An Existence Result for a Class of Chemically Reacting Systems with Sign-Changing Weights

RASOULI S. H. *and NOROUZI H.

Department of Mathematics, Faculty of Basic Sciences, Babol University of Technology, Babol, Iran.
Received 12 May 2014; Accepted 29 October 2014

Abstract. We prove the existence of positive solutions for the system

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) f(v) u^{-\alpha}, & x \in \Omega \\ -\Delta_{q} v=\lambda b(x) g(u) v^{-\beta}, & x \in \Omega \\ u=v=0, & x \in \partial \Omega\end{cases}
$$

where $\Delta_{r} z=\operatorname{div}\left(|\nabla z|^{r-2} \nabla z\right)$, for $r>1$ denotes the r-Laplacian operator and λ is a positive parameter, Ω is a bounded domain in $\mathbb{R}^{n}, n \geq 1$ with sufficiently smooth boundary and $\alpha, \beta \in(0,1)$. Here $a(x)$ and $b(x)$ are C^{1} sign-changing functions that maybe negative near the boundary and f, g are C^{1} nondecreasing functions, such that $f, g:[0, \infty) \rightarrow[0, \infty) ; f(s)>0, g(s)>0$ for $s>0, \lim _{s \rightarrow \infty} g(s)=\infty$ and

$$
\lim _{s \rightarrow \infty} \frac{f\left(M g(s)^{\frac{1}{q-1}}\right)}{s^{p-1+\alpha}}=0, \quad \forall M>0
$$

We discuss the existence of positive weak solutions when $f, g, a(x)$ and $b(x)$ satisfy certain additional conditions. We employ the method of sub-supersolution to obtain our results.
AMS Subject Classifications: 35J55, 35J65
Chinese Library Classifications: O175.25, O175.8
Key Words: Positive solutions; chemically reacting systems; sub-supersolutions.

1 Introduction

In this paper, we consider the existence of positive weak solutions for the nonlinear singular system

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) \frac{f(v)}{u^{\alpha}}, & x \in \Omega \tag{1.1}\\ -\Delta_{q} v=\lambda b(x) \frac{g(u)}{v^{\beta}}, & x \in \Omega \\ u=v=0, & x \in \partial \Omega\end{cases}
$$

[^0]where $\Delta_{r} z=\operatorname{div}\left(|\nabla z|^{r-2} \nabla z\right)$, for $r>1$ denotes the r-Laplacian operator and Ω is a bounded domain in $\mathbb{R}^{n}, n \geq 1$ with smooth boundary, $\alpha, \beta \in(0,1)$. Here $a(x)$ and $b(x)$ are C^{1} singchanging functions that maybe negative near the boundary and f, g are C^{1} nondecreasing functions such that $f, g:[0, \infty) \rightarrow[0, \infty) ; f(s)>0, g(s)>0$ for $s>0$.

Systems of singular equations like (1.1) are the stationary counterpart of general evolutionary problems of the form

$$
\begin{cases}u_{t}=\eta \Delta_{p} u+\lambda \frac{f(v)}{u^{a}}, & x \in \Omega, \\ v_{t}=\delta \Delta_{q} v+\lambda \frac{g(u)}{v^{\beta}}, & x \in \Omega, \\ u=v=0, & x \in \partial \Omega,\end{cases}
$$

where η and δ are positive parameters. This system is motivated by an interesting applications in chemically reacting systems, where u represents the density of an activator chemical substance and v is an inhibitor. The slow diffusion of u and the fast diffusion of v is translated into the fact that η is small and δ is large (see [1]).

Recently, such problems have been studied in [2-4]. Also in [2], the authors have studied the existence results for the system (1.1) in the case $a \equiv 1, b \equiv 1$. Here we focus on further extending the study in [2] to the system (1.1). In fact, we study the existence of positive solution to the system (1) with sign-changing weight functions $a(x), b(x)$. Due to these weight functions, the extensions are challenging and nontrivial. Our approach is based on the method of sub-super solutions (see [5-7]).

