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CONVERGENT FINITE DIFFERENCE SCHEME

FOR 1D FLOW OF COMPRESSIBLE MICROPOLAR FLUID

NERMINA MUJAKOVIĆ AND NELIDA ČRNJARIĆ-ŽIC

Abstract. In this paper we define a finite difference method for the nonstationary 1D flow of
the compressible viscous and heat-conducting micropolar fluid, assuming that it is in the ther-
modynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity,
microrotation and heat flux are proposed. The sequence of approximate solutions for our problem
is constructed by using the defined finite difference approximate equations system. We investi-
gate the properties of these approximate solutions and establish their convergence to the strong
solution of our problem globally in time, which is the main results of the paper. A numerical ex-
periment is performed by solving the defined approximate ordinary differential equations system
using strong-stability preserving (SSP) Runge-Kutta scheme for time discretization.

Key words. micropolar fluid flow, initial-boundary value problem, finite difference approxima-
tions, strong and weak convergence.

1. Introduction

The theory of micropolar fluid was introduced by A. C. Eringen in 1960, [8].
Eringen suggested many possible applications of the micropolar fluid, but from
the mathematical point of view the theory is still in the early stage of develop-
ment. The results for incompressible flow are very well systematized in the book
of Lukaszewicz,[11] but the theory for compressible flows, especially for the flows
involving temperature, is still in the beginning.

In this paper we focus on the compressible flow of the isotropic, viscous, and
heat conducting micropolar fluid, which is in thermodynamical sense perfect and
polytropic. The model for this type of flow was first considered by Mujaković in
[12] where she developed a one-dimensional model. The model is quite complex
from numerical point of view, as well as from theoretical standpoint. It consists
of four partial differential equations - one of which is a differential equation of
the first order, and the other three are non-linear parabolic equations of second
order. In the work [13] the local existence and uniqueness of the solution, which
is called generalized, for our model with the homogeneous boundary conditions for
velocity, microrotation and heat flux were proved, while in [13] Mujaković proved
the existence of global in time solution for the described problem. So far, the
numerical analysis of this model was done only by Faedo-Galerkin method [12, 7, 15]
that is unsuitable for wider application.

The main goal of this paper is to propose a numerical method for solving a given
model using the finite difference approach, which is more acceptable in practical
applications. We define the semidiscrete finite difference approximate equations
system and investigate the properties of the sequence of the approximate solutions.
We prove that the limit of this sequence is the solution to our problem and that
it has the same properties as the solution in [12]. In this way the convergence
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of the corresponding numerical scheme is established and furthermore, the global
existence of the solution for the considered problem, already proved in [13], verified.
In our work we follow some ideas of [3, 4].

Other authors who have discussed various models of fluid by using finite differ-
ences mainly don’t analyze the problem of convergence of approximate solutions
from a theoretical point of view. The approach used here can be applied in other
research models based on similar systems of partial differential equations.

The paper is organized as follows. In the second section we introduce the math-
ematical formulation of our problem. In the third section we derive the finite dif-
ference approximate equations system and in the fourth section present the main
result. In Sections 5-8, we prove uniform a priori estimates for the approximate
solutions. Proof of convergence of a sequence of approximate solutions to a solution
of our problem is given in the ninth section. Finally, in the tenth section we perform
the numerical experiment.

2. Mathematical model

We are dealing with the one-dimensional flow of the compressible viscous and
heat-conducting micropolar fluid flow, which is thermodynamically perfect and
polytropic. Let ρ, v, w and θ denote, respectively, the mass density, velocity,
microrotation velocity and temperature in the Lagrangian description. The mo-
tion of the fluid under consideration is described by the following system of four
equations (see, for example, [12]):

∂tρ+ ρ2∂xv = 0,(1)

∂tv = ∂x (ρ ∂xv)−K∂x(ρ θ),(2)

ρ ∂tω = A [ρ ∂x (ρ ∂xω)− ω] ,(3)

ρ ∂tθ = −Kρ2θ ∂xv + ρ2(∂xv)
2 + ρ2(∂xω)

2 + ω2 +Dρ∂x (ρ ∂xθ) .(4)

The system is considered in the domain QT = (0, 1) × (0, T ), where T > 0 is
arbitrary; K, A and D are positive constants. Equations (1)-(4) are, respectively,
local forms of the conservation laws for the mass, momentum, momentum moment
and energy. We take the following non-homogeneous initial conditions:

(5) ρ(x, 0) = ρ0(x), v(x, 0) = v0(x), ω(x, 0) = ω0(x), θ(x, 0) = θ0(x),

and homogeneous boundary conditions:

v(0, t) = v(1, t) = 0, ω(0, t) = ω(1, t) = 0(6)

∂xθ(0, t) = ∂xθ(1, t) = 0,(7)

for x ∈ (0, 1) and t ∈ (0, T ). Here ρ0, v0, ω0 and θ0 are given functions. We assume
that there exists a constant m ∈ R+ such that

(8) ρ0(x) ≥ m, θ0(x) ≥ m for x ∈ (0, 1).

Let the initial data (5) have the following properties of smoothness

(9) ρ0, θ0 ∈ H1((0, 1)) and v0, ω0 ∈ H1
0 ((0, 1)).

Because of embedding H1((0, 1)) into C([0, 1]), it is easy to check that there exists
M ∈ R+ such that

(10) ρ0(x), |v0(x)|, |ω0(x)|, θ0(x) ≤ M, for x ∈ [0, 1].

Under the stated assumptions (8)-(9) in the previous papers [12, 13] is proven that
problem (1)-(7) has unique solution (ρ, v, ω, θ) in the domain QT , for every T > 0,
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with the following properties:

ρ ∈ L∞(0, T ;H1((0, 1))) ∩H1(QT ),(11)

v, ω, θ ∈ L∞(0, T ;H1((0, 1))) ∩H1(QT ) ∩ L2(0, T ;H2((0, 1))),(12)

ρ > 0, θ > 0 on Q̄T .(13)

These results were obtained by using the Faedo–Galerkin method for a local exis-
tence theorem and the principle of extension for a global existence theorem. From
embedding and interpolation theorems (e.g. see [5, 6]) we can conclude that from
(11) and (12) it follows:

ρ ∈ L∞(0, T ;C([0, 1])) ∩C([0, T ];L2((0, 1))),(14)

v, ω, θ ∈ L2(0, T ;C1([0, 1])) ∩ C([0, T ];H1((0, 1))),(15)

v, ω, θ ∈ C(Q̄T ).(16)

Also, in article [14] we have a proof that the solution (ρ, v, ω, θ) converges to the
stationary constant solution (α−1, 0, 0, E1) in the space (H1((0, 1)))

4 (when t → ∞),
where

(17) α =

∫ 1

0

1

ρ0(x)
dx, E1 =

1

2
‖v0‖2 +

1

2A
‖ω0‖2 + ‖θ0‖2L1((0,1)).

(‖ ‖ = ‖ ‖L2((0,1))).

3. Finite-difference spatial discretization and approximate solutions

In this section we introduce a space discrete difference scheme in order to obtain
appropriate approximate system of the equation system (1)-(7). We construct semi-
discrete finite difference approximate solutions on a uniform staggered grid. In
making a discrete scheme we use some ideas from [4] and [3].

Let h be an increment in x such that Nh = 1 for N ∈ Z+. The staggered
grid points are denoted with xk = kh, k ∈ {0, 1, . . . , N} and xj = jh, j ∈
{

1
2 , . . . , N − 1

2

}

. For each integer N , we construct the following time dependent
functions

(18) ρj(t), θj(t), j = 1
2 , . . . , N − 1

2 ,

(19) vk(t), ωk(t), k = 0, 1, . . . , N,

that form a discrete approximation to the solution at defined grid points

ρ(xj , t), θ(xj , t), j = 1
2 , . . . , N − 1

2 ,

v(xk, t), ω(xk, t), k = 0, 1, . . . , N.

First, the functions ρj(t), vk(t), ωk(t), θj(t), j =
1
2 , . . . , N − 1

2 , k = 1, . . . , N − 1, are
determined by using appropriate spatial discretization of equation system (1)-(4):

ρ̇j = −ρ2jδvj(20)

v̇k = δ(ρδv)k −Kδ(ρθ)k(21)

ρkω̇k = A [ρkδ(ρδω)k − ωk](22)

ρj θ̇j = −Kρ2jθjδvj + ρ2j(δvj)
2 + ρ2j(δωj)

2 + ω2
j +Dρjδ(ρδθ)j(23)

where j = 1
2 , . . . , N − 1

2 and k = 1, . . . , N − 1. δ is the operator defined with

(24) δgl =
gl+ 1

2

− gl− 1

2

h
,
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for l = j or l = k. For k ∈ {1, . . . , N} and j ∈ { 1
2 , . . . , N − 1

2}, the functions ρk, θk
and vj , ωj we define by

(25) ρk = ρk− 1

2

, θk = θk− 1

2

and vj = vj+ 1

2

, ωj = ωj+ 1

2

.

Equations (20)-(23) are ordinary differential equations.
Taking into account the boundary conditions (6)-(7), we define

(26) v0(t) = vN (t) = 0, ω0(t) = ωN (t) = 0,

(27) δθ0(t) = δθN (t) = 0.

Now the system (20)-(23) with (26)-(27) contains 4N + 2 equations for 4N + 2
unknown functions.

The initial conditions are defined in accordance with given initial conditions (5)
as:

(28)

(ρj , θj)(0) =

(

1

h

∫ (j+ 1

2
)h

(j− 1

2
)h

ρ0(x)dx,
1

h

∫ (j+ 1

2
)h

(j− 1

2
)h

θ0(x)dx

)

, j ∈
{

1
2 , . . . , N − 1

2

}

,

(29)

(vk, ωk)(0) =

(

1

h

∫ kh

(k−1)h

v0(x)dx,
1

h

∫ kh

(k−1)h

ω0(x)dx

)

, k ∈ {1, . . . , N − 1},

and

(30) v0(0) = vN (0) = 0 ω0(0) = ωN (0) = 0, and δθ0(0) = δθN (0) = 0.

It is easy to see, that from (8) and (10) it follows

(31) m ≤ ρj(0), θj(0) ≤ M, j = 1
2 , . . . , N − 1

2 .

and

(32)
1

M
≤

N− 1

2
∑

j= 1

2

h

ρj(0)
≤ 1

m
.

