# Existence of Renormalized Solutions for Nonlinear Parabolic Equations 

AKDIM Y. ${ }^{1}$, BENKIRANE A. ${ }^{2}$, EL MOUMNI M. ${ }^{2}$ and REDWANE H. ${ }^{3, *}$<br>${ }^{1}$ Faculté Poly-disciplinaire de Taza, B.P 1223 Taza Gare, Maroc.<br>${ }^{2}$ Laboratory of Mathematical Analysis and Applications, Department of Mathematics, Faculty of Sciences Dhar El Mehraz, University Sidi Mohamed Ben Abdellah, P.O. Box 1796, Atlas-Fès, Morocco.<br>${ }^{3}$ Faculté des sciences juridiques, Economiques et Sociales, Université Hassan 1 B.P. 784, Settat, Morocco.

Received 5 February 2013; Accepted 24 October 2013


#### Abstract

We give an existence result of a renormalized solution for a class of nonlinear parabolic equations $$
\frac{\partial b(x, u)}{\partial t}-\operatorname{div}(a(x, t, u, \nabla u))+g(x, t, u, \nabla u)+H(x, t, \nabla u)=f, \quad \text { in } Q_{T},
$$ where the right side belongs to $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$ and where $b(x, u)$ is unbounded function of $u$ and where $-\operatorname{div}(a(x, t, u, \nabla u))$ is a Leray-Lions type operator with growth $|\nabla u|^{p-1}$ in $\nabla u$. The critical growth condition on $g$ is with respect to $\nabla u$ and no growth condition with respect to $u$, while the function $H(x, t, \nabla u)$ grows as $|\nabla u|^{p-1}$.


AMS Subject Classifications: 35K10, 47D20, 46E35
Chinese Library Classifications: O175.23, O175.26
Key Words: Nonlinear parabolic equations; renormalized solutions; Sobolev spaces.

## 1 Introduction

In the present paper, we study a nonlinear parabolic problem of the type

$$
\begin{cases}\frac{\partial b(x, u)}{\partial t}-\operatorname{div}(a(x, t, u, \nabla u))+g(x, t, u, \nabla u)+H(x, t, \nabla u)=f, & \text { in } Q_{T},  \tag{1.1}\\ b(x, u)(t=0)=0, & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega \times(0, T),\end{cases}
$$

[^0]where $\Omega$ is a bounded open subset of $\mathbb{R}^{N}, N \geq 1, T>0, p>1$ and $Q_{T}$ is the cylinder $\Omega \times(0, T)$. The operator $-\operatorname{div}(a(x, t, u, \nabla u))$ is a Leray-Lions operator which is coercive and grows like $|\nabla u|^{p-1}$ with respect to $\nabla u$, the function $b(x, u)$ is an unbounded on $u$. The functions $g$ and $H$ are two the Carathéodory functions with suitable assumptions (see Assumption $\left(H_{2}\right)$ ). Finally the data $f$ is in $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$. We are interested in proving an existence result to (1.1). The difficulties connected to this problem are due to the data and the presence of the two terms $g$ and $H$ which induce a lack of coercivity.

For $b(x, u)=u$, the existence of a weak solution to Problem (1.1) (which belongs to $L^{m}\left(0, T ; W_{0}^{1, m}(\Omega)\right)$ with $p>2-1 /(N+1)$ and $m<(p(N+1)-N) / N+1$ was proved in [1] (see also [2]) when $g=H=0$, and in [3] when $g=0$, and in [4-6] when $H=0$. In the present paper we prove the existence of renormalized solutions for a class of nonlinear parabolic problems (1.1). The notion of renormalized solution was introduced by Diperna and Lions [7] in their study of the Boltzmann equation. This notion was then adapted to an elliptic version of (1.1) by Boccardo et al. [8] when the right hand side is in $W^{-1, p^{\prime}}(\Omega)$, by Rakotoson [9] when the right hand side is in $L^{1}(\Omega)$, and finally by Dal Maso, Murat, Orsina and Prignet [10] for the case of right hand side is general measure data.

In the case where $H=0$ and where the function $g(x, t, u, \nabla u) \equiv g(u)$ is independent on the $(x, t, \nabla u)$ and $g$ is continuous, the existence of a renormalized solution to Problem (1.1) is proved in [11]. The case $H=0$ is studied by Akdim et al. (see [12,13]). The case $H=0$ and where $g$ depends on $(x, t, u)$ is investigated in [14]. In [15] the authors prove the existence of a renormalized solution for the complete operator. The case $g(x, t, u, \nabla u) \equiv \operatorname{div}(\phi(u))$ and $H=0$ is studied by Redwane in the classical Sobolev spaces $W^{1, p}(\Omega)$ and Orlicz spaces see [16,17], and where $b(x, u)=u$ (see [18]).

The aim of the present paper we prove an existence result for renormalized solutions to a class of problems (1.1) with the two lower order terms. It is worth noting that for the analogous elliptic equation with two lower order terms (see e.g. [19,20]). The plan of the article is as follows. In Section 2 we make precise all the assumptions on $b, a, g, H, f$ and give the definition of a renormalized solution of (1.1). In Section 3 we establish the existence of such a solution (Theorem 3.1).

## 2 Basic assumptions on the data and definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true:

## Assumption (H1)

Let $\Omega$ be a bounded open set of $\mathbb{R}^{N}(N \geq 1), T>0$ is given and we set $Q_{T}=\Omega \times(0, T)$, and

$$
\begin{equation*}
b: \Omega \times \mathbb{R} \rightarrow \mathbb{R} \text { is a Carathéodory function, } \tag{2.1}
\end{equation*}
$$

such that for every $x \in \Omega, b(x,$.$) is a strictly increasing C^{1}$-function with $b(x, 0)=0$.

Next, for any $k>0$, there exists $\lambda_{k}>0$ and functions $A_{k} \in L^{\infty}(\Omega)$ and $B_{k} \in L^{p}(\Omega)$ such that

$$
\begin{equation*}
\lambda_{k} \leq \frac{\partial b(x, s)}{\partial s} \leq A_{k}(x) \quad \text { and } \quad\left|\nabla_{x}\left(\frac{\partial b(x, s)}{\partial s}\right)\right| \leq B_{k}(x) \tag{2.2}
\end{equation*}
$$

for almost every $x \in \Omega$, for every $s$ such that $|s| \leq k$, we denote by $\nabla_{x}\left(\frac{\partial b(x, s)}{\partial s}\right)$ the gradient of $\frac{\partial b(x, s)}{\partial s}$ defined in the sense of distributions. Also,

$$
\begin{align*}
& a: Q_{T} \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \text { is a Carathéodory function, } \\
& |a(x, t, s, \xi)| \leq \beta\left[k(x, t)+|s|^{p-1}+|\xi|^{p-1}\right] \tag{2.3}
\end{align*}
$$

for a.e. $(x, t) \in Q_{T}$, all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, some positive function $k(x, t) \in L^{p^{\prime}}\left(Q_{T}\right)$ and $\beta>0$.

$$
\begin{align*}
& {[a(x, t, s, \xi)-a(x, t, s, \eta)] \cdot(\xi-\eta)>0, \quad \text { for all }(\xi, \eta) \in \mathbb{R}^{N} \times \mathbb{R}^{N}, \text { with } \xi \neq \eta}  \tag{2.4}\\
& a(x, t, s, \xi) \cdot \xi \geq \alpha|\xi|^{p} \tag{2.5}
\end{align*}
$$

where $\alpha$ is a strictly positive constant.

$$
\begin{equation*}
f \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right) \tag{2.6}
\end{equation*}
$$