To precisely state our existence result we consider the eigenvalue problem

$$
\begin{cases}-\Delta_{r} \phi=\lambda|\phi|^{r-2} \phi, & x \in \Omega \tag{1.2}\\ \phi=0, & x \in \partial \Omega\end{cases}
$$

Let $\phi_{1, r}$ be the eigenfunction corresponding to the first eigenvalue $\lambda_{1, r}$ of (1.2) such that $\phi_{1, r}(x)>0$ in Ω, and $\left\|\phi_{1, r}\right\|_{\infty}=1$ for $r=p, q$. Let $m, \sigma, \delta>0$ be such that

$$
\begin{align*}
& \sigma \leq \phi_{1, r} \leq 1, \quad x \in \Omega-\overline{\Omega_{\delta}}, \tag{1.3}\\
& \lambda_{1, r} \phi_{1, r}^{r}-\left(1-\frac{s r}{r-1+s}\right)\left|\nabla \phi_{1, r}\right|^{r} \leq-m, \quad x \in \overline{\Omega_{\delta}} \tag{1.4}
\end{align*}
$$

for $r=p, q$, and $s=\alpha, \beta$, where $\overline{\Omega_{\delta}}:=\{x \in \Omega \mid d(x, \partial \Omega) \leq \delta\}$. (This is possible since $\left|\nabla \phi_{1, r}\right|^{r} \neq 0$ on $\partial \Omega$ while $\phi_{1, r}=0$ on $\partial \Omega$ for $r=p, q$. We will also consider the unique solution $\zeta_{r} \in$ $W_{0}^{1, r}(\Omega)$ of the boundary value problem

$$
\begin{cases}-\Delta_{r} \zeta_{r}=1, & x \in \Omega \\ \zeta_{r}=0, & x \in \partial \Omega\end{cases}
$$

to discuss our existence result, it is known that $\zeta_{r}>0$ in Ω and $\partial \zeta_{r} / \partial n<0$ on $\partial \Omega$.

Here we assume that the weight functions $a(x)$ and $b(x)$ take negative values in $\overline{\Omega_{\delta}}$, but require $a(x)$ and $b(x)$ be strictly positive in $\Omega-\overline{\Omega_{\delta}}$. To be precise we assume that there exist positive constants a_{0}, a_{1}, b_{0} and b_{1} such that $a(x) \geq-a_{0}, b(x) \geq-b_{0}$ on $\overline{\Omega_{\delta}}$ and $a(x) \geq a_{1}, b(x) \geq b_{1}$ on $\Omega-\overline{\Omega_{\delta}}$.

2 Existence result

In this section, we shall establish our existence result via the method of sub - supersolution. A pair of nonnegative functions $\left(\psi_{1}, \psi_{2}\right) \in W^{1, p} \cap C(\bar{\Omega}) \times W^{1, q} \cap C(\bar{\Omega})$ and $\left(z_{1}, z_{2}\right) \in$ $W^{1, p} \cap C(\bar{\Omega}) \times W^{1, q} \cap C(\bar{\Omega})$ are called a subsolution and supersulution of (1.1) if they satisfy $\left(\psi_{1}, \psi_{2}\right)=(0,0)=\left(z_{1}, z_{2}\right)$ on $\partial \Omega$ and