Averaging of the initial conditions (28) and (29) was necessary for obtaining
the following estimates based on the smoothness properties (9). Using (9) one can
conclude that

(33)

N− 1

2
∑

j= 1

2

∣

∣(ρj , θj)
∣

∣

2
(0)h ≤ C,

N
∑

k=0

∣

∣(vk, ωk)
∣

∣

2
(0)h ≤ C,

(34)

N−1
∑

k=1

∣

∣(δρk, δθk)
∣

∣

2
(0)h ≤ C,

N− 1

2
∑

j= 1

2

∣

∣(δvj , δωj)
∣

∣

2
(0)h ≤ C,

and

(35)

N− 1

2
∑

j= 1

2

∣

∣(ρj , θj)
∣

∣

4
(0)h ≤ C,

N
∑

k=1

∣

∣(vk, ωk)
∣

∣

4
(0)h ≤ C,

where C > 0 is a constant, which depends on initial functions and not on step h

(or N).
¿From the basic theory of differential equations and the local existence theorem,

it is known that there exists a smooth solution of the Cauchy problem (20)-(23),
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(26)-(27) with the initial conditions (3.11)-(30) locally on some time interval [0, T ),
T > 0 ([1, 16]). Because of positivity of the initial conditions (see (31)) and
smoothness of the solution on the considered interval, we can choose such T so that

0 < ρj(t), θj(t) < ∞, j = 1
2 , . . . , N − 1

2(36)

|vk(t)|, |ωk(t)| < ∞, k = 0, . . . , N(37)

for t ∈ [0, T ). Let [0, Tmax) be the maximal time interval on which the smooth
solution satisfying (36) and (37) exists. Our first goal is to show that the solution
is globally defined on [0,∞), i.e., that Tmax = ∞. We will achieve this by showing,
for fixed h > 0, the boundedness of the mass density, the velocity, the microrotation
velocity and the temperature, as well as the lower boundedness of the density and
the temperature away from zero (see Section 5). ¿From that, we conclude that the
solution (ρj , vk, ωk, θj), j = 1

2 , . . . , N − 1
2 , k = 0, . . . , N can be defined globally in

time.
Now, using the solution of the Cauchy problem (20)-(23), (26)-(30) we construct

for t ≥ 0 the following approximate functions.
For each fixed N , x ∈ ( 1

N [xN ], 1
N ([xN ] + 1)], we define

vN (x, t) = v[xN ](t) + (xN − [xN ])(v[xN ]+1(t)− v[xN ](t)),(38)

ωN (x, t) = ω[xN ](t) + (xN − [xN ])(ω[xN ]+1(t)− ω[xN ](t))(39)

and similarly for x ∈ ( 1
N ([xN + 1

2 ]− 1
2 ),

1
N ([xN + 1

2 ] +
1
2 )], we define

(40)

ρN− 1

2 (x, t) = ρ[xN+ 1

2
]− 1

2

(t) + (xN − ([xN + 1
2 ]− 1

2 ))(ρ[xN+ 1

2
]+ 1

2

(t)− ρ[xN+ 1

2
]− 1

2

(t)),

(41)

θN− 1

2 (x, t) = θ[xN+ 1

2
]− 1

2

(t) + (xN − ([xN + 1
2 ]− 1

2 ))(θ[xN+ 1

2
]+ 1

2

(t)− θ[xN+ 1

2
]− 1

2

(t)).

For x ∈ [0, 1
2N ] we take

ρN− 1

2 (x, t) = ρ 1

2

(t), θN− 1

2 (x, t) = θ 1

2

(t)

and for x ∈ (1− 1
2N , 1]

ρN− 1

2 (x, t) = ρN− 1

2

(t), θN− 1

2 (x, t) = θN− 1

2

(t).

We also introduce the corresponding step functions:

(vh, ωh)(x, t) = (v[xN ], ω[xN ])(t), x ∈ ( 1
N [xN ], 1

N ([xN ] + 1)],(42)

(ρh− 1

2

, θh− 1

2

)(x, t) = (ρ[xN+ 1

2
]− 1

2

, θ[xN+ 1

2
]− 1

2

)(t),(43)

x ∈ ( 1
N ([xN + 1

2 ]− 1
2 ),

1
N ([xN + 1

2 ] +
1
2 )],

(ρh− 1

2

, θh− 1

2

)(x, t) = (ρ 1

2

, θ 1

2

)(t), x ∈ [0, 1
2N ],(44)

(ρh− 1

2

, θh− 1

2

)(x, t) = (ρN− 1

2

, θN− 1

2

)(t), x ∈ (1− 1
2N , 1].(45)

In this section the semi-discrete finite difference scheme resulting with the system
of ordinary differential equations is defined. In what follows the convergence of this
scheme will be proved. For determining the solution of the system (20)-(23), (26)-
(27) numerically, the time discretization should be performed. The time discretiza-
tion algorithm used in the considered numerical experiment is briefly described in
Section 10.
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4. The main result

The aim of this paper is to prove the following statements.

Theorem 4.1. Suppose that the initial data (ρ0, v0, ω0, θ0) satisfy properties (8)-
(9). Then there exist subsequences of approximate solutions (still denoted)

{(ρN− 1

2 , vN , ωN , θN− 1

2 )} and {(ρh− 1

2

, vh, ωh, θh− 1

2

)} in the domain QT (for each

T ∈ R+) such that, as N → ∞ (or h → 0),

(ρN− 1

2 , vN , ωN , θN− 1

2 ) → (ρ, v, ω, θ) strongly in (C(QT ))
4,(46)

* weakly in (L∞(0, T ;H1((0, 1))))4,(47)

weakly in (H1(QT ))
4,(48)

(vN , ωN , θN−1) → (v, ω, θ) weakly in (L2(0, T ;H2((0, 1))))3,(49)

(ρh− 1

2

, vh, ωh, θh− 1

2

) → (ρ, v, ω, θ) strongly in (L∞(0, T ;L2((0, 1))))4.(50)

The function (ρ, v, ω, θ) satisfies equations (1)-(4) a.e. in QT , conditions (5)-(7)
in the sense of traces and ρ and θ have the properties

(51) inf
QT

ρ > 0, inf
QT

θ > 0.

Notice that the function (ρ, v, ω, θ) introduced in Theorem 4.1 is the solution of
the same problem as the function introduced in Section 2. Moreover, the properties
of the function (ρ, v, ω, θ) coincide with the properties (11)-(16). Indeed, our goal
was to obtain the same solution, but using the different approach.

The proof of Theorem 4.1 is essentially based on a careful examination of a priori
estimates and limit procedure. We first study, for eachN , the approximate problem
(20)-(23), (26)-(30) and derive the a priori estimates for its solution independent
of N (or h) by utilizing a technique of articles [4] and [3]. Using the obtained a
priori estimates and results of weak and strong compactness [5, 6], we extract the
subsequences of approximate solutions, which, when N tends to infinity (or h → 0),
has the limit in the strong or weak sense on the domain (0, 1)× (0, T ), where T > 0
is arbitrary. Finally, we show that this limit is the solution to our problem. In this
article we use some ideas from [2].

The proof of our theorem is a direct consequence of the results that we obtain
in the following sections.

5. Basic estimates and global construction of the difference scheme

Throughout this paper, we denote by C > 0 or Ci > 0 (i = 1, 2, . . .) generic
constants independent of N , having possibly different values at different places.

In order to construct a global differential scheme, in this section we make some
key estimations for (ρj , vk, ωk, θj)(t), j =

1
2 , . . . , N − 1

2 , k = 1, . . . , N − 1.
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Lemma 5.1. There exists C > 0 such that, for T > 0 arbitrary and for all t ∈
[0, T ], it holds

K

N− 1

2
∑

j= 1

2

Φ(
1

ρj
)h+

1

2

N−1
∑

k=1

v2kh+
1

2A

N−1
∑

k=1

ω2
kh+

N− 1

2
∑

j= 1

2

Φ (θj)h

+

∫ t

0

N− 1

2
∑

j= 1

2

ρj

θj
(δvj)

2h dτ +

∫ t

0

N− 1

2
∑

j= 1

2

ρj

θj
(δωj)

2h dτ +(52)

+

∫ t

0

N− 1

2
∑

j= 1

2

ω2
j

ρjθj
h dτ +D

∫ t

0

N−1
∑

k=1

ρk(δθk)
2

θk− 1

2

θk+ 1

2

h dτ ≤ C,

where Φ(w) = w − 1− lnw is a nonnegative convex function.

Proof. Multiplying (20), (21), (22) and (23), respectively, by K(ρj − 1)ρ−2
j h, vkh,

A−1ρ−1
k ωkh and ρ−1

j (1− 1
θj
)h, summing over j = 1

2 , . . . , N − 1
2 and k = 1, . . . , N−1

and adding the obtained equations, we get

d

dt



K

N− 1

2
∑

j= 1

2

Φ(
1

ρj
)h+

1

2

N−1
∑

k=1

v2kh+
1

2A

N−1
∑

k=1

ω2
kh+

N− 1

2
∑

j= 1

2

Φ (θj)h



(53)

+

N− 1

2
∑

j= 1

2

ρj

θj
(δvj)

2h+

N− 1

2
∑

j= 1

2

ρj

θj
(δωj)

2h+

N− 1

2
∑

j= 1

2

ω2
j

ρjθj
h+D

N−1
∑

k=1

(δθk)
2ρk

θk− 1

2

θk+ 1

2

h = 0,

Taking into account (31) we easily see that

(54)

N− 1

2
∑

j= 1

2

Φ(
1

ρj(0)
)h ≤ C,

N− 1

2
∑

j= 1

2

Φ(θj(0))h ≤ C,

uniformly by N . Integrating (53) over [0, t], t ≤ T , and using (33) and (54), we
immediately get (52). �

In the same way as in [4], this results verifies the existence of solution to the
Cauchy problem (20)-(23), (26)-(30) for all time, that is Tmax = ∞. Indeed, for
fixed h > 0, the estimation

Φ(
1

ρj(t)
) + vk(t)

2 +
1

2A
ωk(t)

2 +Φ(θj(t)) ≤
C

h
,

implies the global bounds of the functions (ρj , vk, ωk, θj):

0 < Φ−1
− (

C

h
) ≤ ρ−1

j (t), θj(t) ≤ Φ−1
+ (

C

h
) < ∞,

and

|vk(t)| <
C√
h
, |ωk(t)| <

C√
h
,

where Φ−1
± denote the two branches of the inverse function of Φ defined on (0, 1]

and [1,∞), respectively. In this case, (ρj , vk, ωk, θj) can be locally extended beyond
the maximal time interval [0, Tmax), that is a contradiction unless Tmax = ∞.