## Assumption (H2)

Furthermore, let $g(x, t, s, \xi): Q_{T} \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $H(x, t, \xi): Q_{T} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are two Carathéodory functions which satisfy, for almost every $(x, t) \in Q_{T}$ and for all $s \in \mathbb{R}, \xi \in \mathbb{R}^{N}$, the following conditions

$$
\begin{align*}
& |g(x, t, s, \xi)| \leq L_{1}(|s|)\left(L_{2}(x, t)+|\xi|^{p}\right)  \tag{2.7}\\
& g(x, t, s, \xi) s \geq 0 \tag{2.8}
\end{align*}
$$

where $L_{1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous increasing function, while $L_{2}(x, t)$ is positive and belongs to $L^{1}\left(Q_{T}\right)$.

$$
\begin{equation*}
|H(x, t, \xi)| \leq h(x, t)|\xi|^{p-1} \tag{2.9}
\end{equation*}
$$

where $h(x, t)$ is positive and belongs to $L^{r}\left(Q_{T}\right)$ where $r>\max (N, p)$.
We recall that, for $k>1$ and $s$ in $\mathbb{R}$, the truncation is defined as

$$
T_{k}(s)= \begin{cases}s, & \text { if }|s| \leq k \\ k \frac{s}{|s|}, & \text { if }|s|>k\end{cases}
$$

Definition 2.1. A real-valued function $u$ defined on $Q_{T}$ is a renormalized solution of problem (1.1) if

$$
\begin{align*}
& T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \quad \text { for all } k \geq 0 \text { and } b(x, u) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right),  \tag{2.10}\\
& \int_{\{m \leq|u| \leq m+1\}} a(x, t, u, \nabla u) \nabla u \mathrm{~d} x \mathrm{~d} t \rightarrow 0, \quad \text { as } m \rightarrow+\infty,  \tag{2.11}\\
& \frac{\partial B_{S}(x, u)}{\partial t}-\operatorname{div}\left(S^{\prime}(u) a(x, t, u, \nabla u)\right)+S^{\prime \prime}(u) a(x, t, u, \nabla u) \nabla u+g(x, t, u, \nabla u) S^{\prime}(u) \\
& \quad+H(x, t, \nabla u) S^{\prime}(u)=f S^{\prime}(u), \quad \text { in } \mathcal{D}^{\prime}\left(Q_{T}\right), \tag{2.12}
\end{align*}
$$

for all functions $S \in W^{2, \infty}(\mathbb{R})$ which are piecewise $\mathcal{C}^{1}$ and such that $S^{\prime}$ has a compact support in $\mathbb{R}$, and

$$
\begin{equation*}
B_{S}(x, u)(t=0)=0, \quad \text { in } \Omega, \tag{2.13}
\end{equation*}
$$

where $B_{S}(x, z)=\int_{0}^{z} \frac{\partial b(x, r)}{\partial r} S^{\prime}(r) \mathrm{d} r$.
Remark 2.1. Eq. (2.12) is formally obtained through pointwise multiplication of (1.1) by $S^{\prime}(u)$. However, while $a(x, t, u, \nabla u), g(x, t, u, \nabla u)$ and $H(x, t, \nabla u)$ does not in general make sense in $\mathcal{D}^{\prime}\left(Q_{T}\right)$, all the terms in (2.12) have a meaning in $\mathcal{D}^{\prime}\left(Q_{T}\right)$. Indeed, if $M$ is such that supp $S^{\prime} \subset[-M, M]$, the following identifications are made in (2.12):

- $B_{S}(x, u)$ belongs to $L^{\infty}\left(Q_{T}\right)$ because $\left|B_{S}(x, u)\right| \leq\left\|A_{M}\right\|_{L^{\infty}(\Omega)}\|S\|_{L^{\infty}(\mathbb{R})}$.
- $S^{\prime}(u) a(x, t, u, \nabla u)$ identifies with $S^{\prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right)$ a.e. in $Q_{T}$. Since $\left|T_{M}(u)\right| \leq M$ a.e. in $Q_{T}$ and $S^{\prime}(u) \in L^{\infty}\left(Q_{T}\right)$, we obtain from (2.3) and (2.10) that

$$
S^{\prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right) \in\left(L^{p^{\prime}}\left(Q_{T}\right)\right)^{N} .
$$

- $S^{\prime \prime}(u) a(x, t, u, \nabla u) \nabla u$ identifies with $S^{\prime \prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right) \nabla T_{M}(u)$ and

$$
S^{\prime \prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right) \nabla T_{M}(u) \in L^{1}\left(Q_{T}\right) .
$$

- $S^{\prime}(u)(g(x, t, u, \nabla u)+H(x, t, \nabla u))=S^{\prime}(u)\left(g\left(x, t, T_{M}(u), \nabla T_{M}(u)\right)+H\left(x, t, \nabla T_{M}(u)\right)\right)$ a.e. in $Q_{T}$. Since $\left|T_{M}(u)\right| \leq M$ a.e. in $Q_{T}$ and $S^{\prime}(u) \in L^{\infty}\left(Q_{T}\right)$, we obtain from (2.3), (2.7) and (2.9) that $S^{\prime}(u)\left(g\left(x, t, T_{M}(u), \nabla T_{M}(u)\right)+H\left(x, t, \nabla T_{M}(u)\right)\right) \in L^{1}\left(Q_{T}\right)$.
- In view of (2.6) and (2.10), we have $S^{\prime}(u) f$ belongs to $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$.

The above considerations show that (2.12) holds in $\mathcal{D}^{\prime}\left(Q_{T}\right)$ and that

$$
\frac{\partial B_{S}(x, u)}{\partial t} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)
$$

Due to the properties of $S$, in view of (2.10) and (2.12), we have $\frac{\partial S(u)}{\partial t} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$ and $S(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$, which implies that $S(u) \in C^{0}\left([0, T] ; L^{1}(\Omega)\right)$ so that the initial
condition (2.13) makes sense. Indeed, for every $S \in W^{1, \infty}(\mathbb{R})$, nondecreasing function such that supp $S^{\prime} \subset[-M, M]$, in view of (2.2) we have

$$
\begin{equation*}
\lambda_{M}\left|S(r)-S\left(r^{\prime}\right)\right| \leq\left|B_{S}(x, r)-B_{S}\left(x, r^{\prime}\right)\right| \leq\left\|A_{M}\right\|_{L^{\infty}(\Omega)}\left|S(r)-S\left(r^{\prime}\right)\right| \tag{2.14}
\end{equation*}
$$

for almost every $x \in \Omega$ and for every $r, r^{\prime} \in \mathbb{R}$.
Now we state the proposition is a slight modification of Gronwall's lemma (see [21]).
Proposition 2.1. Given the function $\lambda, \gamma, \varphi, \rho$ defined on $[a,+\infty[$, suppose that $a \geq 0, \lambda \geq 0$, $\gamma \geq 0$ and that $\lambda \gamma, \lambda \varphi$ and $\lambda \rho$ belong to $L^{1}([a,+\infty[)$. If for almost every $t \geq 0$ we have

$$
\varphi(t) \leq \rho(t)+\gamma(t) \int_{t}^{+\infty} \lambda(\tau) \varphi(\tau) \mathrm{d} \tau
$$

then

$$
\varphi(t) \leq \rho(t)+\gamma(t) \int_{t}^{+\infty} \rho(\tau) \lambda(\tau)\left(\int_{t}^{\tau} \lambda(r) \gamma(r) \mathrm{d} r\right) \mathrm{d} \tau
$$

for almost every $t \geq 0$.

## 3 Main results

In this section we establish the following existence theorem.
Theorem 3.1. Assume that (H1)-(H2) hold true. Then, there exists a renormalized solution $u$ of problem (1.1) in the sense of Definition 2.1.