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla w \mathrm{~d} x \leq \lambda \int_{\Omega} a(x) \frac{f\left(\psi_{2}\right)}{\psi_{1}^{\alpha}} w \mathrm{~d} x, \\
& \int_{\Omega}\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \cdot \nabla w \mathrm{~d} x \leq \lambda \int_{\Omega} b(x) \frac{g\left(\psi_{1}\right)}{\psi_{2}^{\beta}} w \mathrm{~d} x, \\
& \int_{\Omega}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \cdot \nabla w \mathrm{~d} x \geq \lambda \int_{\Omega} a(x) \frac{f\left(z_{2}\right)}{z_{1}^{\alpha}} w \mathrm{~d} x, \\
& \int_{\Omega}\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \cdot \nabla w \mathrm{~d} x \geq \lambda \int_{\Omega} b(x) \frac{g\left(z_{1}\right)}{z_{2}^{\beta}} w \mathrm{~d} x,
\end{aligned}
$$

for all $w \in W=\left\{w \in C_{0}^{\infty}(\Omega) \mid w \geq 0, x \in \Omega\right\}$. Then the following result holds:
Lemma 2.1. (See [5]) Suppose there exist sub and supersolutions $\left(\psi_{1}, \psi_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ respectively of (1.1) such that $\left(\psi_{1}, \psi_{2}\right) \leq\left(z_{1}, z_{2}\right)$. Then (1.1) has a solution (u, v) such that (u, v) $\in\left[\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)\right]$.

To state our results precisely we introduce the following hypotheses :
(H1) $f, g:[0, \infty) \rightarrow[0, \infty)$ are C^{1} nondecreasing functions such that $f(s), g(s)>0$ for $s>0$, and $\lim _{s \rightarrow \infty} g(s)=\infty$.
(H2) $\lim _{s \rightarrow \infty} \frac{f\left(M g(s) \frac{1}{q-1}\right)}{s^{p-1+\alpha}}=0$, for all $M>0$.
(H3) Suppose that there exists $\epsilon>0$ such that:

$$
\begin{aligned}
& \frac{\epsilon^{\frac{p-1+\alpha}{p-1}} \lambda_{1, p}}{a_{1} f\left(\frac{q-1+\beta}{q} \epsilon^{\frac{1}{q-1}} \sigma^{\frac{q}{q-1+\beta}}\right)} \leq \min \left\{\frac{m \epsilon^{\frac{\alpha+p-1}{p-1}\left(\frac{p-1+\alpha}{p}\right)^{\alpha}}}{a_{0} f\left(\epsilon^{\frac{1}{q-1}}\right)}, \frac{m \epsilon^{\frac{\beta+q-1}{q-1}}\left(\frac{q-1+\beta}{q}\right)^{\beta}}{b_{0} g\left(\epsilon^{\frac{1}{p-1}}\right)}\right\}, \\
& \frac{\epsilon^{\frac{q-1+\beta}{q-1}} \lambda_{1, q}}{b_{1} g\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \sigma^{\frac{p}{p-1+\alpha}}\right)} \leq \min \left\{\frac{m \epsilon^{\frac{\alpha+p-1}{p-1}\left(\frac{p-1+\alpha}{p}\right)^{\alpha}}}{a_{0} f\left(\epsilon^{\frac{1}{q-1}}\right)}, \frac{m \epsilon^{\frac{\beta q-1}{q-1}}\left(\frac{q-1+\beta}{q}\right)^{\beta}}{b_{0} g\left(\epsilon^{\frac{1}{p-1}}\right)}\right\} .
\end{aligned}
$$

We are now ready to give our existence result .
Theorem 2.1. Assume that
(a) $p \geq n$ or
(b) $p<n$ and $\alpha<\frac{p}{n}$,
(c) $q \geq n$ or
(d) $q<n$ and $\beta<\frac{q}{n}$.

Let (H1)-(H3) hold. Then there exists a positive solution of (1.1) for every $\lambda \in\left[\lambda_{*}(\epsilon), \lambda^{*}(\epsilon)\right]$, where

$$
\lambda^{*}=\min \left\{\frac{m \epsilon^{\frac{\alpha+p-1}{p-1}\left(\frac{p-1+\alpha}{p}\right)^{\alpha}}}{a_{0} f\left(\epsilon^{\frac{1}{q-1}}\right)}, \frac{m \epsilon^{\frac{\beta+q-1}{q-1}}\left(\frac{q-1+\beta}{q}\right)^{\beta}}{b_{0} g\left(\epsilon^{\frac{1}{p-1}}\right)}\right\},
$$