Hence, we have our construction of the difference scheme (ρj , vk, ωk, θj)(t) and
the corresponding approximate solutions

(ρN− 1

2 , vN , ωN , θN− 1

2 )(x, t) and (ρh− 1

2

, vh, ωh, θh− 1

2

)(x, t)
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defined on [0, T ], for each T > 0.

The estimations obtained in the next three lemmas do not depend of N and T

also.

Lemma 5.2. For each t ∈ [0, T ], T > 0 arbitrary, it holds

(55)
1

M
≤

N− 1

2
∑

j= 1

2

h

ρj(t)
≤ 1

m

(where m,M ∈ R+ are as in (31)).

Proof. Multiplying (20) by ρ−2
j h and summing over j, we have

(56)
d

dt

N− 1

2
∑

j= 1

2

h

ρj
=

N− 1

2
∑

j= 1

2

δvj h = 0.

Integrating (56) over [0, t] and using (32) we easily get (55). �

Lemma 5.3. There exists a constant C > 0 such that, for t ∈ [0, T ], it holds

(57)
1

2

N−1
∑

k=1

v2k(t)h+
1

2A

N−1
∑

k=1

ω2
k(t)h+

N− 1

2
∑

j= 1

2

θj(t)h ≤ C.

Proof. Multiplying (21), (22) and (23), respectively, by vkh, ρ
−1
k A−1ωkh and ρ−1

k h,
summing over j and k, taking into account (3.8)-(27) after addition of the obtained
equations, we get the following equality

(58)
d

dt





1

2

N−1
∑

k=1

v2kh+
1

2A

N−1
∑

k=1

ω2
kh+

N− 1

2
∑

j= 1

2

θjh



 = 0.

Integrating over [0, t] and using (33), from (58) follows (57). �

Lemma 5.4. There exists C > 0 such that, for t ∈ [0, T ], it holds

(59)
1

2A

N−1
∑

k=1

ω2
kh+

∫ t

0

N− 1

2
∑

j= 1

2

ρj(δωj)
2hdτ +

∫ t

0

N−1
∑

k=1

ω2
k

ρk
hdτ ≤ C,

where ρk is defined by (3.8).

Proof. We multiply (22) by ρ−1
k A−1ωkh and sum over k. After integration over

[0, t] and using (33), we get immediately (59). �

6. Boundedness of the density

In the following sections we make estimates for the difference scheme at some
fixed interval [0, T ] ⊂ [0,∞). Now, we establish the uniform bounds for the density,
which are essential for our proof of the main results.

Lemma 6.1. There exist constants C1, C2 ∈ R+ such that, for all t ∈ [0, T ]

(60) C1 ≤ ρj(t) ≤ C2.
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Proof. From (52) we have

N− 1

2
∑

j= 1

2

Φ(
1

ρj(t)
) +

N− 1

2
∑

j= 1

2

Φ (θj(t)) ≤
C

h
= C N,

which implies that there exists at least one at ∈ { 1
2 , . . . , N − 1

2} such that, for all
t ∈ [0, T ]

(61) C−1 ≤ ρat
(t) ≤ C, C−1 ≤ θat

(t) ≤ C,

where C ∈ R+. Inserting (20) into (21) we get

v̇k = − d

dt
(δ ln ρ)k −Kδ(ρθ)k, k = 1, . . . , N − 1.

After integration over [0, t], multiplying by h and summation, it takes the form

k
∑

m=at+
1

2

(vm(t)− vm(0))h = − ln ρk+ 1

2

(t) + ln ρat
(t) + ln ρk+ 1

2

(0)− ln ρat
(0)−

− K

∫ t

0

ρk+ 1

2

θk+ 1

2

dτ +K

∫ t

0

ρat
θat

dτ,

i.e.,

exp







−
k
∑

m=at+
1

2

vm(t)h+
k
∑

m=at+
1

2

vm(0)h







=(62)

=
ρk+ 1

2

(t)ρat
(0)

ρat
(t)ρk+ 1

2

(0)
exp

{

K

∫ t

0

ρk+ 1

2

θk+ 1

2

dτ −K

∫ t

0

ρat
θat

dτ

}

,

where we have used a convention notation
∑y

m=x = −
∑x

m=y for the case y < x.
We define the discrete Kazhikov-Shelukhin type of functions by

(63) Y (t) = exp

{

K

∫ t

0

ρat
(τ)θat

(τ)dτ

}

,

(64) Bk(t) = exp







−
k
∑

m=at+
1

2

vm(t)h+

k
∑

m=at+
1

2

vm(0)h







Inserting (63)–(64) into (62) and multiplying by Kρk+ 1

2

(t)θk+ 1

2

(t) we get, for k =

1, . . . , N − 1, that

KBk(t)Y (t)
ρat

(t)ρk+ 1

2

(0)θk+ 1

2

(t)

ρat
(0)

=
d

dt

(

exp

{

K

∫ t

0

ρk+ 1

2

θk+ 1

2

dτ

})

.

Integrating over [0, t] and using (62) again, we obtain
(65)

K
ρk+ 1

2

(0)

ρat
(0)

∫ t

0

Bk(τ)Y (τ)ρat
(τ)θk+ 1

2

(τ)dτ =
ρat

(t)ρk+ 1

2

(0)

ρk+ 1

2

(t)ρat
(0)

Bk(t)Y (t)− 1.

Notice that, because of (52) and (33), it holds

∣

∣

∣−
k
∑

at+
1

2

vm(t)h+

k
∑

at+
1

2

vm(0)h
∣

∣

∣ ≤
(

N−1
∑

k=1

v2k(t)h

)1/2

+

(

N−1
∑

k=1

v2k(0)h

)1/2

≤ C,
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thus, we conclude that there exists C ∈ R+ such that

(66) C−1 ≤ Bk(t) ≤ C,

for all t ∈ [0, T ] and k = 1, . . . , N − 1. We can easily see that Y (t) > 1, t ∈ [0, T ].
Let be

Ŷ (t) =
Y (t)

ρat
(0)

.

Then equation (65), with the help of (66) and (61) gives

Ŷ (t)

ρk+ 1

2

(t)
≤ C

ρk+ 1

2

(0)
+

∫ t

0

θk+ 1

2

(τ)Ŷ (τ)dτ .

Multiplying the above inequality by h, summing up for k = 0, . . . , N − 1, and using
estimates (55), (32) and (57), we obtain

Ŷ (t) ≤ C

(

1 +

∫ t

0

Ŷ (τ)dτ

)

,

from which, after applying the Gronwall inequality, follows Ŷ (t) ≤ C, t ∈ [0, T ].
Therefore, we have

(67) 1 ≤ Y (t) ≤ ρat
(0)C ≤ C.

Then, using (62)-(63) and estimates (31), (61), (66) and (67) we get

ρk+ 1

2

(t) ≤ ρk+ 1

2

(t) exp

{

K

∫ t

0

ρk+ 1

2

(τ)θk+ 1

2

(τ)dτ

}

=(68)

=
ρat

(t)ρk+ 1

2

(0)

ρat
(0)

Bk(t)Y (t) ≤ C,

for t ∈ [0, T ] and k = 0, . . . , N − 1. Notice that from (65) follows the inequality

(69)
1

ρk+ 1

2

(t)
≤ C

(

1 +

∫ t

0

θk+ 1

2

(τ)dτ

)

.

Taking into account that, for at defined by (61), we have

θk+ 1

2

(t) =





√

θat
(t) +

k
∑

r=at+
1

2

δ(
√
θ)rh





2

≤(70)

≤ C



1 +
k
∑

r=at+
1

2

(δθ)2rρr− 1

2

h

θr− 1

2

θr+ 1

2

k
∑

r=at+
1

2

θr+ 1

2

ρr− 1

2

h





and inserting (70) into (69) we obtain

(71)

1

ρk+ 1

2

(t)
≤ C



1 +

∫ t

0

max
1≤r≤N

1

ρr− 1

2

(τ)

k
∑

r=at+
1

2

θr+ 1

2

h

k
∑

r=at+
1

2

(δθ)2rρr− 1

2

h

θr− 1

2

θr+ 1

2

dτ



 .

Using (57) from (71) we get immediately

max
0≤k≤N−1

1

ρk+ 1

2

(t)
≤ C



1 +

∫ t

0

max
0≤k≤N−1

1

ρk+ 1

2

(τ)

k
∑

r=at+
1

2

(δθ)2rρr− 1

2

h

θr− 1

2

θr+ 1

2

dτ



 ,
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from which, after applying the Gronwall inequality and estimate (52), follows the
boundedness

(72)
1

ρk+ 1

2

(t)
≤ C,

for each k = 0, . . . , N − 1 and t ∈ [0, T ]. The estimates (68) and (72) give the proof
of (60). �

7. Boundedness of the energy density and its consequences

Denote the energy density with

(73) Wk(t) =
1

2
v2k(t) +

1

2A
ω2
k(t) + θk− 1

2

(t),

for k = 1, . . . , N and t ∈ [0, T ]. It is easy to see that Wk(t) > 0, for each k.

Multiply equations (21), (22) and (23), respectively by vkWkh, A
−1ρ−1

k ωkWkh

and ρ−1
j Wj+ 1

2

h, j = k − 1
2 respectively, and sum up the resulting equality for

k = 1, . . . , N . Then with help of

(74) (δv2)k− 1

2

= (δv)k− 1

2

(vk + vk−1).

we obtain

(75)
1

2

d

dt

N
∑

k=1

W 2
kh+

D

6

N
∑

k=1

ρk− 1

2

(δWk− 1

2

)2h =

7
∑

m=1

Im(t),

where

I1(t) =
(

D
12 − 1

)

N
∑

k=1

ρk− 1

2

δvk− 1

2

vk−1δWk− 1

2

h,

I2(t) =
(

D
12A − 1

)

N
∑

k=1

ρk− 1

2

δωk− 1

2

ωk−1δWk− 1

2

h,

I3(t) = K

N
∑

k=1

ρk− 1

2

θk− 1

2

vkδWk− 1

2

h,

I4(t) = −D

N−1
∑

k=1

ρkδθkδWk+ 1

2

h,

I5(t) = D
12

N
∑

k=1

ρk− 1

2

δvk− 1

2

vkδWk− 1

2

h,

I6(t) = D
12A

N
∑

k=1

ρk− 1

2

δωk− 1

2

ωkδWk− 1

2

h,

I7(t) = D
6

N
∑

k=1

ρk− 1

2

δθk−1δWk− 1

2

h.