Proof. The proof of this theorem is done in five steps.
Step 1: Approximate problem and a priori estimates.
For $n>0$, let us define the following approximation of $b, g$ and $H$. First, set

$$
\begin{equation*}
b_{n}(x, r)=b\left(x, T_{n}(r)\right)+\frac{1}{n} r . \tag{3.1}
\end{equation*}
$$

In view of (3.1), $b_{n}$ is a Carathéodory function and satisfies (2.2), there exist $\lambda_{n}>0$ and functions $A_{n} \in L^{\infty}(\Omega)$ and $B_{n} \in L^{p}(\Omega)$ such that

$$
\lambda_{n} \leq \frac{\partial b_{n}(x, s)}{\partial s} \leq A_{n}(x) \quad \text { and } \quad\left|\nabla_{x}\left(\frac{\partial b_{n}(x, s)}{\partial s}\right)\right| \leq B_{n}(x)
$$

a.e. in $\Omega, s \in \mathbb{R}$. Next, set

$$
g_{n}(x, t, s, \xi)=\frac{g(x, t, s, \xi)}{1+\frac{1}{n}|g(x, t, s, \xi)|}, \quad \text { and } \quad H_{n}(x, t, \xi)=\frac{H(x, t, \xi)}{1+\frac{1}{n}|H(x, t, \xi)|} .
$$

Let us now consider the approximate problem

$$
\left\{\begin{array}{l}
\frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t}-\operatorname{div}\left(a\left(x, t, u_{n}, \nabla u_{n}\right)\right)+g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)  \tag{3.2}\\
\quad+H_{n}\left(x, t, \nabla u_{n}\right)=f, \quad \text { in } \mathcal{D}^{\prime}\left(Q_{T}\right) \\
b_{n}\left(x, u_{n}\right)(t=0)=0, \quad \text { in } \Omega, \\
b_{n}\left(x, u_{n}\right)=0, \quad \text { on } \partial \Omega \times(0, T) .
\end{array}\right.
$$

Note that $g_{n}(x, t, s, \xi)$ and $H_{n}(x, t, \xi)$ are satisfying the following conditions

$$
\left|g_{n}(x, t, s, \xi)\right| \leq \max \{|g(x, t, s, \xi)| ; n\} \quad \text { and } \quad\left|H_{n}(x, t, \xi)\right| \leq \max \{|H(x, t, \xi)| ; n\}
$$

Moreover, since $f \in L^{p^{\prime}}\left(0, T ; W^{-1,} p^{\prime}(\Omega)\right)$, proving existence of a weak solution $u_{n} \in$ $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ of (3.2) is an easy task (see e.g. [22]). For $\varepsilon>0$ and $s \geq 0$, we define

$$
\varphi_{\varepsilon}(r)= \begin{cases}\operatorname{sign}(r), & \text { if }|r|>s+\varepsilon \\ \frac{\operatorname{sign}(r)(|r|-s)}{\varepsilon}, & \text { if } s<|r| \leq s+\varepsilon \\ 0, & \text { otherwise }\end{cases}
$$

We choose $v=\varphi_{\varepsilon}\left(u_{n}\right)$ as test function in (3.2), we have

$$
\begin{aligned}
& \quad\left[\int_{\Omega} B_{\varphi_{\varepsilon}}^{n}\left(x, u_{n}\right) \mathrm{d} x\right]_{0}^{T}+\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla\left(\varphi_{\varepsilon}\left(u_{n}\right)\right) \mathrm{d} x \mathrm{~d} t \\
& \quad \quad+\int_{Q_{T}} g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \varphi_{\varepsilon}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t+\int_{Q_{T}} H_{n}\left(x, t, \nabla u_{n}\right) \varphi_{\varepsilon}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& =
\end{aligned}
$$

where

$$
B_{\varphi_{\varepsilon}}^{n}(x, r)=\int_{0}^{r} \frac{\partial b_{n}(x, s)}{\partial s} \varphi_{\varepsilon}(s) \mathrm{d} s .
$$

Using

$$
B_{\varphi_{\varepsilon}}^{n}(x, r) \geq 0, \quad g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \varphi_{\varepsilon}\left(u_{n}\right) \geq 0,
$$

(2.9) and Hölder's inequality, we obtain

$$
\begin{aligned}
& \frac{1}{\varepsilon} \int_{\left\{s<\left|u_{n}\right| \leq s+\varepsilon\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mathrm{~d} x \mathrm{~d} t \\
\leq & \left(\int_{\left\{s<\left|u_{n}\right| \leq s+\varepsilon\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\int_{\left\{s<\left|u_{n}\right| \leq s+\varepsilon\right\}}\left(\frac{\left|\nabla u_{n}\right|}{\varepsilon}\right)^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} \\
& +\int_{\left\{s<\left|u_{n}\right|\right\}} h(x, t)\left|\nabla u_{n}\right|^{\mid p-1} \mathrm{~d} x \mathrm{~d} t .
\end{aligned}
$$

## Observe that,

$$
\begin{align*}
& \int_{\left\{s<\left|u_{n}\right|\right\}} h(x, t)\left|\nabla u_{n}\right|^{p-1} \mathrm{~d} x \mathrm{~d} t \\
\leq & \int_{s}^{+\infty}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}} h^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{\prime}}} \mathrm{d} \sigma \tag{3.3}
\end{align*}
$$

Because,

$$
\begin{aligned}
& \int_{\left\{s<\left|u_{n}\right|\right\}} h(x, t)\left|\nabla u_{n}\right|^{p-1} \mathrm{~d} x \mathrm{~d} t \\
= & \int_{s}^{+\infty} \frac{-\mathrm{d}}{\mathrm{~d} \sigma}\left(\int_{\left\{\sigma<\left|u_{n}\right|\right\}} h(x, t)\left|\nabla u_{n}\right|^{p-1} \mathrm{~d} x \mathrm{~d} t\right) \mathrm{d} \sigma \\
= & \int_{s}^{+\infty} \lim _{\delta \rightarrow 0} \frac{1}{\delta}\left(\int_{\left\{\sigma<\left|u_{n}\right| \leq \sigma+\delta\right\}} h(x, t)\left|\nabla u_{n}\right|^{p-1} \mathrm{~d} x \mathrm{~d} t\right) \mathrm{d} \sigma \\
\leq & \int_{s}^{+\infty} \lim _{\delta \rightarrow 0} \frac{1}{\delta}\left(\int_{\left\{\sigma<\left|u_{n}\right| \leq \sigma+\delta\right\}} h^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\int_{\left\{\sigma<\left|u_{n}\right| \leq \sigma+\delta\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{p}}} \mathrm{~d} \sigma \\
= & \int_{s}^{+\infty}\left(\lim _{\delta \rightarrow 0} \frac{1}{\delta} \int_{\left\{\sigma<\left|u_{n}\right| \leq \sigma+\delta\right\}} h^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\lim _{\delta \rightarrow 0} \frac{1}{\delta} \int_{\left\{\sigma<\left|u_{n}\right| \leq \sigma+\delta\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{p}}} \mathrm{~d} \sigma \\
= & \int_{s}^{+\infty}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}} h^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{p}}} \mathrm{~d} \sigma .
\end{aligned}
$$

By (2.5) and (3.3), we deduce that

$$
\begin{align*}
& \frac{1}{\varepsilon} \int_{\left\{s<\left|u_{n}\right| \leq s+\varepsilon\right\}} \alpha\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t \\
& \leq\left(\frac{1}{\varepsilon} \int_{\left\{s<\left|u_{n}\right| \leq s+\varepsilon\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\frac{1}{\varepsilon} \int_{\left\{s<\left|u_{n}\right| \leq s+\varepsilon\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} \\
& \quad+\int_{s}^{+\infty}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}} h^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{\prime}}} \mathrm{d} \sigma \tag{3.4}
\end{align*}
$$

Letting $\varepsilon$ go to zero, we obtain

$$
\begin{align*}
& \frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}} \alpha\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t \\
& \leq\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p^{p}}}\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} \\
& \quad+\int_{s}^{+\infty}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}} h^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} \mathrm{~d} \sigma, \tag{3.5}
\end{align*}
$$

where $\left\{s<\left|u_{n}\right|\right\}$ denotes the set $\left\{(x, t) \in Q_{T, s}<\left|u_{n}(x, t)\right|\right\}$ and $\mu(s)$ stands for the distribution function of $u_{n}$, that is $\mu(s)=\left|\left\{(x, t) \in Q_{T},\left|u_{n}(x, t)\right|<s\right\}\right|$ for all $s \geq 0$.