and

$$
\lambda_{*}=\max \left\{\frac{\epsilon^{\frac{\alpha+p-1}{p-1}} \lambda_{1, p}}{a_{1} f\left(\frac{q-1+\beta}{q} \epsilon^{\frac{1}{q-1}} \sigma^{\frac{q}{q-1+\beta}}\right)}, \frac{\epsilon^{\frac{\beta+q-1}{q-1}} \lambda_{1, q}}{b_{1} g\left(\frac{p-1+\beta}{p} \epsilon^{\frac{1}{p-1}} \sigma^{\frac{p}{p-1+\alpha}}\right)}\right\} .
$$

Remark 2.1. Note that (H3) implies $\lambda_{*}<\lambda^{*}$.
Example 2.1. Let $f(s)=s^{4}-1, g(s)=s-1$ and ($p=q=3, n<6, \alpha=1 / 2, \beta=1 / 2$). Here $f(s), g(s)>0$ for $s>0, f, g$ are non-decreasing functions and

$$
\lim _{s \rightarrow \infty} \frac{f\left(M g(s)^{\frac{1}{2}}\right)}{s^{\frac{5}{2}}}=0
$$

for all $M>0$, and $\lim _{s \rightarrow \infty} g(s)=\infty$. We can choose $\epsilon>0$ so small that f, g satisfy (H3).
Proof of Theorem 2.1 We shall verify that

$$
\left(\psi_{1}, \psi_{2}\right)=\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi_{1, p}^{\frac{p}{p-1+\alpha}}, \quad \frac{q-1+\beta}{q} \epsilon^{\frac{1}{q-1}} \phi_{1, q}^{\frac{q}{q-1+\beta}}\right),
$$

is a sub-solution of (1.1). Let $w \in W$. Then a calculation shows that

$$
\nabla \psi_{1}=\epsilon^{\frac{1}{p-1}} \nabla \phi_{1, p} \phi_{1, p}^{\frac{1-\alpha}{p-1+\alpha}},
$$

and we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla w \mathrm{~d} x & =\epsilon \int_{\Omega} \phi_{1, p}^{1-\frac{\alpha p}{p-1+\alpha}}\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p} \nabla w \mathrm{~d} x \\
& =\epsilon \int_{\Omega}\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p}\left\{\nabla\left(\phi_{1, p}^{1-\frac{\alpha p}{p-1+\alpha}} w\right)-w \nabla\left(\phi_{1, p}^{1-\frac{\alpha p}{p-1+\alpha}}\right)\right\} \mathrm{d} x \\
& =\epsilon\left\{\int_{\Omega}\left[\lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}}-\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p} \nabla\left(\phi_{1, p}^{1-\frac{\alpha p}{p-1+\alpha}}\right)\right] w \mathrm{~d} x\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\epsilon\left\{\int_{\Omega}\left[\lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}}-\left|\nabla \phi_{1, p}\right|^{p}\left(1-\frac{\alpha p}{p-1+\alpha}\right) \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\right] w \mathrm{~d} x\right\} \\
& =\epsilon \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\left\{\int_{\Omega}\left[\lambda_{1, p} \phi_{1, p}^{p}-\left|\nabla \phi_{1, p}\right|^{p}\left(1-\frac{\alpha p}{p-1+\alpha}\right)\right] w \mathrm{~d} x\right\} .
\end{aligned}
$$

Similarly

$$
\int_{\Omega}\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \cdot \nabla w \mathrm{~d} x=\epsilon \phi_{1, q}^{-\frac{\beta q}{q-1+\beta}}\left\{\int_{\Omega}\left[\lambda_{1, q} \phi_{1, q}^{q}-\left|\nabla \phi_{1, q}\right|^{q}\left(1-\frac{\beta q}{q-1+\beta}\right)\right] w \mathrm{~d} x\right\} .
$$