Taking into account

δWk− 1

2

=
1

2
(δv2)k− 1

2

+
1

2A
(δω2)k− 1

2

+ δθk−1,
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(74) and (60), and applying the Young inequality, we obtain the estimates of the
functions Im(t), m = 1, . . . , 7. For instance,

I1(t) =
(

D
12 − 1

)

N
∑

k=1

ρk− 1

2

δvk− 1

2

vk−1δWk− 1

2

h

= 1
2

(

D
12 − 1

)

N
∑

k=1

ρk− 1

2

δvk− 1

2

vk−1(δv
2)k− 1

2

h

+ 1
2A

(

D
12 − 1

)

N
∑

k=1

ρk− 1

2

δvk− 1

2

vk−1(δω
2)k− 1

2

h

+
(

D
12 − 1

)

N
∑

k=1

ρk− 1

2

δvk− 1

2

vk−1δθk−1h

≤C

N
∑

k=1

(δvk− 1

2

)2(v2k + v2k−1)h+ C

N
∑

k=1

|δvk− 1

2

| |vk| |δωk− 1

2

| |ωk + ωk−1|h

+ C

N
∑

k=1

|δvk− 1

2

| |vk−1| |δθk−1|h

≤C

N
∑

k=1

(δvk− 1

2

)2(v2k + v2k−1)h+ C

N
∑

k=1

(δωk− 1

2

)2(ω2
k + ω2

k−1)h+ ǫ

N−1
∑

k=1

ρk+ 1

2

(δθk)
2h,

where ǫ > 0 is arbitrary. In an analogous way one obtains the inequalities:

I2(t) ≤ C

N−1
∑

k=0

(δωk+ 1

2

)2(ω2
k+1 + ω2

k)h+ C

N−1
∑

k=0

(δvk+ 1

2

)2(v2k+1 + v2k)h(76)

+ ǫ

N−1
∑

k=0

ρk+ 1

2

(δθk+1)
2h,

I3(t) ≤ C

N−1
∑

k=0

(δvk+ 1

2

)2(v2k+1 + v2k)h+ C

N−1
∑

k=0

(δωk+ 1

2

)2(ω2
k+1 + ω2

k)h(77)

+ ǫ

N−1
∑

k=0

ρk+ 1

2

(δθk)
2h+ C

N−1
∑

k=0

θ2k+ 1

2

v2kh,

I4(t) ≤ −(D − 2ǫ)

N−1
∑

k=0

ρk+ 1

2

(δθk)
2h+(78)

+C

N−1
∑

k=0

(δvk+ 1

2

)2(v2k+1 + v2k)h+ C

N−1
∑

k=0

(δωk+ 1

2

)2(ω2
k+1 + ω2

k)h,

I5(t) ≤ C

N−1
∑

k=0

(δvk+ 1

2

)2(v2k+1 + v2k)h+ C

N−1
∑

k=0

(δωk+ 1

2

)2(ω2
k+1 + ω2

k)h(79)

+ ǫ

N−1
∑

k=0

ρk+ 1

2

(δθk)
2h,
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I6(t) ≤ C

N−1
∑

k=0

(δvk+ 1

2

)2(v2k+1 + v2k)h+ C

N−1
∑

k=0

(δωk+ 1

2

)2(ω2
k+1 + ω2

k)h(80)

+ǫ

N−1
∑

k=0

ρk+ 1

2

(δθk)
2h,

I7(t) ≤ C

N−1
∑

k=0

(δvk+ 1

2

)2(v2k+1 + v2k)h+ C

N−1
∑

k=0

(δωk+ 1

2

)2(ω2
k+1 + ω2

k)h(81)

+2ǫ

N−1
∑

k=0

ρk+ 1

2

(δθk)
2h+ D

6

N−1
∑

k=0

ρk+ 1

2

(δθk)
2h.

Inserting (??)-(81) into (75) and integrating over [0, t] we conclude (for sufficiently
small ǫ > 0) that

N
∑

k=1

W 2
kh+ C

∫ t

0

N
∑

k=1

(δWk− 1

2

)2h dτ + C

∫ t

0

N−1
∑

k=1

(δθk)
2h dτ ≤(82)

≤ C

(

1 +

∫ t

0

N−1
∑

k=0

(δvk+ 1

2

)2(v2k+1 + v2k)h dτ+

+

∫ t

0

N−1
∑

k=0

(δωk+ 1

2

)2(ω2
k+1 + ω2

k)h dτ +

∫ t

0

N−1
∑

k=0

θ2k+ 1

2

v2kh dτ

)

.

Lemma 7.1. There exist C1, C2, C ∈ R+ such that, for t ∈ [0, T ], it holds

N
∑

k=1

W 2
kh+

∫ t

0

N
∑

k=1

(δWk− 1

2

)2h dτ +

∫ t

0

N−1
∑

k=1

(δθk)
2h dτ + C1

N
∑

k=1

v4kh(83)

+C2

N
∑

k=1

ω4
kh+

∫ t

0

N
∑

k=1

ω4
khdτ ≤ C

(

1 +

∫ t

0

N
∑

k=1

θ2k− 1

2

(v2k + v2k−1)h dτ

)

.

Proof. Multiplying (21) and (22), respectively, by v3kh and A−1ρ−1
k ω3

kh, summing
over k, we get

(84)

1

4

d

dt

N
∑

k=1

v4kh = −
N
∑

k=1

ρk− 1

2

δvk− 1

2

(δv3)k− 1

2

h+K

N
∑

k=1

ρk− 1

2

θk− 1

2

(δv3)k− 1

2

h,

(85)
1

4A

d

dt

N
∑

k=1

ω4
kh+

N
∑

k=1

ω4
k

ρk
h+

N
∑

k=1

ρk− 1

2

δωk− 1

2

(δω3)k− 1

2

h = 0.

We use the equality

(86) (δv3)k− 1

2

= (v2k + v2k−1)δvk− 1

2

+ vkvk−1δvk− 1

2

,

that satisfies the function (δω3)k− 1

2

also. Applying the Young inequality with the

parameter ǫ > 0 and estimation (35) to (84), after integration of the obtained
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inequality, we have

1

4

N
∑

k=1

v4k + (
1

2
− 2ǫ)

∫ t

0

N
∑

k=1

ρk− 1

2

(δvk− 1

2

)2(v2k + v2k−1)h dτ(87)

≤ C

(

1 +

∫ t

0

N
∑

k=1

ρk− 1

2

θ2k− 1

2

(v2k + v2k−1)h dτ

)

,

where we take ǫ = 1
8 . From (85) it follows

(88)

1

4A

N
∑

k=1

ω4
kh+

∫ t

0

N
∑

k=1

ω4
k

ρk
hdτ +

1

2

∫ t

0

N
∑

k=1

ρk− 1

2

(δωk− 1

2

)2(ω2
k + ω2

k−1)hdτ ≤ C.

We take into account (60) and then multiply (87) and (88) with constants deter-
mined in such a way that after adding the obtained inequalities to (82), the parts
consisting of (δωk− 1

2

)2(ω2
k + ω2

k−1) and (δvk− 1

2

)2(v2k + v2k−1) cancel each other out.

So, we get (83). �

Lemma 7.2. For each t ∈ [0, T ], it holds

(89)

N
∑

k=1

(θ2k− 1

2

+ v4k + ω4
k)h ≤ C.

Proof. Inserting θk+ 1

2

defined by (70) into the right hand side of inequality (83)

and integrating over [0, t], we obtain

∫ t

0

N
∑

k=1

θ2k− 1

2

(v2k + v2k−1)hdτ(90)

≤ C

∫ t

0

N
∑

k=1

(

1 +

N−1
∑

r=1

(δθr)
2ρr− 1

2

h

θr− 1

2

θr+ 1

2

N−1
∑

r=1

θr+ 1

2

h

ρr− 1

2

)

θk− 1

2

(v2k + v2k−1)hdτ

= C

∫ t

0

(

1 +

N−1
∑

r=1

(δθr)
2ρr− 1

2

h

θr− 1

2

θr+ 1

2

N−1
∑

r=1

θr+ 1

2

h

ρr− 1

2

)

N
∑

k=1

θk− 1

2

(v2k + v2k−1)hdτ .

Using estimates (60), (57) and the Young inequality from (90), we get

∫ t

0

N
∑

k=1

θ2k− 1

2

(v2k + v2k−1)hdτ(91)

≤ C

∫ t

0

(

1 +
N−1
∑

r=1

(δθr)
2ρr− 1

2

h

θr− 1

2

θr+ 1

2

)

N
∑

k=1

(θ2k− 1

2

+ v4k + v4k−1)hdτ .

Inserting (91) into (83) we have the inequality

N
∑

k=1

(θ2k− 1

2

+ v4k + v4k−1 + ω4
k)h ≤(92)

≤ C + C

∫ t

0

(

1 +

N−1
∑

r=1

(δθr)
2ρr− 1

2

h

θr− 1

2

θr+ 1

2

)

N
∑

k=1

(θ2k− 1

2

+ v4k + v4k−1 + ω4
k)hdτ
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Taking into account estimation (52) and applying the Gronwall inequality, from
(92) it follows that the boundedness of the function

N
∑

k=1

(θ2k− 1

2

+ v4k + v4k−1 + ω4
k)h

for all t ∈ [0, T ] and (89) is obtained. �

Now with the help of (89) and (52), from (91) we get immediately

(93)

∫ t

0

N
∑

k=1

θ2k− 1

2

(v2k + v2k−1)hdτ ≤ C,

and then from (83) we easily conclude that for all t ∈ [0, T ] it holds

(94)

∫ t

0

N
∑

k=1

(δvk− 1

2

)2(v2k + v2k−1)hdτ ≤ C,

(95)

∫ t

0

N
∑

k=1

(δωk− 1

2

)2(ω2
k + ω2

k−1)hdτ ≤ C,

(96)

∫ t

0

N−1
∑

k=1

(δθk)
2hdτ ≤ C.

Lemma 7.3. There exists C ∈ R+ such that, for all t ∈ [0, T ], it holds

(97)

N
∑

k=1

v2kh+

∫ t

0

N− 1

2
∑

j= 1

2

(δvj)
2hdτ ≤ C.

