (1.1) and (an)
∞
n=1 and (bn)

∞
n=1 are given increasing and

unbounded numerical sequence such that an ≥1, bn ≥1 and

(
an

bn

)
is nondecreasing and

an

bn
=1+o

(
an

bn

)
. (1.3)

Along the paper, when we will deal with approximation results, the parameters µ∈ [0,1)
and γ∈(1,e] will be assumed to be a sequence µn and γn which tends to zero and Euler’s
number e as n→∞, respectively.

2 Moments of Pn

To discuss moments of the operators (1.2), we need following lemmas:

Lemma 2.1 (see [1]). For 0<α<∞, 0≤µ<1 and 1<γ≤ e. Let

ω(µ,γ)(k,α)=α(logγ)k (α+kµ)k−1 γ−(α+kµ)

k!
. (2.1)

Then
∞

∑
k=0

ω(µ,γ)(k,α)=1. (2.2)

Lemma 2.2 (see [1]). Let 0<α<∞, 0≤µ<1 and 1<γ≤ e. Suppose that

S(r,α,µ,γ)=
∞

∑
k=0

1

k!
(logγ)k (α+kµ)k+r−1

γ−(α+kµ) (2.3)

and
S(1,α,µ,γ)=1. (2.4)
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Then
S(r,α,µ,γ)=αS(r−1,α,µ,γ)+µlogγS(r,α,µ,γ). (2.5)

Also,

S(r,α,µ,γ)=
∞

∑
k=0

(µlogγ)k(α+kµ)S(r−1,α+kµ,µ,γ). (2.6)

For (2.5) and (2.6), when 0<α<∞ and |µlogγ|<1, we have

S(1,α,µ,γ)=
1

1−µlogγ
, (2.7a)

S(2,α,µ,γ)=
α

(1−µlogγ)2
+

µ2 logγ

(1−µlogγ)3
, (2.7b)

S(3,α,µ,γ)=
α2

(1−µlogγ)3
+

3αµ2 logγ

(1−µlogγ)4
+
(µ3+2µ4)logγ

(1−µlogγ)5
, (2.7c)

S(4,α,µ,γ)=
α3

(1−µlogγ)4
+

6α2µ2 logγ

(1−µlogγ)5
+

2αµ3(2+µ)logγ+9αµ4(logγ)2

(1−µlogγ)6

+
µ4 logγ+2µ5(4+µ)(logγ)2+4µ6(logγ)3

(1−µlogγ)7
. (2.7d)

In the following lemma, we have computed moments up to fourth order.

Lemma 2.3. The operators Pn, n>1, defined by (1.1) satisfy the following relations

Pn(1,x)=1,

Pn(t,x)=
anxlogγ

bn(1−µlogγ)
,

Pn(t
2,x)=

a2
nx2(logγ)2

b2
n(1−µlogγ)2

+
anxlogγ

b2
n(1−µlogγ)3

,

Pn(t
3,x)=

a3
nx3(logγ)3

b3
n(1−µlogγ)3

+
3a2

nx2(logγ)2

b3
n(1−µlogγ)4

+
xan logγ(1+2µlogγ+2µ4(logγ)3−2µ4(logγ)4)

b3
n(1−µlogγ)5

,

Pn(t
4,x)=

a4
nx4(logγ)4

b4
n(1−µlogγ)4

+
6a3

nx3(logγ)3

b4
n(1−µlogγ)5

+
a2

nx2(logγ)2
(
7+8µlogγ+2µ4(logγ)3−2µ4(logγ)4

)

b4
n(1−µlogγ)6

+
anx
(
(logγ)+8µ(logγ)2+6µ2(logγ)3

)

b4
n(1−µlogγ)7

+
anx
(
(12µ4(logγ)4−16µ5(logγ)5+6µ6(logγ)6)(1−logγ)

)

b4
n(1−µlogγ)7

.
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Using equalities (2.2), (2.7a) to (2.7d), one can archived proof of the above lemma.