First we consider the case when $x \in \overline{\Omega_{\delta}}$. We have

$$
\lambda_{1, p} \phi_{1, p}^{p}-\left(1-\frac{\alpha p}{p-1+\alpha}\right)\left|\nabla \phi_{1, p}\right|^{p} \leq-m .
$$

Since $\lambda \leq \lambda^{*}$ then

$$
\lambda \leq \frac{m \epsilon^{\frac{\alpha+p-1}{p-1}}\left(\frac{p-1+\alpha}{p}\right)^{\alpha}}{a_{0} f\left(\epsilon^{\frac{1}{1-1}}\right)}
$$

Hence

$$
\begin{aligned}
& \epsilon \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\left(\lambda_{1, p} \phi_{1, p}^{p}-\left(1-\frac{\alpha p}{p-1+\alpha}\right)\left|\nabla \phi_{1, p}\right|^{p}\right) \leq-m \epsilon \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}} \\
\leq & -\lambda a_{0} \frac{f\left(\epsilon^{\frac{1}{q-1}}\right)\left(\frac{p-1+\alpha}{p}\right)^{-\alpha} \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}}{\epsilon^{\frac{\alpha}{p-1}}} \leq-\lambda a_{0} \frac{f\left(\frac{q-1+\beta}{q} \epsilon^{\frac{1}{q-1}} \phi_{1, q}^{\frac{-q}{q-\beta}}\right)\left(\frac{p-1+\alpha}{p}\right)^{-\alpha} \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}}{\epsilon^{\frac{\alpha}{p-1}}} \\
\leq & \lambda a(x) \frac{f\left(\psi_{2}\right)}{\psi_{1}^{\alpha}} .
\end{aligned}
$$

A similar argument shows that

$$
-m \epsilon \phi_{1, q}^{-\frac{\beta q}{q-1+\beta}}\left(\lambda_{1, q} \phi_{1, q}^{q}-\left(1-\frac{\beta q}{q-1+\beta}\right)\left|\nabla \phi_{1, q}\right|^{q}\right) \leq \lambda b(x) \frac{g\left(\psi_{1}\right)}{\psi_{2}^{\beta}} .
$$

On the other hand, on $\Omega-\overline{\Omega_{\delta}}$, we have $1 \geq \phi_{1, r} \geq \sigma$ for $r=p, q$. Also $a(x) \geq a_{1}, b(x) \geq b_{1}$ and since $\lambda \geq \lambda_{*}$, we have

$$
\lambda \geq \frac{\epsilon^{\frac{\alpha+p-1}{p-1}} \lambda_{1, p}}{a_{1} f\left(\frac{q-1+\beta}{q} \epsilon^{\frac{1}{q-1}} \sigma^{\frac{q}{q-1+\beta}}\right)} .
$$

Hence

$$
\epsilon \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\left(\lambda_{1, p} \phi_{1, p}^{p}-\left(1-\frac{\alpha p}{p-1+\alpha}\right)\left|\nabla \phi_{1, p}\right|^{p}\right) \leq \epsilon \lambda_{1, p} \phi_{1, p}^{p-\frac{\alpha p}{p-1+\alpha}}
$$

$$
\leq \epsilon \lambda_{1, p} \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}} \leq \lambda a_{1} \frac{f\left(\frac{q-1+\beta}{q} \epsilon^{\frac{1}{q-1}} \sigma^{\frac{q}{q-1+\beta}}\right) \phi_{1, p}^{-\frac{\alpha p}{p-1+\alpha}}\left(\frac{p-1+\alpha}{p}\right)^{-\alpha}}{\epsilon^{\frac{\alpha}{p-1}}} \leq \lambda a(x) \frac{f\left(\psi_{2}\right)}{\psi_{1}^{\alpha}} .
$$