Proof. Multiplying (21) by vkh, summing over k = 1, . . . , N − 1 and applying the
Young inequality with a parameter ǫ > 0, we get

(98)
1

2

d

dt

N−1
∑

k=1

v2kh+

N− 1

2
∑

j= 1

2

ρj(δvj)
2h ≤ ǫ

N− 1

2
∑

j= 1

2

ρj(δvj)
2h+ C

N− 1

2
∑

j= 1

2

ρjθ
2
jh.

Integrating (98) over [0, t] and using (33), (60) and (89) (for ǫ small enough), we
obtain (97). �

With the help of (86) we have
∫ t

0

max
0≤k≤N

|vk|dτ ≤ C

(

1 +

∫ t

0

max
0≤k≤N

|vk|3dτ
)

(99)

= C



1 +

∫ t

0

N− 1

2
∑

j= 1

2

|(δv3)j |hdτ



 ≤ C

(

1 +

∫ t

0

N
∑

k=1

|δvk− 1

2

|(v2k + v2k−1)hdτ

)

≤ C

(

1 +

∫ t

0

N
∑

k=1

(δvk− 1

2

)2hdτ +

∫ t

0

N
∑

k=1

(v4k + v4k−1)hdτ

)

and using (89) and (97) we get

(100)

∫ t

0

max
0≤k≤N

|vk|dτ ≤ C for t ∈ [0, T ].
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In the same way we conclude that

(101)

∫ t

0

max
0≤k≤N

|ωk|dτ ≤ C for t ∈ [0, T ].

Now, for j = 1
2 , . . . , N − 1

2 , we have

(102) θ2j = θ2at
+

j
∑

i=at

(δθ2)i+ 1

2

h,

where θat
is defined by (61). Using the equality

(δθ2)i+ 1

2

= δθi+ 1

2

(θi+1 + θi),

the estimation (61) and applying the Young inequality from (102) we obtain

(103) θ2j ≤ C +

N− 1

2
∑

j= 1

2

θ2j h+
N
∑

k=1

(δθk)
2h.

Taking into account (60), (89) and (96) we conclude that from (103) it follows

(104)

∫ t

0

max
1

2
≤j≤N− 1

2

θ2jdτ ≤ C for t ∈ [0, T ].

The consequence of (104) is

(105)

∫ t

0

max
1

2
≤j≤N− 1

2

θjdτ ≤ C for t ∈ [0, T ].

8. Further bounds for the density, velocity, microrotation velocity and
temperature

We proceed with the further bounds for the variables of the system, needed for
proving the main theorem.

Lemma 8.1. There exists a constant C ∈ R+ such that, for all t ∈ [0, T ], it holds

(106)
N−1
∑

k=1

(δρk)
2(t)h ≤ C.

Proof. From (65) we can easily conclude that

(107) ρk+ 1

2

(t) = Fk+ 1

2

(t) ·G−1
k+ 1

2

(t)

where

(108) Fk+ 1

2

(t) =
ρk+ 1

2

(0)ρat
(t)

ρat
(0)

Bk(t)Y (t),

(109) Gk+ 1

2

(t) = 1 +K
ρk+ 1

2

(0)

ρat
(0)

∫ t

0

Bk(τ)Y (τ)ρat
(τ)θk+ 1

2

(τ)dτ

(Bk and Y are defined by (64) and (63)). For estimating

(110) δρk =
δFk Gk− 1

2

− Fk− 1

2

δGk

Gk+ 1

2

Gk− 1

2

we need the estimates of the functions (108), (109), δFk and δGk. Using (60), (20),
(66), (67) and (105), we find that there exist C1, C2 ∈ R+ such that

(111) C−1
1 ≤ Gk+ 1

2

(t) ≤ C1,
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(112) C−1
2 ≤ Fk+ 1

2

(t) ≤ C2,

for k = 0, . . . , N − 1 and all t ∈ [0, T ]. By the Taylor development we obtain

δBk− 1

2

(t) = Bk(t)

(

1− exp{(vk(t)− vk(0))h}
h

)

(113)

= −Bk(t)

(

vk(t)− vk(0) +
h

2
(vk(t)− vk(0))

2 exp{λ(vk(t)− vk(0))h}
)

,

for some 0 < λ < 1. Using (66) and (97) for (113) we get

(114) |δBk− 1

2

(t)| ≤ C(|vk(0)|+ |vk(t)|+ 1).

With the help of (31), (61), (66), (67), (105) and (114) for the functions δFk and
δGk, k = 1, . . . , N − 1, we have

|δFk| =
∣

∣

∣

ρat
(t)

ρat
(0)

Y (t)(δρk(0)Bk(t) + ρk− 1

2

(0)δBk− 1

2

(t))
∣

∣

∣(115)

≤ C(|δρk(0)|+ |vk(t)|+ |vk(0)|+ 1),

|δGk| =
∣

∣

∣

K

ρat
(0)

(

δρk(0)

∫ t

0

ρat
(τ)Bk(τ)Y (τ)θk+ 1

2

(τ)dτ+(116)

+ ρk− 1

2

(0)

∫ t

0

ρat
(τ)Y (τ)

(

δBk− 1

2

(τ)θk+ 1

2

(τ) +Bk(τ)δθk(τ)
)

dτ

)

∣

∣

∣

≤ C

(

1 + |δρk(0)|+
∫ t

0

(|vk(t)|+ |vk(0)|)θk+ 1

2

dτ +

∫ t

0

|δθk(τ)|dτ
)

.

Using (111), (112) and inequalities (115), (116) , from (110) we obtain

N
∑

k=1

(δρk(t))
2h ≤ C

(

N−1
∑

k=1

(δρk(0))
2h+

N−1
∑

k=1

v2k(t)h+
N−1
∑

k=1

v2k(0)h+
N−1
∑

k=1

h+(117)

+

∫ t

0

max
0≤k≤N−1

θ2k+ 1

2

N−1
∑

k=1

(v2k(0) + v2k(t))hdτ +

∫ t

0

N−1
∑

k=1

(δθk)
2hdτ

)

.

Taking into account (33), (34), (57), (96) and (104), from (117), it follows (106). �

Lemma 8.2. There exists C ∈ R+ such that, for j = 1
2 , . . . , N − 1

2 , and all
t ∈ [0, T ], it holds

(118) θj(t) ≥ C.

Proof. Multiplying (23) by ρ−1
j θ−2

j we obtain

(119)
d

dt

(

1

θj

)

+
ρj

θ2j
(δvj)

2 +
ρj

θ2j
(δωj)

2 +
ω2
j

ρjθ
2
j

= K
ρj

θj
(δvj)−Dδ(ρδθ)j

1

θ2j
.

Applying on the first part of the right-hand side the Young inequality, with a
parameter ǫ > 0, we get inequality

d

dt

(

1

θj

)

+
ρj

θ2j
(δvj)

2 ≤ ǫ
ρj

θ2j
(δvj)

2 + Cǫρj −Dδ(ρδθ)j
1

θ2j
,

which for ǫ = 1 reads

(120)
d

dt

(

1

θj

)

≤ Cǫρj −Dδ(ρδθ)j
1

θ2j
.
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Using the inequality

1

θ2j
δ(ρδθ)j ≥ −δ

(

ρδ(
1

θ
)

)

j

,

multiplying (120) by 2q( 1
θj
)2q−1h, q ∈ N\{1}, and summing up for j = 1

2 , . . . , N− 1
2 ,

we obtain for Ψj =
1
θj
, the following inequality

(121)
d

dt





N− 1

2
∑

j= 1

2

Ψ2q
j h



 ≤ 2qC

N− 1

2
∑

j= 1

2

ρjΨ
2q−1
j h+ 2qD

N− 1

2
∑

j= 1

2

δ(ρ δΨ)jΨ
2q−1
j h.

Taking into account

2qD

N− 1

2
∑

j= 1

2

δ(ρ δΨ)jΨ
2q−1
j h =

= −2qD

N−1
∑

k=1

ρk(δΨk)
2(Ψ2q−2

k+ 1

2

+ Ψ2q−3

k+ 1

2

·Ψk− 1

2

+ . . .+Ψ2q−2

k− 1

2

) ≤ 0

and applying the Hölder inequality on the first part of the right-hand side of (121),
we conclude that

(122)
d

dt





N− 1

2
∑

j= 1

2

Ψ2q
j h



 ≤ 2qC





N− 1

2
∑

j= 1

2

Ψ2q
j h





2q−1

2q




N− 1

2
∑

j= 1

2

ρ
2q
j h





1

2q

.

Using (60), from (122) we obtain the following differential inequality

(123) D′(t) ≤ C,

where the function D(t) is defined by

(124) D(t) =





N− 1

2
∑

j= 1

2

Ψ2q
j h





1

2q

.

¿From (123) it follows

(125) D(t) ≤ Ct+D(0),

for t ∈ [0, T ], i.e., for Ψ = (Ψ 1

2

, . . . ,ΨN− 1

2

), we have

(126) ‖Ψ(t)‖L2q ≤ CT +D(0).

Notice that because of (31), D(0) ≤ 1
m . If q → ∞ in (126), we obtain

‖Ψ(t)‖L∞ ≤ CT +
1

m
,

which implies

θj(t) ≥
(

CT +
1

m

)−1

for j = 1
2 , . . . , N − 1

2 and all t ∈ [0, T ]. �
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Lemma 8.3. There exists C ∈ R+ such that, for all t ∈ [0, T ] and j ∈ { 1
2 , . . . , N −

1
2}, the functions δvj and δωj satisfy following inequalities:

(127) |δvj | ≤ C





N− 3

2
∑

r= 1

2

(δ2vr+ 1

2

)2h





1/4



N− 1

2
∑

r= 1

2

(δvr)
2h





1/4

,

(128) |δωj | ≤ C





N− 3

2
∑

r= 1

2

(δ2ωr+ 1

2

)2h





1/4



N− 1

2
∑

r= 1

2

(δωr)
2h





1/4

.

Proof. Using (6) we get immediately

(129) δv 1

2

+ δv 3

2

+ . . .+ δvN− 1

2

= 0

for all t ∈ [0, T ]. It means that, for each t ∈ [0, T ], there exists at least one pair of
indices α(t), β(t) ∈ { 1

2 , . . . , N − 1
2} such that

(130) δvα(t) ≥ 0, δvβ(t) ≤ 0.