Now, we recall the following inequality (see for example [23]), we have for almost every $s>0$

$$
\begin{equation*}
1 \leq\left(N C_{N}^{\frac{1}{N}}\right)^{-1}(\mu(s))^{\frac{1}{N}-1}\left(-\mu^{\prime}(s)\right)^{\frac{1}{p^{\prime}}}\left(-\frac{\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{\mathrm{p}} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} . \tag{3.6}
\end{equation*}
$$

Using (3.6), we have

$$
\begin{align*}
& \frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}} \alpha\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t \\
&=\alpha\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{\prime}}}\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} \\
& \leq\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p^{\prime}}}\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} \\
&+\left(N C_{N}^{\frac{1}{N}}\right)^{-1}(\mu(s))^{\frac{1}{N}-1}\left(-\mu^{\prime}(s)\right)^{\frac{1}{p}}\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} \\
& \quad \times \int_{s}^{+\infty}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}} h^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{\prime}}} \mathrm{d} \sigma, \tag{3.7}
\end{align*}
$$

which implies that,

$$
\begin{align*}
& \alpha\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{\prime}}} \\
& \leq\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p^{\prime}}}+\left(N C_{N}^{\frac{1}{N}}\right)^{-1}(\mu(s))^{\frac{1}{N}-1}\left(-\mu^{\prime}(s)\right)^{\frac{1}{p^{p}}} \\
&  \tag{3.8}\\
& \quad \times \int_{s}^{+\infty}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}} h^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\frac{-\mathrm{d}}{\mathrm{~d} \sigma} \int_{\left\{\sigma<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{\prime}}} \mathrm{d} \sigma .
\end{align*}
$$

Now, we consider two functions $B(s)$ and $F(s)$ (see [24, Lemma 2.2]) defined by

$$
\begin{align*}
& \int_{\left\{s<\left|u_{n}\right|\right\}} h^{p}(x, t) \mathrm{d} x \mathrm{~d} t=\int_{0}^{\mu(s)} B^{p}(\sigma) \mathrm{d} \sigma,  \tag{3.9}\\
& \int_{\left\{s<\left|u_{n}\right|\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t=\int_{0}^{\mu(s)} F^{p^{\prime}}(\sigma) \mathrm{d} \sigma,  \tag{3.10}\\
& \|B\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)} \leq\|h\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)^{\prime}} \quad\|F\|_{L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)} \leq\|f\|_{L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)} . \tag{3.11}
\end{align*}
$$

From (3.8), (3.9) and (3.10) becomes

$$
\begin{aligned}
& \alpha\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{p}}} \\
& \leq F(\mu(s))\left(-\mu^{\prime}(s)\right)^{\frac{1}{p^{p}}}+\left(N C_{N}^{\frac{1}{N}}\right)^{-1}(\mu(s))^{\frac{1}{N}-1}\left(-\mu^{\prime}(s)\right)^{\frac{1}{p}} \\
& \quad \quad \times \int_{s}^{+\infty} B(\mu(v))\left(-\mu^{\prime}(v)\right)^{\frac{1}{p}}\left(-\frac{\mathrm{d}}{\mathrm{~d} v} \int_{\left\{v<\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} \mathrm{~d} v .
\end{aligned}
$$

From Proposition 2.1, we obtain

$$
\begin{aligned}
& \alpha\left(\frac{-\mathrm{d}}{\mathrm{~d} s} \int_{\left\{s \leq\left|u_{n}\right|\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p^{p}}} \\
\leq & F(\mu(s))\left(-\mu^{\prime}(s)\right)^{\frac{1}{p^{p}}}+\left(N C_{N}^{\frac{1}{N}}\right)^{-1}(\mu(s))^{\frac{1}{N}-1}\left(-\mu^{\prime}(s)\right)^{\frac{1}{p}} \\
& \left.\times \int_{s}^{+\infty} F(\mu(\sigma)) B(\mu(\sigma))\left(-\mu^{\prime}(\sigma)\right) \exp \left(\int_{s}^{\sigma}\left(N C_{N}^{\frac{1}{N}}\right)^{-1}\right) B(\mu(r))(\mu(r))^{\frac{1}{N}-1}\left(-\mu^{\prime}(r)\right) \mathrm{d} r\right) \mathrm{d} \sigma .
\end{aligned}
$$

Raising to the power $p^{\prime}$, integrating between 0 and $+\infty$ and by a variable change we have

$$
\begin{aligned}
& \alpha^{p^{\prime}} \int_{Q_{T}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t \leq c_{0} \int_{0}^{\left|Q_{T}\right|} F^{p^{\prime}}(\lambda) \mathrm{d} \lambda \\
& \quad+c_{0} \int_{0}^{\left|Q_{T}\right|} \lambda^{\left(\frac{1}{N}-1\right) p^{\prime}}\left[\int_{0}^{\lambda} F(z) B(z) \exp \left(\int_{z}^{\lambda}\left(N C_{N}^{\frac{1}{N}}\right)^{-1} B(v) v^{\frac{1}{N}-1} \mathrm{~d} v\right) \mathrm{d} z\right]^{p^{\prime}} \mathrm{d} \lambda .
\end{aligned}
$$

Using Hölder's inequality and (3.11), then we get

$$
\begin{equation*}
\left\|u_{n}\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)} \leq c_{1}, \tag{3.12}
\end{equation*}
$$

where $c_{1}$ is a positive constant independent of $n$. Then there exists $u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ such that, for some subsequence

$$
\begin{equation*}
u_{n} \rightharpoonup u \text { weakly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \tag{3.13}
\end{equation*}
$$

we conclude that

$$
\begin{equation*}
\left\|T_{k}\left(u_{n}\right)\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)}^{p} \leq c_{2} k . \tag{3.14}
\end{equation*}
$$

We deduce from the above inequality, (2.2) and (3.14), that

$$
\begin{equation*}
\int_{\Omega} B_{T_{k}}^{n}\left(x, u_{n}\right) \mathrm{d} x \leq C k \tag{3.1}
\end{equation*}
$$

where

$$
B_{T_{k}}^{n}(x, z)=\int_{0}^{z} \frac{\partial b_{n}(x, s)}{\partial s} T_{k}(s) \mathrm{d} s
$$