Lemma 2.4. Let the operator Pn be defined by relation as (1.1) and let ϕx = t−x be given by

Pn(ϕx,x)= x

(
an logγ

bn(1−µlogγ)
−1

)
,

Pn(ϕ2
x,x)= x2

(
an logγ

bn(1−µlogγ)
−1

)2

+
anxlogγ

b2
n(1−µlogγ)3

,

Pn(ϕ3
x,x)= x3

( 3a2
nµ(logγ)3

b2
n(1−µlogγ)3

+
a3

n(logγ)3

b3
n(1−µlogγ)3

− 3a2
n logγ2

b2
n(1−µlogγ)3

+
3an logγ

bn(1−µlogγ)
−1
)
+

3anx2 logγ

b2
n(1−µlogγ)3

(
an logγ

bn(1−µlogγ)
−1

)

+
anx(logγ)

(
1+2µ(logγ)+2µ4(logγ)3−2µ4(logγ)4

)

b3
n(1−µlogγ)5

,

Pn(ϕ4
x,x)= x4

(
1− 4a3

n(logγ)3

b3
n(1−µlogγ)5

+
8a3

nµ(logγ)4

b3
n(1−µlogγ)5

− 4a3
nµ2(logγ)5

b3
n(1−µlogγ)5

+
a4

n(logγ)4

b4
n(1−µlogγ)4

+
6a2

n(logγ)2

b2
n(1−µlogγ)3

− 6a2
nµ(logγ)3

b2
n(1−µlogγ)3

− 4an logγ

b(1−µlogγ)

)

+x3
( 6a3

n(logγ)3

b4
n(1−µlogγ)5

− 12a2
n(logγ)2

b3
n(1−µlogγ)5

+
12a2

nµ(logγ)3

b3
n(1−µlogγ)5

+
6an logγ

b2
n(1−µlogγ)3

)

+x2
( 8anµ(logγ)2

b3
n(1−µlogγ)5

− 4an logγ

b3
n(1−µlogγ)5

− 8anµ4(logγ)4

b3
n(1−µlogγ)5

+
8anµ4(logγ)5

b3
n(1−µlogγ)5

+
a2

n(logγ)2
(
7+8µ(logγ)+2µ4(logγ)3−2µ4(logγ)4

)

b4
n(1−µlogγ)6

)

+
anxlogγ

(
1+8µlogγ+6µ2(logγ)2

)

b4
n(1−µlogγ)7

+
anxlogγ

(
2(1−logγ)(logγ)3

(
6µ4−8µ5 logγ+3µ6(logγ)2

))

b4
n(1−µlogγ)7

.

Proof of the above lemma, follows from the linearity of the operators Pn and Lemma
2.3.

By equality (1.3), limn→∞ µn =0 and limn→∞ γn = e, we obtain

lim
n→∞

bnPn(ϕx,x)=0,

lim
n→∞

bnPn(ϕ2
x,x)= x,

lim
n→∞

bnPn(ϕ3
x,x)=0,

lim
n→∞

b2
nPn(ϕ4

x,x)=3x2.

The above equality can be verified for the case γn = e in [17, page 5].
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3 Direct theorem

Consider the Banach space Br ([0,∞))={ f : [0,∞)→R : | f (x)|≤M(1+xr)}, for some M>0
and r>0. By Cr ([0,∞)), we denote the subspace of all continuous functions to Br ([0,∞)).

Also, C∗
r ([0,∞)) is a subspace of all functions f ∈ Cr ([0,∞)), for which limn→∞

f (x)
1+xr is

finite. The norm on C∗
r ([0,∞)) is ‖ f‖=supx∈[0,∞)

f (x)
1+xr .

The convergence property of the operator (1.1) is proved in the following theorem:

Theorem 3.1. If f ∈Cr ([0,∞)) and µn →0, γn → e as n→∞, then the sequence Pn converges
uniformly to f(x) in [c,d], where 0≤ c<d<∞.

Proof. Since Pn is a positive linear operator for 0≤µn <1 and 1<γn≤ e, it is sufficient, by
Korovkin’s result [18], to verify the uniform convergence for test functions f (t)=1,t and
t2.

It is clear that
Pn(1,x)=1.

Going to f (t)= t,

lim
n→∞

Pn(t,x)= lim
n→∞

anxlog(γn)

bn(1−µn log(γn))
= x as µn →0 and γn→ e.

Proceeding to the function f (t)= t2, it can easily be shown that

lim
n→∞

Pn(t
2,x)= lim

n→∞

(
a2

nx2(log(γn))2

b2
n(1−µn log(γn))2

+
anxlog(γn)

b2
n(1−µlog(γn))3

)

=x2 as µn →0 and γn→ e,

and hence by Korovkin’s theorem the proof of theorem is complete.