Suppose that α(t), β(t) are the smallest indices for which (130) is valid. If δvj(t) ≥
0, then we use δvβ(t) and (for j < β(t)) we obtain the inequality

(131)
∣

∣δvj |δvj | − δvβ(t)|δvβ(t)|
∣

∣ ≤
β(t)−1
∑

r=j

|δ2vr+ 1

2

| (|δvr+1|+ |δvr |)h,

from which, using the Hölder inequality, it follows

|δvj |2 ≤





β(t)−1
∑

r=j

|δ2vr+ 1

2

|2h





1

2





β(t)−1
∑

r=j

(|δvr+1|+ |δvr |)2h





1

2

(132)

≤ C





N− 3

2
∑

r= 1

2

|δ2vr+ 1

2

|2h





1

2




N− 1

2
∑

r= 1

2

(δvr)
2h





1

2

.

The same estimate can be obtained for j > β(t). On the other side, if δvj(t) ≤ 0,
we use δvα(t) and (for j < α(t) or j > α(t)), we have

|δvj |2 ≤
∣

∣δvα(t)|δvα(t)| − δvj |δvj |
∣

∣(133)

≤ C





N− 3

2
∑

r= 1

2

|δ2vr+ 1

2

|2h





1

2




N− 1

2
∑

r= 1

2

(δvr)
2h





1

2

.

Inequality (128) is obtained analogously. �

Lemma 8.4. There exists C ∈ R+ such that

(134)

N− 1

2
∑

j= 1

2

(δvj)
2h+

∫ t

0

N−1
∑

k=1

(δ2vk)
2hdτ ≤ C,

(135)

N− 1

2
∑

j= 1

2

(δωj)
2h+

∫ t

0

N−1
∑

k=1

(δ2ωk)
2hdτ ≤ C,

(136) |vk(t)| ≤ C, |ωk(t)| ≤ C,
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for all t ∈ [0, T ] and k ∈ {1, . . . , N − 1}.
Proof. Multiplying (21) and (22), respectively, by δ2vkh and A−1ρ−1

k δ2ωkh and
summing up for k = 1, . . . , N − 1, we get

1

2

N− 1

2
∑

j= 1

2

d

dt
(δvj)

2h+

N−1
∑

k=1

ρk− 1

2

(δ2vk)
2h =(137)

= K

N−1
∑

k=1

δρkθk+ 1

2

δ2vkh+K

N−1
∑

k=1

ρk− 1

2

δθkδ
2vkh−

N−1
∑

k=1

δρkδvk+ 1

2

δ2vkh,

(138)

1

2A

N− 1

2
∑

j= 1

2

d

dt
(δωj)

2h+

N−1
∑

k=1

ρk− 1

2

(δ2ωk)
2h = −

N−1
∑

k=1

δρkδωk+ 1

2

δ2ωkh−
N−1
∑

k=1

ωk

ρk
δ2ωkh.

With the help of (60), (127), (128) and using the Hölder inequality and the Young
inequality with a parameter ǫ > 0, for the terms on the right-hand side of (137)
and (138) we find estimates on [0, T ] as follows:

∣

∣K

N−1
∑

k=1

δρkθk+ 1

2

δ2vkh
∣

∣ ≤ ǫ

N−1
∑

k=1

(δ2vk)
2h+ C max

1

2
≤j≤N− 1

2

θ2j

N−1
∑

k=1

(δρk)
2h,

∣

∣K

N−1
∑

k=1

ρk− 1

2

δθkδ
2vkh

∣

∣ ≤ ǫ

N−1
∑

k=1

(δ2vk)
2h+ C

N−1
∑

k=1

(δθk)
2h,

∣

∣

N−1
∑

k=1

δρkδvk+ 1

2

δ2vkh
∣

∣ ≤ C

(

N−1
∑

k=1

(δ2vk)
2h

)

3

4





N− 1

2
∑

j= 1

2

(δvj)
2h





1

4 (N−1
∑

k=1

(δρk)
2h

)

1

2

≤ ǫ

N−1
∑

k=1

(δ2vk)
2h+ C





N− 1

2
∑

j= 1

2

(δvj)
2h





(

N−1
∑

k=1

(δρk)
2h

)2

,

∣

∣

N−1
∑

k=1

δρkδωk+ 1

2

δ2ωkh
∣

∣ ≤ C

(

N−1
∑

k=1

(δ2ωk)
2h

)

3

4





N− 1

2
∑

j= 1

2

(δωj)
2h





1

4 (N−1
∑

k=1

(δρk)
2h

)

1

2

≤ ǫ

N−1
∑

k=1

(δ2ωk)
2h+ C





N− 1

2
∑

j= 1

2

(δωj)
2h





(

N−1
∑

k=1

(δρk)
2h

)2

,

∣

∣

N−1
∑

k=1

ωk

ρk
δ2ωkh

∣

∣ ≤ ǫ

N−1
∑

k=1

(δ2ωk)
2h+ C

N−1
∑

k=1

ω2
kh.

Inserting these inequalities into (137) and (138), integrating over [0, t], using (60),
(34), (57), (96), (104), (106), (97), (59) and ǫ small enough, we conclude that (134)
and (135) are true. From the inequality

|vk(t)| ≤
N− 1

2
∑

j= 1

2

|δvj |h ≤





N− 1

2
∑

j= 1

2

(δvj)
2h





1

2




N− 1

2
∑

j= 1

2

h





1

2

that satisfies the function ωk, k = 1, . . . , N − 1, also, follows (136). �
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Lemma 8.5. There exists C ∈ R+ such that

(139)

N− 1

2
∑

j= 1

2

(ρ̇j(t))
2h ≤ C,

(140)

∫ t

0

N−1
∑

k=1

(v̇k(t))
2hdτ ≤ C,

(141)

∫ t

0

N−1
∑

k=1

(ω̇k(t))
2hdτ ≤ C,

for all t ∈ [0, T ].

Proof. Squaring (20), (21) and (22), multiplying by h, summing up for j = 1
2 , . . . , N−

1
2 and k = 1, . . . , N − 1, and using (60), (134), (135), (127), (106), (104), (96) and
(59), we get

N− 1

2
∑

j= 1

2

(ρ̇j(t))
2h =

N− 1

2
∑

j= 1

2

ρ4j(δvj)
2h ≤

N− 1

2
∑

j= 1

2

(δvj)
2h ≤ C,

∫ t

0

N−1
∑

k=1

(v̇k(t))
2h ≤ C

∫ t

0

(

N−1
∑

k=1

(δ2vk)
2h

)

1

2
(

N−1
∑

k=1

(δvk)
2h

)

1

2 N−1
∑

k=1

(δρk)
2hτ

+

∫ t

0

N−1
∑

k=1

ρ2k−1(δ
2vk)

2hdτ +

∫ t

0

max
1

2
≤j≤N− 1

2

θ2j

N−1
∑

k=1

(δρk)
2hdτ

+

∫ t

0

N−1
∑

k=1

ρ2k− 1

2

(δθk)
2hdτ ≤ C,

∫ t

0

N−1
∑

k=1

(ω̇k(t))
2h ≤ C

∫ t

0

(

N−1
∑

k=1

(δ2ωk)
2h

)

1

2
(

N−1
∑

k=1

(δωk)
2h

)

1

2 N−1
∑

k=1

(δρk)
2hτ

+

∫ t

0

N−1
∑

k=1

ρ2k−1(δ
2ωk)

2hdτ +

∫ t

0

N−1
∑

k=1

ω2
k

ρk
hdτ ≤ C.

�

In what follows we make the estimates for the functions δθk and δ2θk. Notice
that due to δθ0 = 0 we have the inequality

(δθ)2k ≤
(

N
∑

r=1

(δ2θr− 1

2

)2h

)

1

2
(

N−1
∑

r=1

(δθr)
2h

)

1

2

(142)

for each k = 1, . . . , N − 1.

Lemma 8.6. There exists C ∈ R+ such that

(143)

N−1
∑

k=1

(δθk)
2h+

∫ t

0

N− 1

2
∑

j= 1

2

(δ2θj)
2hdτ ≤ C,

(144) |θj(t)| ≤ C,
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for all t ∈ [0, T ] and j = 1
2 , . . . , N − 1

2 .

Proof. Multiplying (23) by ρ−1
j δ2θjh, summing up for j = 1

2 , . . . , N − 1
2 , and using

(60), (127), (128) and (142) and the Young inequality we obtain

1

2

N−1
∑

k=1

d

dt
(δθk)

2h+ C1

N− 1

2
∑

j= 1

2

(δ2θj)
2h ≤(145)

≤ 5ǫ

N−1

2
∑

j= 1

2

(δ2θj)
2h+ C max

1

2
≤j≤N− 1

2

θ2j

N− 1

2
∑

j= 1

2

(δvj)
2h

+ C

(

N−1
∑

k=1

(δ2vk)
2h

)

1

2





N− 1

2
∑

j= 1

2

(δvj)
2h





3

2

+ C

(

N−1
∑

k=1

(δ2ωk)
2h

)

1

2





N− 1

2
∑

j= 1

2

(δωj)
2h





3

2

+ C(max |ωj|)4 + C

(

N−1
∑

k=1

(δθk)
2h

)





N− 1

2
∑

j= 1

2

(δρj)
2h





2

.

Integrating over [0, t] from (145), for ǫ small enough, we get

N−1
∑

k=1

(δθk)
2h+

∫ t

0

N− 1

2
∑

j= 1

2

(δ2θj)
2h

≤C

∫ t

0

max
1

2
≤j≤N− 1

2

θ2j

N− 1

2
∑

j= 1

2

(δvj)
2hdτ + C

∫ t

0

N−1
∑

k=1

(δ2vk)
2hdτ + C

∫ t

0





N− 1

2
∑

j= 1

2

(δvj)
2h





3

dτ

+ C

∫ t

0

N−1
∑

k=1

(δ2ωk)
2hdτ + C

∫ t

0





N− 1

2
∑

j= 1

2

(δωj)
2h





3

dτ + C

∫ t

0

(max |ωj |)4dτ

+ C

∫ t

0

(

N−1
∑

k=1

(δθk)
2h

)





N− 1

2
∑

j= 1

2

(δρj)
2h





2

dτ +

N−1
∑

k=1

(δθk)
2(0)h.

Taking into account (34), (134), (135), (136), (106) and (96), we easily conclude
that (143) is true.

The function θj satisfies the inequality

|θj(t)| ≤
N−1
∑

k=1

|δθk(t)|h+ θat
(t) ≤

(

N−1
∑

k=1

(δθk(t))
2h

)

1

2

+ θat
(t)

for j = 1
2 , . . . , N − 1

2 and t ∈ [0, T ], where θat
is introduced by (61). Using (143)

we get (144). �

It remains to prove the following estimation.