Now, we turn to prove the almost every convergence of $u_{n}$ and $b_{n}\left(x, u_{n}\right)$. Consider now a function non decreasing $g_{k} \in C^{2}(\mathbb{R})$ such that $g_{k}(s)=s$ for $|s| \leq k / 2$ and $g_{k}(s)=k$ for $|s| \geq k$. Multiplying the approximate equation by $g_{k}^{\prime}\left(u_{n}\right)$, we obtain

$$
\begin{align*}
& \frac{\partial B_{g_{k}^{\prime}}^{n}\left(x, u_{n}\right)}{\partial t}-\operatorname{div}\left(a\left(x, t, u_{n}, \nabla u_{n}\right) g_{k}^{\prime}\left(u_{n}\right)\right)+a\left(x, t, u_{n}, \nabla u_{n}\right) g_{k}^{\prime \prime}\left(u_{n}\right) \nabla u_{n} \\
& \quad+\left(g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)+H_{n}\left(x, t, \nabla u_{n}\right)\right) g_{k}^{\prime}\left(u_{n}\right)=f g_{k}^{\prime}\left(u_{n}\right), \quad \text { in } \mathcal{D}^{\prime}\left(Q_{T}\right) \tag{3.16}
\end{align*}
$$

where

$$
B_{g_{k}^{\prime}}^{n}(x, z)=\int_{0}^{z} \frac{\partial b_{n}(x, s)}{\partial s} g_{k}^{\prime}(s) \mathrm{d} s
$$

As a consequence of (3.14), we deduce that $g_{k}\left(u_{n}\right)$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and $\partial B_{g_{k}^{\prime}}^{n}\left(x, u_{n}\right) / \partial t$ is bounded in $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$. Due to the properties of $g_{k}$ and (2.2), we conclude that $\partial g_{k}\left(u_{n}\right) / \partial t$ is bounded in $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$, which implies that $g_{k}\left(u_{n}\right)$ is compact in $L^{1}\left(Q_{T}\right)$.

Due to the choice of $g_{k}$, we conclude that for each $k$, the sequence $T_{k}\left(u_{n}\right)$ converges almost everywhere in $Q_{T}$, which implies that $u_{n}$ converges almost everywhere to some measurable function $u$ in $Q_{T}$. Thus by using the same argument as in [11,25] and [26], we can show

$$
\begin{align*}
& u_{n} \rightarrow u \text {, a.e. in } Q_{T},  \tag{3.17}\\
& b_{n}\left(x, u_{n}\right) \rightarrow b(x, u), \text { a.e. in } Q_{T} . \tag{3.18}
\end{align*}
$$

We can deduce from (3.14) that

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u), \text { weakly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) . \tag{3.19}
\end{equation*}
$$

Which implies, by using (2.3), for all $k>0$ that there exists a function $\bar{a} \in\left(L^{p^{\prime}}\left(Q_{T}\right)\right)^{N}$, such that

$$
\begin{equation*}
a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup \bar{a} \text {, weakly in }\left(L^{p^{\prime}}\left(Q_{T}\right)\right)^{N} . \tag{3.20}
\end{equation*}
$$

We now establish that $b(., u)$ belongs to $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$. Using (3.17) and passing to the limit inf in (3.15) as $n$ tends to $+\infty$, we obtain that

$$
\frac{1}{k} \int_{\Omega} B_{T_{k}}(x, u)(\tau) \mathrm{d} x \leq C
$$

for almost any $\tau$ in $(0, T)$. Due to the definition of $B_{T_{k}}(x, s)$ and the fact that $\frac{1}{k} B_{T_{k}}(x, u)$ converges pointwise to $b(x, u)$, as $k$ tends to $+\infty$, shows that $b(x, u)$ belong to $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$.
Lemma 3.1. Let $u_{n}$ be a solution of the approximate problem (3.2). Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mathrm{~d} x \mathrm{~d} t=0 . \tag{3.21}
\end{equation*}
$$

Proof. Considering the function $\varphi=T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right)^{+}=\alpha_{m}\left(u_{n}\right)$ in (3.2) this function is admissible since $\varphi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and $\varphi \geq 0$. Then, we have

$$
\begin{aligned}
& \quad \int_{0}^{T}\left\langle\frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} ; \alpha_{m}\left(u_{n}\right)\right\rangle \mathrm{d} t+\int_{\left\{m \leq u_{n} \leq m+1\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \alpha_{m}^{\prime}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad+\int_{Q_{T}}\left(g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)+H_{n}\left(x, t, \nabla u_{n}\right)\right) \alpha_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& \leq\left\|\nabla u_{n}\right\|_{L^{p}\left(Q_{T}\right)}\left(\int_{\left\{m \leq u_{n}\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p}} .
\end{aligned}
$$

Which, by setting

$$
B_{\alpha_{m}}^{n}(x, r)=\int_{0}^{r} \frac{\partial b_{n}(x, s)}{\partial s} \alpha_{m}(s) \mathrm{d} s,
$$

(2.8) and (2.9) gives

$$
\begin{aligned}
& \int_{\Omega} B_{\alpha_{m}}^{n}\left(x, u_{n}\right)(T) \mathrm{d} x+\int_{\left\{m \leq u_{n} \leq m+1\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mathrm{~d} x \mathrm{~d} t \\
\leq & \left\|\nabla u_{n}\right\|_{L^{p}\left(Q_{T}\right)}\left(\int_{\left\{m \leq u_{n}\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p}}+\int_{Q_{T}} h(x, t)\left|\nabla u_{n}\right|^{p-1} \alpha_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t .
\end{aligned}
$$

Using this Hölder's inequality and (3.12), we deduce

$$
\begin{aligned}
& \int_{\Omega} B_{\alpha_{m}}^{n}\left(x, u_{n}\right)(T) \mathrm{d} x+\int_{\left\{m \leq u_{n} \leq m+1\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mathrm{~d} x \mathrm{~d} t \\
\leq & c_{1}\left(\int_{\left\{m \leq u_{n}\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p}}+c_{1}\left(\int_{\left\{m \leq u_{n}\right\}}|h(x, t)|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} .
\end{aligned}
$$

Since $B_{\alpha_{m}}^{n}\left(x, u_{n}\right)(T) \geq 0$ and by Lebesgue's theorem, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left(\int_{\left\{m \leq u_{n}\right\}}|f|^{p^{\prime}} \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p^{\prime}}}=0 \tag{3.22}
\end{equation*}
$$

Similarly, since $b \in L^{r}\left(Q_{T}\right)$ (with $r \geq p$ ), we obtain

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left(\int_{\left\{m \leq u_{n}\right\}}|h(x, t)|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}}=0 \tag{3.23}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\left\{m \leq u_{n} \leq m+1\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mathrm{~d} x \mathrm{~d} t=0 . \tag{3.24}
\end{equation*}
$$

On the other hand, let $\varphi=T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right)^{-}$as test function in (3.2) and reasoning as in the proof of (3.24) we deduce that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\left\{-(m+1) \leq u_{n} \leq-m\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mathrm{~d} x \mathrm{~d} t=0 . \tag{3.25}
\end{equation*}
$$

Thus (3.21) follows from (3.24) and (3.25).
Step 2: Almost everywhere convergence of the gradients.
This step is devoted to introduce for $k \geq 0$ fixed a time regularization of the function $T_{k}(u)$ in order to perform the monotonicity method. This kind of regularization has been first introduced by R. Landes (see [27, Lemma 6, proposition 3 and proposition 4]). For $k>0$ fixed, and let $\varphi(t)=t e^{\gamma t^{2}}, \gamma>0$. It is will known that when $\gamma>\left(L_{1}(k) / 2 \alpha\right)^{2}$, one has

$$
\begin{equation*}
\varphi^{\prime}(s)-\left(\frac{L_{1}(k)}{\alpha}\right)|\varphi(s)| \geq \frac{1}{2}, \quad \text { for all } s \in \mathbb{R} \tag{3.26}
\end{equation*}
$$