A similar argument shows that

$$
\epsilon \phi_{1, q}^{-\frac{\beta q}{q-1+\beta}}\left(\lambda_{1, q} \phi_{1, q}^{q}-\left(1-\frac{\beta q}{q-1+\beta}\right)\left|\nabla \phi_{1, q}\right|^{q}\right) \leq \lambda b(x) \frac{g\left(\psi_{1}\right)}{\psi_{2}^{\beta}} .
$$

Hence

$$
\int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla w \mathrm{~d} x \leq \lambda \int_{\Omega} a(x) \frac{f\left(\psi_{2}\right)}{\psi_{1}^{\alpha}} w \mathrm{~d} x,
$$

and

$$
\int_{\Omega}\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \cdot \nabla w \mathrm{~d} x \leq \lambda \int_{\Omega} b(x) \frac{g\left(\psi_{1}\right)}{\psi_{2}^{\beta}} w \mathrm{~d} x .
$$

Thus, $\left(\psi_{1}, \psi_{2}\right)=\left(\frac{p-1+\alpha}{p} \epsilon^{\frac{1}{p-1}} \phi_{1, p}^{\frac{p}{p-1+\alpha}}, \frac{q-1+\beta}{q} \epsilon^{\frac{1}{q-1}} \phi_{1, q}^{\frac{q}{q-1+\beta}}\right)$ is a positive subsolution of (1.1).
Now, we construct a suupersolution $\left(z_{1}, z_{2}\right) \geq\left(\psi_{1}, \psi_{2}\right)$. When
(a) $p \geq n$ or (b) $p<n$ and $\alpha<\frac{p}{n}$,
(c) $q \geq n$ or (d) $q<n$ and $\beta<\frac{q}{n}$,
from [8], we know that are functions $w_{1} \in W_{0}^{1, p}(\Omega) \cap C(\bar{\Omega})$ and $w_{2} \in W_{0}^{1, q}(\Omega) \cap C(\bar{\Omega})$ such that

$$
\begin{cases}-\Delta_{p} w_{1}=\frac{1}{w_{1}^{n},} & x \in \Omega \\ w_{1}=0, & x \in \partial \Omega\end{cases}
$$

and

$$
\begin{cases}-\Delta_{q} w_{2}=\frac{1}{w_{2}^{b_{2}^{\prime}}} & x \in \Omega \\ w_{2}=0, & x \in \partial \Omega\end{cases}
$$

are satisfying $w_{1} \geq \theta \zeta_{p}$ and $w_{2} \geq \theta \zeta_{q}$ for some $\theta>0$. Now, we will prove there exists $c \gg 1$ such that

$$
\left(z_{1}, z_{2}\right)=\left(c w_{1}, g\left(c\left\|w_{1}\right\|_{\infty}\right)^{\frac{1}{q-1}} w_{2}\right)
$$

is a supersolution of (1.1). A calculation shows that:

$$
\int_{\Omega}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \cdot \nabla w \mathrm{~d} x=c^{p-1} \int_{\Omega}\left|\nabla w_{1}\right|^{p-2} \nabla w_{1} \cdot \nabla w \mathrm{~d} x=c^{p-1} \int_{\Omega} \frac{w}{w_{1}^{\alpha}} \mathrm{d} x
$$

by (H2) we know that, for $c \gg 1$,

$$
\frac{1}{\lambda\|a(x)\|_{\infty}} \geq \frac{f\left(\left\|w_{2}\right\|_{\infty}\left(g\left(c\left\|w_{1}\right\|_{\infty}\right)\right)^{\frac{1}{q-1}}\right)}{c^{p-1+\alpha}} .
$$