Lemma 8.7. There exists C ∈ R+ such that for each t ∈ [0, T ] it holds

(146)

∫ t

0

N− 1

2
∑

j= 1

2

(θ̇j(t))
2hdτ ≤ C.
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Proof. Squaring (23), multiplying by h, summing up for j = 1
2 , . . . , N− 1

2 and using
(60), (127), (128), (142) and the inequality

N− 1

2
∑

j= 1

2

(δvj)
2h ≤ C

N−1
∑

k=1

(δ2vk)
2h,

that satisfy the functions δωj and δθk also, we find that

N− 1

2
∑

j= 1

2

(θ̇j(t))
2h ≤C

(

N−1
∑

k=1

(δ2vk)
2h

)





N− 1

2
∑

j= 1

2

θ2jh



+ C

(

N−1
∑

k=1

(δ2vk)
2h

)





N− 1

2
∑

j= 1

2

(δvj)
2h





+ C

(

N−1
∑

k=1

(δ2ωk)
2h

)





N− 1

2
∑

j= 1

2

(δωj)
2h



+ C(max |ωj|)4

+ C





N− 1

2
∑

j= 1

2

(δ2θj)
2h









N− 1

2
∑

j= 1

2

(δρj)
2h



+ C

N− 1

2
∑

j= 1

2

(δ2θj)
2h.

Integrating over [0, t] and taking into account (134), (135), (136), (143), (89) and
(106) we get immediately (146). �

9. Convergence of approximate solutions to a solution of (1)-(7)

In this section we show the compactness of sequences of approximate solutions

(ρN− 1

2 , vN , ωN , θN− 1

2 ) and (ρh− 1

2

, vh, ωh, θh− 1

2

) which are defined by (38)-(45) and

their convergence to a solution (ρ, v, ω, θ) of (1)-(7).
With the help of (60), (106) and (139) we conclude that there exists C ∈ R+

(independent of N), such that

(147) |ρN− 1

2 (x, t)| +
∫ 1

0

(∂xρ
N− 1

2 )2(x, t)dx +

∫ 1

0

(∂tρ
N− 1

2 )2(x, t)dx ≤ C,

which implies the following statements.

Lemma 9.1. There exists a function

(148) ρ ∈ C(QT ) ∩H1(QT ) ∩ L∞(0, T ;H1((0, 1)))

and a subsequence of {ρN− 1

2 } (for simplicity denoted again as {ρN− 1

2 }), such that

ρN− 1

2 −→ ρ strongly in C(QT ),(149)

* weakly in L∞(0, T ;H1((0, 1))),(150)

weakly in H1(QT )(151)

(when N → ∞ or h → 0). There exists a subsequence of {ρh− 1

2

} (still denoted

{ρh− 1

2

}) such that

(152) ρh− 1

2

−→ ρ strongly in L∞(0, T ;L2((0, 1))).

The function ρ satisfies the condition

(153) C1 ≤ ρ(x, t) ≤ C2 for (x, t) ∈ QT ,

where C1, C2 ∈ R+.
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Proof. The conclusions (149)–(151) follow immediately from (147). Notice that
using (147), we have

(154)

∫ 1

0

(ρN− 1

2 − ρh− 1

2

)2(x, t)dx ≤ h2

∫ 1

0

(∂xρ
N− 1

2 )2(x, t)dx ≤ Ch2,

so (152) is satisfied. From (60) we can easily conclude (153). �

Taking into account estimates (136), (134), (140) for the function vN , (136),
(135), (141) for the function ωN and estimates (143), (144) and (146) for the func-

tion θN− 1

2 , we can conclude that there exists C ∈ R+ (independent of N), such
that

(155) |vN (x, t)| +
∫ 1

0

(∂xv
N )2(x, t)dx +

∫ T

0

∫ 1

0

[

(∂tv
N )2 + (∂xxv

N )2
]

(x, t)dxdτ ≤ C,

(156)

|ωN(x, t)| +
∫ 1

0

(∂xω
N)2(x, t)dx +

∫ T

0

∫ 1

0

[

(∂tω
N )2 + (∂xxω

N)2
]

(x, t)dxdτ ≤ C,

(157)

|θN− 1

2 (x, t)|+
∫ 1

0

(∂xθ
N− 1

2 )2(x, t)dx +(158)

∫ T

0

∫ 1

0

[

(∂tθ
N− 1

2 )2 + (∂xxθ
N− 1

2 )2
]

(x, t)dxdτ ≤ C,

which implies the following statements.

Lemma 9.2. There exist functions

(159) v, ω, θ ∈ C(QT ) ∩H1(QT ) ∩ L∞(0, T ;H1((0, 1))) ∩ L2(0, T ;H2((0, 1)))

and a subsequence of {(vN , ωN , θN− 1

2 )} (denoted again as {(vN , ωN , θN− 1

2 )}) such
that

(vN , ωN , θN− 1

2 ) −→ (v, ω, θ) strongly in (C(QT ))
3,(160)

* weakly in (L∞(0, T ;H1((0, 1))))3,(161)

weakly in (L2(0, T ;H2((0, 1))))3,(162)

weakly in (H1(QT ))
3,(163)

(when N → ∞ or h → 0). There exists a subsequence of {(vh, ωh, θh− 1

2

)} (still

denoted {(vh, ωh, θh− 1

2

)}) such that

(164) (vh, ωh, θh− 1

2

) −→ (v, ω, θ) strongly in (L∞(0, T ;L2((0, 1))))3

The function θ has the property

(165) θ(x, t) > C, (x, t) ∈ QT ,

where C ∈ R+.

Proof. The conclusions follow from (155)-(157) and inequality (154) that satisfy

couples of functions vN , vh, ω
N , ωh and θN− 1

2 , θh− 1

2

. Using the estimation (118)

we can easily conclude that (165) is correct. �
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Notice that, because of (28) and (43)-(45), we have

(166)

∫ t

0

[ρh− 1

2

(x, 0)− ρ0(x)]
2dx → 0, as h → 0.

Furthermore, the sequences {vh(x, 0)}, {ωh(x, 0)}, {θh− 1

2

(x, 0)} converge, respec-

tively, to v0, ω0 and θ0 in L2((0, 1)) (ρ0, v0, ω0 and θ0 are introduced by (9)).

Lemma 9.3. The functions ρ, v, ω, θ defined by Lemmas 9.1 and 9.2 satisfy
equations (1)-(4) a.e. in QT .

Proof. Equation (20) can be written in the from

(167) ∂tρh(x, t) = −ρ2h(x, t)∂xv
N (x, t) onQT .

For any test function ϕ ∈ D(QT ) from (167) we obtain

(168)

∫ T

0

∫ 1

0

ρh(x, τ)∂tϕ(x, τ) dx dτ −
∫ T

0

∫ 1

0

ρ2h(x, τ)∂xv
N (x, τ)ϕ(x, τ) dx dτ = 0.

Using the convergence ρh(x, t) → ρ(x, t) strongly and ∂xv
N (x, t) → ∂xv(x, t)

weakly, from (168) immediately follows
∫ T

0

∫ 1

0

∂tρ(x, τ)ϕ(x, τ) dx dτ +

∫ T

0

∫ 1

0

ρ2(x, τ)∂xv(x, τ)ϕ(x, τ) dx dτ = 0.

for all ϕ ∈ D(QT ).
Now, we choose N = 1

h large enough so that the support of the test function
ϕ is away enough from the boundaries, that is suppϕ ⊂ (h, 1 − h) × (0, T ) =
( 1
N , 1− 1

N )× (0, T ). Define

(169) ϕk(t) = ϕh(x, t) ≡ ϕ([xN ]h, t), kh ≤ x < (k + 1)h,

(170) ϕj(t) = ϕh− 1

2

(x, t) ≡ ϕ(([xN + 1
2 ]h− 1

2 )h, t), jh ≤ x < (j + 1)h.

We can see that

(171) ϕk(t) = 0, for k = 0, 1, N − 1, N,

(172) ϕj(t) = 0, for j = 1
2 , N − 1

2 .

Multiply equations (21) and (22) by ϕkh, sum it up for k = 1, . . . , N − 1 and
integrate over [0, T ] to get

(173)
∫ T

0

N−1
∑

k=1

∂tvkϕkh dτ +K

∫ T

0

N−1
∑

k=1

δ(ρθ)kϕkh dτ −
∫ T

0

N−1
∑

k=1

δ(ρδv)kϕkh dτ = 0,

(174)

1

A

∫ T

0

N−1
∑

k=1

∂tωkϕkh dτ −
∫ T

0

N−1
∑

k=1

δ(ρδω)kϕkh dτ +

∫ T

0

N−1
∑

k=1

ωk

ρk
ϕkh dτ = 0.

Since ϕh → ϕ, δϕh− 1

2

→ ∂xϕ ∂tϕh → ∂tϕ strongly converge as h → 0, we can write

equalities (173) and (174) as follows

(175)
∫ T

0

∫ 1

0

vh∂tϕdxdτ +K

∫ T

0

∫ 1

0

ρh− 1

2

θh− 1

2

∂xϕdxdτ −
∫ T

0

∫ 1

0

ρh− 1

2

∂xv
N∂xϕdxdτ = O(h),
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(176)

1

A

∫ T

0

∫ 1

0

ωh∂tϕdxdτ −
∫ T

0

∫ 1

0

ρh− 1

2

∂xω
N∂xϕdxdτ −

∫ T

0

∫ 1

0

ωh

ρh− 1

2

ϕdxdτ = O(h),

where O(h) → 0 as h → 0.
Using convergence (164), (152) and (163) we get that the functions ρ, v and ω

satisfy equations (2) and (3) a.e. in QT . Similarly, multiplying (21)-(23), respec-
tively, by vkϕkh, A

−1ρ−1
k ωkϕkh and ρ−1

j ϕjh, summing up for k = 1, . . . , N − 1 and

j = 1
2 , . . . , N − 1

2 and integrating over [0, T ] we obtain

(177)

−1

2

∫ T

0

∫ 1

0

v2h∂tϕdxdτ +

∫ T

0

∫ 1

0

ρh− 1

2

(∂xv
N )2ϕdxdτ

+

∫ T

0

∫ 1

0

ρh− 1

2

∂xv
N vh∂xϕdxdτ −K

∫ T

0

∫ 1

0

ρh− 1

2

θh− 1

2

∂xv
Nϕdxdτ

−K

∫ T

0

∫ 1

0

ρh− 1

2

θh− 1

2

vh∂xϕdxdτ = O(h),

(178)