Let $\psi_{i} \in \mathcal{D}(\Omega)$ be a sequence which converge strongly to $u_{0}$ in $L^{1}(\Omega)$.
Set $w_{\mu}^{i}=\left(T_{k}(u)\right)_{\mu}+e^{-\mu t} T_{k}\left(\psi_{i}\right)$ where $\left(T_{k}(u)\right)_{\mu}$ is the mollification with respect to time of $T_{k}(u)$. Note that $w_{\mu}^{i}$ is a smooth function having the following properties:

$$
\begin{align*}
& \frac{\partial w_{\mu}^{i}}{\partial t}=\mu\left(T_{k}(u)-w_{\mu}^{i}\right), \quad w_{\mu}^{i}(0)=T_{k}\left(\psi_{i}\right), \quad\left|w_{\mu}^{i}\right| \leq k  \tag{3.27}\\
& w_{\mu}^{i} \rightarrow T_{k}(u), \quad \text { strongly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \text { as } \mu \rightarrow \infty \tag{3.28}
\end{align*}
$$

We introduce the following function of one real:

$$
h_{m}(s)= \begin{cases}1, & \text { if }|s| \leq m \\ 0, & \text { if }|s| \geq m+1 \\ m+1-|s|, & \text { if } m \leq|s| \leq m+1\end{cases}
$$

where $m>k$. Let $\theta_{n}^{\mu, i}=T_{k}\left(u_{n}\right)-w_{\mu}^{i}$ and $z_{n, m}^{\mu, i}=\varphi\left(\theta_{n}^{\mu, i}\right) h_{m}\left(u_{n}\right)$.
Using in (3.2) the test function $z_{n, m}^{\mu, i}$, we obtain

$$
\begin{aligned}
& \int_{0}^{T}\left\langle\frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} ; \varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right)\right\rangle \mathrm{d} t \\
&+\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla w_{\mu}^{i}\right] \varphi^{\prime}\left(\theta_{n}^{\mu, i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
&+\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \varphi\left(\theta_{n}^{\mu, i}\right) h_{m}^{\prime}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad+\int_{Q_{T}}\left(g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)+H_{n}\left(x, t, \nabla u_{n}\right)\right) z_{n, m}^{\mu, i} \mathrm{~d} x \mathrm{~d} t \\
&=\int_{0}^{T}\left\langle f ; z_{n, m}^{\mu, i}\right\rangle \mathrm{d} t
\end{aligned}
$$

which implies since $g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \geq 0$ on $\left\{\left|u_{n}\right|>k\right\}$ :

$$
\begin{align*}
& \int_{0}^{T}\langle \left.\frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} ; \varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right)\right\rangle \mathrm{d} t \\
&+\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla w_{\mu}^{i}\right] \varphi^{\prime}\left(\theta_{n}^{\mu, i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
&+\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \varphi\left(\theta_{n}^{\mu, i}\right) h_{m}^{\prime}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
&+\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& \leq \int_{0}^{T}\left\langle f ; z_{n, m}^{\mu, i}\right\rangle \mathrm{d} t+\int_{Q_{T}}\left|H_{n}\left(x, t, \nabla u_{n}\right) z_{n, m}^{\mu, i}\right| \mathrm{d} x \mathrm{~d} t . \tag{3.29}
\end{align*}
$$

In the sequel and throughout the paper, we will omit for simplicity the denote $\varepsilon(n, \mu, i, m)$ all quantities (possibly different) such that

$$
\lim _{m \rightarrow \infty} \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} \varepsilon(n, \mu, i, m)=0,
$$

and this will be the order in which the parameters we use will tend to infinity, that is, first $n$, then $\mu, i$ and finally $m$. Similarly we will write only $\varepsilon(n)$, or $\varepsilon(n, \mu), \cdots$ to mean that the limits are made only on the specified parameters.

We will deal with each term of (3.29). First of all, observe that

$$
\begin{equation*}
\int_{0}^{T}\left\langle f ; z_{n, m}^{\mu, i}\right\rangle \mathrm{d} t+\int_{Q_{T}}\left|H_{n}\left(x, t, \nabla u_{n}\right) z_{n, m}^{\mu, i}\right| \mathrm{d} x \mathrm{~d} t=\varepsilon(n, \mu) \tag{3.30}
\end{equation*}
$$

since $\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right)$ converges to $\varphi\left(T_{k}(u)-\left(T_{k}(u)\right)_{\mu}+e^{-\mu t} T_{k}\left(\psi_{i}\right)\right) h_{m}(u)$ strongly in $L^{p}\left(Q_{T}\right)$ and weakly $-*$ in $L^{\infty}\left(Q_{T}\right)$ as $n \rightarrow \infty$ and finally $\varphi\left(T_{k}(u)-\left(T_{k}(u)\right)_{\mu}+e^{-\mu t} T_{k}\left(\psi_{i}\right)\right)$ $\times h_{m}(u)$ converges to 0 strongly in $L^{p}\left(Q_{T}\right)$ and weakly $-*$ in $L^{\infty}\left(Q_{T}\right)$ as $\mu \rightarrow \infty$.

On the one hand. The definition of the sequence $w_{\mu}^{i}$ makes it possible to establish the following Lemma 3.2.

Lemma 3.2. For $k \geq 0$ we have

$$
\begin{equation*}
\int_{0}^{T}\left\langle\frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} ; \varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right)\right\rangle \mathrm{d} t \geq \varepsilon(n, m, \mu, i) \tag{3.31}
\end{equation*}
$$

Proof. (see Blanchard and Redwane [28]).

On the other hand, the second term of the left hand side of (3.29) can be written

$$
\begin{aligned}
& \quad \int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla w_{\mu}^{i}\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& =\int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla w_{\mu}^{i}\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad \quad+\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla w_{\mu}^{i}\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& = \\
& =\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla w_{\mu}^{i}\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad \quad \quad \int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla w_{\mu}^{i}\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t,
\end{aligned}
$$

since $m>k$ and $h_{m}\left(u_{n}\right)=1$ on $\left\{\left|u_{n}\right| \leq k\right\}$, we deduce that

$$
\begin{aligned}
& \quad \int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla w_{\mu}^{i}\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& =\int_{Q_{T}}\left(a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \\
& \quad \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad+\int_{Q_{T}} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad+\int_{Q_{T}} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}(u) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad \quad-\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla w_{\mu}^{i} \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& =K_{1}+K_{2}+K_{3}+K_{4} .
\end{aligned}
$$

Using (2.3), (3.20) and Lebesgue theorem we have $a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)$ converges to $a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)$ strongly in $\left(L^{p^{\prime}}\left(Q_{T}\right)\right)^{N}$ and $\nabla T_{k}\left(u_{n}\right)$ converges to $\nabla T_{k}(u)$ weakly in $\left(L^{p}\left(Q_{T}\right)\right)^{N}$, then $K_{2}=\varepsilon(n)$. Using (3.20) and (3.28) we have

$$
K_{3}=\int_{Q_{T}} \bar{a} \cdot \nabla T_{k}(u) \mathrm{d} x \mathrm{~d} t+\varepsilon(n, \mu) .
$$

For what concerns $K_{4}$ can be written, since $h_{m}\left(u_{n}\right)=0$ on $\left\{\left|u_{n}\right|>m+1\right\}$

$$
\begin{aligned}
K_{4}= & -\int_{Q_{T}} a\left(x, t, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \cdot \nabla w_{\mu}^{i} \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
= & -\int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla w_{\mu}^{i} \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& -\int_{\left\{k<\left|u_{n}\right| \leq m+1\right\}} a\left(x, t, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \cdot \nabla w_{\mu}^{i} \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t,
\end{aligned}
$$

and, as above, by letting $n \rightarrow \infty$

$$
\begin{aligned}
K_{4}=-\int_{\{|u| \leq k\}} & \bar{a} \cdot \nabla w_{\mu}^{i} \varphi^{\prime}\left(T_{k}(u)-w_{\mu}^{i}\right) \mathrm{d} x \mathrm{~d} t \\
& -\int_{\{k<|u| \leq m+1\}} \bar{a} \cdot \nabla w_{\mu}^{i} \varphi^{\prime}\left(T_{k}(u)-w_{\mu}^{i}\right) h_{m}(u) \mathrm{d} x \mathrm{~d} t+\varepsilon(n),
\end{aligned}
$$

so that, by letting $\mu \rightarrow \infty$

$$
K_{4}=-\int_{Q_{T}} \bar{a} \cdot \nabla T_{k}(u) \mathrm{d} x \mathrm{~d} t+\varepsilon(n, \mu) .
$$