Let the space CB([0,∞)) of all continuous and bounded functions be endowed with
the norm ‖ f‖=sup{| f (x)| :x∈ [0,∞)}. Further let us consider the following K-functional:

K2( f ,δ)= inf
g∈W2

{‖ f −g‖+δ‖g′′‖}, (3.1)

where δ>0 and W2 ={g∈CB ([0,∞)) : g′,g′′∈CB([0,∞))}. By the method as given in [19,
pp. 177, Theorem 2.4], there exists an absolute constant C>0 such that

K2( f ,δ)≤Cω2( f ,
√

δ), (3.2)

where
ω2( f ,

√
δ)= sup

0<h<
√

δ

sup
x∈[0,∞)

| f (x+2h)−2 f (x+h)+ f (x)| (3.3)

is the second order modulus of smoothness of f ∈CB([0,∞)) . Also, we set

ω( f ,
√

δ)= sup
0<h<

√
δ

sup
x∈[0,∞)

| f (x+h)− f (x)|. (3.4)
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Theorem 3.2. For f ∈CB ([0,∞)), we have

|Pn( f ,x)− f (x)|≤Cω2

(
f ,

√
Pn(ϕ2

x,x)+
(

x
( an logγ

bn(1−µlogγ)
−1
))2)

+ω1

(
f ,x

∣∣∣∣
an logγ

bn(1−µlogγ)
−1

∣∣∣∣
)

,

where C is positive constant.

Proof. We are introducing the auxiliary operators as follows

P̂n( f ,x)=Pn( f ,x)− f

(
anxlogγ

bn(1−µlogγ)

)
+ f (x)

for every x∈ [0,∞). The operators P̂n are linear and preserves the linear functions, there-
fore

P̂n(t−x,x)=0. (3.5)

Let g∈W2
∞ and x,t∈ [0,∞). By Taylor’s expansion, we have

g(t)= g(x)+(t−x)g′(x)+
∫ t

x
(t−u)g′′(u)du.

Applying P̂n, we get

P̂n(g,x)−g(x)= g′(x)P̂
α,β
n,γ(t−x,x)+ P̂n

(∫ t

x
(t−u)g′′(u)du,x

)
,

and applying (3.5), we get

P̂n(g,x)−g(x)= P̂n

(∫ t

x
(t−u)g′′(u)du,x

)
.

Hence,

|P̂n(g,x)−g(x)|≤
∣∣∣∣Pn

(∫ t

x
(t−u)g′′(u)du,x

)∣∣∣∣

+

∣∣∣∣
∫ anxlogγ

bn(1−µlogγ)

x

(
anxlogγ

bn(1−µlogγ)
−u

)
g′′(u)du

∣∣∣∣

≤Pn(ϕ2
x,x)‖g′′‖+

∫ anxlogγ
bn(1−µlogγ)

x

∣∣∣∣
(

anxlogγ

bn(1−µlogγ)
−u

)
g′′(u)

∣∣∣∣du

≤
[

Pn(ϕ2
x,x)+

(
x

(
an logγ

bn(1−µlogγ)
−1

))2
]
‖g′′‖.



238 P. Patel and V. N. Mishra / Anal. Theory Appl., 32 (2016), pp. 232-241

Also, we have |Pn( f ,x)|≤‖ f‖. Using these, we get

|Pn( f ,x)− f (x)|≤|P̂n( f −g,x)−( f −g)(x)|+|P̂n(g,x)−g(x)|

+

∣∣∣∣
(

anxlogγ

bn(1−µlogγ)

)
− f (x)

∣∣∣∣

≤4‖ f −g‖+
[

Pn(ϕ2
x,x)+

(
x

(
an logγ

bn(1−µlogγ)
−1

))2
]
‖g′′‖

+ω1

(
f ,x

∣∣∣∣
an logγ

bn(1−µlogγ)
−1

∣∣∣∣
)

.

Hence, taking infimum on the right hand side over all g∈W2, we get

|Pn( f ,x)− f (x)|≤K

(
f ,Pn(ϕ2

x,x)+

(
x

(
an logγ

bn(1−µlogγ)
−1

))2
)

+ω1

(
f ,x

∣∣∣∣
an logγ

bn(1−µlogγ)
−1

∣∣∣∣
)

.

In view of (3.2), we get

|Pn( f ,x)− f (x)|≤Cω2


 f ,

√

Pn(ϕ2
x,x)+

(
x

(
an logγ

bn(1−µlogγ)
−1

))2



+ω1

(
f ,x

∣∣∣∣
an logγ

bn(1−µlogγ)
−1

∣∣∣∣
)

.

This completes the proof of the theorem.

We know that a continuous function f defined on I satisfies the condition

| f (x)− f (y)|≤M f |x−y|η , (x,y)∈ I×E,

it called locally Lipη on E (0<η≤1, E⊂ I), where M f is a constant depending only on f .