− 1

2A

∫ T

0

∫ 1

0

ω2
h∂tϕdxdτ +

∫ T

0

∫ 1

0

ρh− 1

2

(∂xω
N )2ϕdxdτ +

∫ T

0

∫ 1

0

ρh− 1

2

∂xω
N ωh∂xϕdxdτ +

∫ T

0

∫ 1

0

ω2
h

ρh− 1

2

ϕdxdτ = O(h),

(179)

−
∫ T

0

∫ 1

0

θh− 1

2

∂tϕdxdτ +K

∫ T

0

∫ 1

0

ρh− 1

2

θh− 1

2

∂xv
Nϕdxdτ

−
∫ T

0

∫ 1

0

ρh− 1

2

(∂xv
N )2ϕdxdτ −

∫ T

0

∫ 1

0

ρh− 1

2

(∂xω
N)2ϕdxdτ −

∫ T

0

∫ 1

0

ω2
h

ρh− 1

2

ϕdxdτ +D

∫ T

0

∫ 1

0

ρh− 1

2

∂xθ
N∂xϕdxdτ = O(h),

where O(h) → 0 as h → 0. After summing the above equations we get

(180)

−
∫ T

0

∫ 1

0

(

1
2v

2
h + 1

2Aω2
h + θh− 1

2

)

∂tϕdxdτ +

∫ T

0

∫ 1

0

ρh− 1

2

∂xv
N vh∂xϕdxdτ

−K

∫ T

0

∫ 1

0

ρh− 1

2

θh− 1

2

vh∂xϕdxdτ +

∫ T

0

∫ 1

0

ρh− 1

2

∂xω
N ωh∂xϕdxdτ

+D

∫ T

0

∫ 1

0

ρh− 1

2

∂xθ
N∂xϕdxdτ = O(h).
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Because of (152), (164) and (163), from (180), for h → 0, follows
∫ T

0

∫ 1

0

(

v∂tv +
1
Aω∂tω + ∂tθ

)

ϕdxdτ −
∫ T

0

∫ 1

0

∂x(ρv∂xv)ϕdxdτ(181)

+K

∫ T

0

∫ 1

0

∂x(ρθv)ϕdxdτ −
∫ T

0

∫ 1

0

∂x(ρω∂xω)ϕdxdτ

−D

∫ T

0

∫ 1

0

∂x(ρ∂xθ)ϕdxdτ = 0.

Now, already proven equations (2) and (3) we multiply, respectively, by vϕ and
A−1ρ−1ωϕ, integrate over [0, 1]× [0, T ] and add up to (181). So we get that (4) is
satisfied. �

Lemma 9.4. The functions ρ, v, ω and θ satisfy the following conditions

(182) ρ(x, 0) = ρ0(x), v(x, 0) = v0(x), ω(x, 0) = ω0(x), θ(x, 0) = θ0(x),

(183) v(0, t) = v(1, t) = 0, ω(0, t) = ω(1, t) = 0, ∂xθ(0, t) = ∂xθ(1, t) = 0,

for x ∈ (0, 1) and t ∈ (0, T ) (ρ0, v0, ω0 and θ0 are introduced by (9)).

Proof. We choose ϕ ∈ C∞([0, T ]) that is equal to zero at some neighborhood of
point T , while ϕ(0) 6= 0, and u ∈ L2((0, 1)). We can apply the Green’s formula for
the functions vN and v and find out

(184)

∫ T

0

∫ 1

0

∂tv
Nϕu dx dτ +

∫ T

0

∫ 1

0

vNϕ′u dx dτ = −ϕ(0)

∫ 1

0

vN (x, 0)u(x) dx,

(185)

∫ T

0

∫ 1

0

∂tvϕu dx dτ +

∫ T

0

∫ 1

0

vϕ′u dx dτ = −ϕ(0)

∫ 1

0

v(x, 0)u(x) dx.

Taking into account the strong convergence of vN (x, t) → v(x, t), vN (x, 0) → v0(x)
and the weak convergence of ∂tv

N → ∂tv and comparing (184) and (185) we get

v(x, 0) = v0(x), a.e. in (0, 1).

In the same way we obtain ω(x, 0) = ω0(x), ρ(x, 0) = ρ0(x) and θ(x, 0) = θ0(x) for
x ∈ (0, 1).

Now we take ϕ ∈ C∞([0, 1]) with the property ϕ(0) 6= 0 and that is equal to zero
at some neighborhood of point 1. Let be u ∈ L2((0, T )). We apply the Green’s
formula for the functions vN and v again. It holds

(186)

∫ T

0

∫ 1

0

∂xv
Nϕu dx dτ +

∫ T

0

∫ 1

0

vNϕ′u dx dτ = −ϕ(0)

∫ T

0

vN (0, t)u(t) dt,

(187)

∫ T

0

∫ 1

0

∂xvϕu dx dτ +

∫ T

0

∫ 1

0

vϕ′u dx dτ = −ϕ(0)

∫ T

0

v(0, t)u(t) dt.

Taking into account vN (0, t) = 0, from (186) and (187), when N → ∞, we obtain

v(0, t) = 0, a.e. in (0, T ).

In the same way we get ω(0, t) = 0. For the functions ∂xθ
N and ∂xθ we have

(188)

∫ T

0

∫ 1

0

∂xxθ
Nϕu dx dτ +

∫ T

0

∫ 1

0

∂xθ
Nϕ′u dx dτ = −ϕ(0)

∫ T

0

∂xθ
N (0, t)u(t) dt,

(189)

∫ T

0

∫ 1

0

∂xxθϕu dx dτ +

∫ T

0

∫ 1

0

∂xθϕ
′u dx dτ = −ϕ(0)

∫ T

0

∂xθ(0, t)u(t) dt,
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Comparing (188) and (189), when N → ∞, and using the property ∂xθ
N (0, t) =

δθ0(t) = 0, we get easily that

∂xθ(0, t) = 0, a.e. in (0, T ).

Finally, taking ϕ ∈ C∞([0, 1]) with the property ϕ(1) 6= 0 and that is equal to zero
at some neighborhood of point 0, we conclude as above, that

v(1, t) = ω(1, t) = ∂xθ(1, t) = 0 a.e. in (0, T )

is true. �

10. Numerical example

In this section we consider the numerical solutions obtained by using finite dif-
ference approach on the chosen test example.

In order to determine numerical solutions of the system (1)-(7), the temporal
discretization of the system (20)-(30), which was obtained by using the semi-discrete
approach combined with the described spatial discretization, should be performed.
The system (20)-(23) is actually the ordinary differential equation system of the
first order in time variable that can be written in the form

(190) u̇(t) = F (u(t)),

where vector u consists of 4N − 2 unknown functions, i.e., u = (ρj , vk, ωk, θj),
j = 1

2 , . . . , N − 1
2 , k = 1, . . . , N − 1. The corresponding boundary conditions are

given with (26)-(27), while the initial conditions are defined with (28)-(30). In
this work the temporal discretization is obtained by approximating numerically the
system (190) using the second-order strongly stable explicit Runge-Kutta method
(see, for example, [10, 9]) given by:

u(1) = un +∆tF (un)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tF (u(1)),

Here un denotes the numerical solution of system (190) at time moment tn = n∆t

for the chosen time step ∆t. For stability reasons of obtained numerical scheme,
we choose ∆t = O(h2) .

We consider here the numerical solutions of problem (1)-(7) defined with the
following initial functions:

ρ0(x) =
∣

∣x2 − 1

4

∣

∣+ 1,(191)

v0(x) = sin(πx),(192)

ω0(x) = sin(2πx),(193)

θ0(x) = 2 + cos(πx),(194)

and parameters A = K = D = 1.
In Figures 1-4 we present the numerical solution of the considered problem at

different time moments. We used N = 16 points in the spatial discretization. The
calculations were carried out on a sufficiently fine grid in time, which eliminates
the error of approximation in time in comparison with the approximation error in
space.

Since the exact analytical solution of the considered problem is unknown, we
can not compare numerical solutions with the exact ones. However, we can use the
fact that that the solution (ρ, v, ω, θ) of the system (1)-(7) converges, as t → ∞,
to the stationary constant solution (ρS , vS , ωS , θS) = (α−1, 0, 0, E1) as explained
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Figure 1. Numerical results at different time moments - density
(ρ). The initial values at discretization points are denoted with x.
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Figure 2. Numerical results at different time moments - velocity
(v). The initial values at discretization points are denoted with x.

in Section 2 (see [14]), so that the obtained numerical solution at some large time
moment can be compared with this stationary solution. In the considered example
we have α−1 = 1.226285790315 and E1 = 2.5. The difference of the numerical
solution obtained with finite difference method from this stationary solution is
taken at t = 20. The numerical results are presented in Table 1.
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Figure 3. Numerical results at different time moments - microro-
tation velocity (ω). The initial values at discretization points are
denoted with x.
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Figure 4. Numerical results at different time moments - temper-
ature (θ). The initial values at discretization points are denoted
with x.

11. Conclusion

In this paper the finite difference scheme for the nonstationary 1D flow of the
compressible viscous and heat-conducting micropolar fluid, which is in the thermo-
dynamical sense perfect and polytropic, with the homogeneous boundary conditions
for velocity, microrotation and heat flux, is defined and analyzed. The sequence of
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Table 1. L∞ norm for the differences between numerical solution
at t = 20 and stationary solution.

N ‖ρN(·, 20)− ρS‖∞ ‖ωN(·, 20) − ωS‖∞ ‖vN (·, 20) − vS‖∞ ‖θN (·, 20)− θS‖∞

8 1.11 × 10−3 1.54× 10−14 5.90 × 10−13 2.34 × 10−2

16 2.79 × 10−4 3.14× 10−14 6.76 × 10−14 5.98 × 10−3

32 6.99 × 10−5 9.30× 10−14 3.93 × 10−14 1.50 × 10−3

64 1.75 × 10−5 4.68× 10−13 3.44 × 10−14 3.76 × 10−4

the approximate solution is constructed as a solution of the finite difference approx-
imate equations system, which is derived by using the appropriate finite difference
spatial discretization. The properties of these approximate solutions are analyzed
and their convergence to the strong solution of our problem globally in time is
proved. In this way the global existence of the solution is verified. The numerical
properties of the proposed scheme are presented on the chosen test example.
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[13] N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a global

existence theorem, Glasnik Matematiki 33(53) (1998) 199-208.
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