We conclude then that

$$
\begin{align*}
& \quad \int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla w_{\mu}^{i}\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& =\int_{Q_{T}}\left(a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \\
& \quad \times\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) \mathrm{d} x \mathrm{~d} t+\varepsilon(n, \mu) . \tag{3.32}
\end{align*}
$$

To deal with the third term of the left hand side of (3.29), observe that

$$
\begin{aligned}
& \quad\left|\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \varphi\left(\theta_{n}^{,, i}\right) h_{m}^{\prime}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t\right| \\
& \leq \varphi(2 k) \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mathrm{~d} x \mathrm{~d} t .
\end{aligned}
$$

Thanks to (3.21), we obtain

$$
\begin{equation*}
\left|\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \varphi\left(\theta_{n}^{\mu, i}\right) h_{m}^{\prime}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t\right| \leq \varepsilon(n, m) . \tag{3.33}
\end{equation*}
$$

We now turn to fourth term of the left hand side of (3.29), can be written

$$
\begin{align*}
& \quad\left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g\left(x, t, u_{n}, \nabla u_{n}\right) \varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t\right| \\
& \leq \int_{\left\{\left|u_{n}\right| \leq k\right\}} L_{1}(k)\left(L_{2}(x, t)+\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} \mid \varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t\right. \\
& \leq L_{1}(k) \int_{Q_{T}} L_{2}(x, t)\left|\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)\right| \mathrm{d} x \mathrm{~d} t \\
& \quad+\frac{L_{1}(k)}{\alpha} \int_{Q_{T}} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right)\left|\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)\right| \mathrm{d} x \mathrm{~d} t, \tag{3.34}
\end{align*}
$$

since $L_{2}(x, t)$ belong to $L^{1}\left(Q_{T}\right)$ it is easy to see that

$$
L_{1}(k) \int_{Q_{T}} L_{2}(x, t)\left|\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)\right| \mathrm{d} x \mathrm{~d} t=\varepsilon(n, \mu) .
$$

On the other hand, the second term of the right hand side of (3.34), write as

$$
\begin{aligned}
& \quad \frac{L_{1}(k)}{\alpha} \int_{Q_{T}} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right)\left|\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)\right| \mathrm{d} x \mathrm{~d} t \\
& =\frac{L_{1}(k)}{\alpha} \int_{Q_{T}}\left(a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \\
& \quad \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right)\left|\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)\right| \mathrm{d} x \mathrm{~d} t \\
& \quad+\frac{L_{1}(k)}{\alpha} \int_{Q_{T}} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right)\left|\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)\right| \mathrm{d} x \mathrm{~d} t \\
& \quad+\frac{L_{1}(k)}{\alpha} \int_{Q_{T}} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u)\left|\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)\right| \mathrm{d} x \mathrm{~d} t,
\end{aligned}
$$

and, as above, by letting first $n$ then finally $\mu$ go to infinity, we can easily see, that each one of last two integrals is of the form $\varepsilon(n, \mu)$. This implies that

$$
\begin{align*}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g\left(x, t, u_{n}, \nabla u_{n}\right) \varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t\right| \\
& \leq \frac{L_{1}(k)}{\alpha} \int_{Q_{T}}\left(a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \\
& \cdot \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right)\left|\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)\right| \mathrm{d} x \mathrm{~d} t+\varepsilon(n, \mu) . \tag{3.35}
\end{align*}
$$

Combining (3.29), (3.31), (3.32), (3.33) and (3.35), we get

$$
\begin{aligned}
& \int_{Q_{T}}\left(a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \\
& \quad \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right)\left(\varphi^{\prime}\left(T_{k}(u)-w_{\mu}^{i}\right)-\frac{L_{1}(k)}{\alpha}\left|\varphi\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)\right|\right) \mathrm{d} x \mathrm{~d} t \leq \varepsilon(n, \mu, i, m),
\end{aligned}
$$

and so, thanks to (3.26), we have

$$
\begin{align*}
& \int_{Q_{T}}\left(a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) \mathrm{d} x \mathrm{~d} t \\
& \leq \varepsilon(n) . \tag{3.36}
\end{align*}
$$

Hence by passing to the limit sup over $n$, we get

$$
\limsup _{n \rightarrow \infty} \int_{Q_{T}}\left(a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) \mathrm{d} x \mathrm{~d} t=0 .
$$

This implies that

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u), \quad \text { strongly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \text { for all } k . \tag{3.37}
\end{equation*}
$$

Now, observe that for every $\sigma>0$,

$$
\begin{aligned}
& \operatorname{meas}\left\{(x, t) \in Q_{T}:\left|\nabla u_{n}-\nabla u\right|>\sigma\right\} \\
& \leq \text { meas }\left\{(x, t) \in Q_{T}:\left|\nabla u_{n}\right|>k\right\}+\text { meas }\left\{(x, t) \in Q_{T}:|u|>k\right\} \\
& \quad+\operatorname{meas}\left\{(x, t) \in Q_{T}:\left|\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right|>\sigma\right\},
\end{aligned}
$$

then as a consequence of (3.37) we have that $\nabla u_{n}$ converges to $\nabla u$ in measure and therefore, always reasoning for a subsequence,

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u, \quad \text { a.e. in } Q_{T}, \tag{3.38}
\end{equation*}
$$

which implies

$$
\begin{equation*}
a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right), \quad \text { weakly in }\left(L^{p^{\prime}}\left(Q_{T}\right)\right)^{N} . \tag{3.39}
\end{equation*}
$$

Step 3: Equi-integrability of $H_{n}$ and $g_{n}$.
We shall now prove that $H_{n}\left(x, t, \nabla u_{n}\right)$ converges to $H(x, t, \nabla u)$ and $g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)$ converges to $g(x, t, u, \nabla u)$ strongly in $L^{1}\left(Q_{T}\right)$ by using Vitali's theorem.