Hence

$$
\begin{aligned}
\frac{c^{p-1}}{w_{1}^{\alpha}} & \geq \lambda\|a(x)\|_{\infty} \frac{f\left(\left\|w_{2}\right\|_{\infty}\left(g\left(c\left\|w_{1}\right\|_{\infty}\right)\right)^{\frac{1}{q-1}}\right)}{\left(c w_{1}\right)^{\alpha}} \\
& \geq \lambda a(x) \frac{f\left(w_{2}\left(g\left(c\left\|w_{1}\right\|_{\infty}\right)\right)^{\frac{1}{q-1}}\right)}{\left(c w_{1}\right)^{\alpha}}=\lambda a(x) \frac{f\left(z_{2}\right)}{z_{1}^{\alpha}},
\end{aligned}
$$

now from (H1), we know that $g(s) \rightarrow \infty$ as $s \rightarrow \infty$. Thus, for $c \gg 1$

$$
\frac{\lambda\|b(x)\|_{\infty}}{g\left(c\left\|w_{1}\right\|_{\infty}\right)^{\frac{\beta}{q-1}}} \leq 1
$$

and we have for $c \gg 1$,

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \cdot \nabla w \mathrm{~d} x=\int_{\Omega} \frac{g\left(c\left\|w_{1}\right\|_{\infty}\right)}{w_{2}^{\beta}} w \mathrm{~d} x \\
\geq & \lambda\|b(x)\|_{\infty} \int_{\Omega} \frac{g\left(c w_{1}\right)}{g\left(c\left\|w_{1}\right\|_{\infty}\right)^{\frac{\beta}{q-1}} w_{2}^{\beta}} w \mathrm{~d} x \geq \lambda \int_{\Omega} b(x) \frac{g\left(z_{1}\right)}{z_{2}^{\beta}} w \mathrm{~d} x,
\end{aligned}
$$

i.e., $\left(z_{1}, z_{2}\right)$ is a supersolution of (1.1). Furthermore, c can be chosen large enough so that $\left(z_{1}, z_{2}\right) \geq\left(\psi_{1}, \psi_{2}\right)$, since $g(s) \rightarrow \infty$ as $s \rightarrow \infty$. Thus, there exist a positive solution (u, v) of (1) such that $\left(\psi_{1}, \psi_{2}\right) \leq(u, v) \leq\left(z_{1}, z_{2}\right)$. This completes the proof of Theorem 2.1.

Acknowledgement

The authors wish to thank the referee for carefully reading the manuscript and providing constructive comments.

References

[1] Aris R., Introduction to the Analysis of Chemical Reactors, Prentice Hall, Englewood Cliffs, NJ, 1965.
[2] Lee E. K., Shivaji R. and Ye J., Classes of infinite semipositone systems. Proc. Roy. Soc. Edinb., 139A (2009), 853-865.
[3] Lee E. K., Shivaji R., Posiotive solutions for infinit semipositone problems with falling zeros. Nonl. Anal., 72 (2010), 4475-4479.
[4] Lee E. K., Shivaji R. and Ye J., Classes of infinite semipositone $n \times n$ systems. Diff. Int. Eqs, 24 (3-4) (2011), 361-370.
[5] Cui S., Existence and nonexistence of positive solution for singular semilinear elliptic boudary value problems. Nonl. Anal., 41 (2000), 149-176.
[6] Rasouli S. H., A remark on the existence of positive solution for a class of (p, q) - Laplacian nonlinear system with multiple parameters and sign-changing weight. J. Par. Diff. Eqs, 26 (2013), 1-8.
[7] Rasouli S. H., Halimi Z. and Mashhadban Z., A remark on the existence of positive weak solution for a class of (p, q)-laplacian nonlinear system with sign-changing weight. Nonl. Anal., 73 (2010), 385-389.
[8] Agarwal R. P., Perera K. and ORegan D., A variational approach to singular quasilinear elliptic problem with sign changing nonlinearities. Appl. Anal., 185 (2006), 1201-1206.
[9] Ramaswamy M., Shivaji R. and Ye J., Positive Solutions for a clases of infinite semipositone problems. Diff. Int. Eqs, 20 (12) (2007), 1423-1433.

[^0]: *Corresponding author. Email addresses: s.h.rasouli@nit.ac.ir (S. H. Rasouli)