Theorem 3.3. Let E be any subset of [0,∞). If f is locally Lip η on E, then we have

|Pn( f ,x)− f (x)|≤M f C(η,µ,γ,an,bn)max{xη/2,xη}+2M f dη(x,E),

where

C(η,µ,γ,an,bn)=

((
an logγ

bn(1−µlogγ)
−1

)2

+
an logγ

b2
n(1−µlogγ)3

)η

and d(x,E) is the distance between x and E defines as

d(x,E)= inf{|x−y| : y∈E}.



P. Patel and V. N. Mishra / Anal. Theory Appl., 32 (2016), pp. 232-241 239

Proof. Since f is continuous,

| f (x)− f (y)|≤M f |x−y|η

holds for any x≥0 and y∈E, E is closure of E⊂ (−∞,∞). Let (x,x0)∈ [0,∞)×E be such
that |x−x0|=d(x,E).

Using linear properties of Pn, inequality (A+B)η≤Aη+Bη (A≥0,B≥0,0<α≤1) and
Hölder’s inequality, we get

|Pn( f ,x)− f (x)|≤Pn(| f − f (x0)|,x)+| f (x0)− f (x)|
≤M f Pn(|(t−x)+(x−x0)|η ,x)+M f |x0−x|η

≤M f (Pn(|t−x|η ,x)+|x−x0|η)+M f |x0−x|η

≤M f

((
Pn(φ

2
x,x)

)η/2
+2|x−x0|η

)

=M f



(

x2

(
an logγ

bn(1−µlogγ)
−1

)2

+
anxlogγ

b2
n(1−µlogγ)3

)η/2

+2|x−x0|η



≤M f

(
C(η,µ,γ,an,bn)max{xη/2,xη}+2|x0−x|η

)
,

which is required results.

Now, we establish the Voronovskaja type asymptotic formula for the operators Pn.
In this section, we denoted Cr ([a,b]) as the set of all real-valued r-times continuously
differentiable functions on the interval [a,b], (r∈N) and it is a subspace of C([a,b]). The
norm on the space Cr ([a,b]) can be defined as

‖ f‖Cr([a,b])=‖ f‖C([a,b])+‖ f (1)‖C([a,b])+···+‖ f (k)‖C([a,b]), f ∈Cr ([a,b]) .

‖h‖C([a,b]) represents the sup-norm of the function h|[a,b].

Theorem 3.4. Let f , f ′, f ′′ ∈C([0,∞)) and let the operator Pn be defined as in (1.2). If µn → 0
and γn→ e as n→∞ holds, then

lim
n→∞

bn (Pn( f ,x)− f (x))=
x

2
f ′′(x), ∀ x>0.

Proof. Let f , f ′, f ′′∈C([0,∞)) and x∈ [0,∞) be fixed. By the Taylor’s formula, we have

f (t)= f (x)+ f ′(x)(t−x)+
1

2
f ′′(x)(t−x)2+r(t;x)(t−x)2, (3.6)

where r(t;x) is the Peano form of the remainder, r(·;x)∈C2([0,∞)) and limt→xr(t,x)=0.
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We apply Pn to Eq. (3.6), we get

Pn( f ,x)− f (x)= f ′(x)Pn((t−x),x)+
1

2
f ′′(x)Pn((t−x)2,x)+Pn(r(t;x)(t−x)2,x)

= f ′(x)

[
x

(
an logγ

bn(1−µlogγ)
−1

)]
+Pn(r(t;x)(t−x)2,x)

+
f ′′(x)

2

[
x2

(
an logγ

bn(1−µlogγ)
−1

)2

+
anxlogγ

b2
n(1−µlogγ)3

]
.

In the second term Pn(r(t;x)(t−x)2,x) applying the Cauchy-Schwartz inequality, we have

0≤|Pn(r(t;x)(t−x)2,x)|≤
√

Pn((t−x)4,x)
√

Pn(r(t;x),x). (3.7)

We have marked that lim
t→x

r(t,x)=0. In harmony with µn→0 and γn→e as n→∞, we have

lim
n→∞

Pn(r(t,x),x)=0. (3.8)

On the basis of (3.7) and (3.8), we get that

lim
n→∞

bn (Pn( f ,x)− f (x))=
x

2
f ′′(x), ∀x>0.

Hence, the proof is completed.
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[17] P. Patel, V. N. Mishra and M. Örkcü, Approximation properties of modified Szász–
Mirakyan operators in polynomial weighted space, Cogent Mathematics, 2(1) (2015),
1106195, http://dx.doi.org/10.1080/23311835.2015.1106195.

[18] P. P. Korovkin, On convergence of linear positive operators in the space of continuous func-
tions, in: Dokl. Akad. Nauk SSSR, 90 (1953), 961–964.

[19] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Vol. 303, Springer Verlag,
1993.