Since $H_{n}\left(x, t, \nabla u_{n}\right) \rightarrow H(x, t, \nabla u)$ a.e. $Q_{T}$ and $g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \rightarrow g(x, t, u, \nabla u)$ a.e. $Q_{T}$, thanks to (2.7) and (2.9), it suffices to prove that $H_{n}\left(x, t, \nabla u_{n}\right)$ and $g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)$ are uniformly equi-integrable in $Q_{T}$. We will now prove that $H_{n}\left(x, \nabla u_{n}\right)$ is uniformly equiintegrable, we use Hölder's inequality and (3.12), we have

$$
\begin{equation*}
\int_{E}\left|H_{n}\left(x, \nabla u_{n}\right)\right| \leq\left(\int_{E} h^{p}(x, t) \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p}}\left(\int_{Q_{T}}\left|\nabla u_{n}\right|^{p}\right)^{\frac{1}{p}} \leq c_{1}\left(\int_{E} h^{p}(x, t) \mathrm{d} x \mathrm{~d} t\right)^{\frac{1}{p}} \tag{3.40}
\end{equation*}
$$

which is small uniformly in $n$ when the measure of $E$ is small.
To prove the uniform equi-integrability of $g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)$. For any measurable subset $E \subset Q_{T}$ and $m \geq 0$,

$$
\begin{align*}
& \int_{E}\left|g\left(x, t, u_{n}, \nabla u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t \\
= & \int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|g\left(x, t, u_{n}, \nabla u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t+\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g\left(x, t, u_{n}, \nabla u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t \\
\leq & L_{1}(m) \int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left[L_{2}(x, t)+\left|\nabla u_{n}\right|^{p}\right] \mathrm{d} x \mathrm{~d} t+\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g\left(x, t, u_{n}, \nabla u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t \\
\leq & L_{1}(m) \int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left[L_{2}(x, t)+\left|\nabla T_{m}\left(u_{n}\right)\right|^{p}\right] \mathrm{d} x \mathrm{~d} t+\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g\left(x, t, u_{n}, \nabla u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t \\
= & K_{1}+K_{2} . \tag{3.41}
\end{align*}
$$

For fixed $m$, we get

$$
K_{1} \leq L_{1}(m) \int_{E}\left[L_{2}(x, t)+\left|\nabla T_{m}\left(u_{n}\right)\right|^{p}\right] \mathrm{d} x \mathrm{~d} t,
$$

which is thus small uniformly in $n$ for $m$ fixed when the measure of $E$ is small (recall that $T_{m}\left(u_{n}\right)$ tends to $T_{m}(u)$ strongly in $\left.L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)\right)$. We now discuss the behavior of the second integral of the right hand side of (3.41), let $\psi_{m}$ be a function such that

$$
\begin{cases}\psi_{m}(s)=0, & \text { if } \quad|s| \leq m-1  \tag{3.42}\\ \psi_{m}(s)=\operatorname{sign}(s), & \text { if }|s| \geq m, \\ \psi_{m}^{\prime}(s)=1, & \text { if } \quad m-1<|s|<m\end{cases}
$$

We chooses $\psi_{m}\left(u_{n}\right)$ as a test function for $m>1$ in (3.2), we obtain

$$
\begin{aligned}
& {\left[\int_{\Omega} B_{m}^{n}\left(x, u_{n}\right) \mathrm{d} x\right]_{0}^{T}+\int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} \psi_{m}^{\prime}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t } \\
& \quad+\int_{Q_{T}} g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \psi_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t+\int_{Q_{T}} H_{n}\left(x, t, \nabla u_{n}\right) \psi_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
= & \int_{0}^{T}\left\langle f ; \psi_{m}\left(u_{n}\right)\right\rangle \mathrm{d} t
\end{aligned}
$$

where

$$
B_{m}^{n}(x, r)=\int_{0}^{r} \frac{\partial b_{n}(x, s)}{\partial s} \psi_{m}(s) \mathrm{d} s,
$$

which implies, since $B_{m}^{n}(x, r) \geq 0$ and using (2.5), Hölder's inequality

$$
\begin{aligned}
& \int_{\left\{m-1 \leq\left|u_{n}\right|\right\}}\left|g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t \\
\leq & \int_{E}\left|H_{n}\left(x, t, \nabla u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t+\|f\|_{L^{p^{\prime}}\left(0, T ; W^{\left.-1, p^{\prime}(\Omega)\right)}\right.}\left(\int_{\left\{m-1 \leq\left|u_{n}\right| \leq m\right\}}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{\frac{1}{p}} .
\end{aligned}
$$

By (3.12), we have

$$
\lim _{m \rightarrow \infty} \sup _{n \in \mathbb{N}} \int_{\left\{\left|u_{n}\right|>m-1\right\}}\left|g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t=0 .
$$

Thus we proved that the second term of the right hand side of (3.41) is also small, uniformly in $n$ and in $E$ when $m$ is sufficiently large. Which shows that $g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)$ and $H_{n}\left(x, t, \nabla u_{n}\right)$ are uniformly equi-integrable in $Q_{T}$ as required, we conclude that

$$
\begin{cases}H_{n}\left(x, t, \nabla u_{n}\right) \rightarrow H(x, t, \nabla u), & \text { strongly in } L^{1}\left(Q_{T}\right),  \tag{3.43}\\ g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \rightarrow g(x, t, u, \nabla u), & \text { strongly in } L^{1}\left(Q_{T}\right) .\end{cases}
$$

Step 4: In this step we prove that $u$ satisfies (2.11).
Lemma 3.3. The limit $u$ of the approximate solution $u_{n}$ of (3.2) satisfies

$$
\lim _{m \rightarrow+\infty} \int_{\{m \leq|u| \leq m+1\}} a(x, t, u, \nabla u) \cdot \nabla u \mathrm{~d} x \mathrm{~d} t=0 .
$$

Proof. Note that for any fixed $m \geq 0$, one has

$$
\begin{aligned}
& \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mathrm{~d} x \mathrm{~d} t \\
= & \int_{Q_{T}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{m+1}\left(u_{n}\right)-\nabla T_{m}\left(u_{n}\right)\right) \mathrm{d} x \mathrm{~d} t \\
= & \int_{Q_{T}} a\left(x, t, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \cdot \nabla T_{m+1}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad-\int_{Q_{T}} a\left(x, t, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right) \cdot \nabla T_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t .
\end{aligned}
$$

According to (3.37) and (3.39), one can pass to the limit as $n \rightarrow+\infty$ for fixed $m \geq 0$, to obtain

$$
\begin{align*}
& \lim _{n \rightarrow+\infty} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mathrm{~d} x \mathrm{~d} t \\
= & \int_{Q_{T}} a\left(x, t, T_{m+1}(u), \nabla T_{m+1}(u)\right) \cdot \nabla T_{m+1}(u) \mathrm{d} x \mathrm{~d} t \\
& -\int_{Q_{T}} a\left(x, t, T_{m}(u), \nabla T_{m}(u)\right) \cdot \nabla T_{m}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
= & \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a(x, t, u, \nabla u) \cdot \nabla u \mathrm{~d} x \mathrm{~d} t . \tag{3.44}
\end{align*}
$$

Taking the limit as $m \rightarrow+\infty$ in (3.44) and using the estimate (3.21), we show that $u$ satisfies (2.11) and the proof is complete.

Step 5: In this step we prove that $u$ satisfies (2.12) and (2.13).
Let $S$ be a function in $W^{2, \infty}(\mathbb{R})$ such that $S^{\prime}$ has a compact support. Let $M$ be a positive real number such that support of $S^{\prime}$ is a subset of $[-M, M]$. Pointwise multiplication of the approximate equation (3.2) by $S^{\prime}\left(u_{n}\right)$ leads to

$$
\begin{align*}
& \frac{\partial B_{S}^{n}\left(x, u_{n}\right)}{\partial t}-\operatorname{div}\left(S^{\prime}\left(u_{n}\right) a\left(x, t, u_{n}, \nabla u_{n}\right)\right)+S^{\prime \prime}\left(u_{n}\right) a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} \\
& \quad+S^{\prime}\left(u_{n}\right)\left(g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)+H_{n}\left(x, t, \nabla u_{n}\right)\right)=f S^{\prime}\left(u_{n}\right), \quad \text { in } \mathcal{D}^{\prime}\left(Q_{T}\right) . \tag{3.45}
\end{align*}
$$

Passing to the limit, as $n$ tends to $+\infty$, we have

- Since $S$ is bounded and continuous, $u_{n} \rightarrow u$ a.e. in $Q_{T}$ implies that $B_{S}^{n}\left(x, u_{n}\right)$ converges to $B_{S}(x, u)$ a.e. in $Q_{T}$ and $L^{\infty}$ weak*. Then $\partial B_{S}^{n}\left(x, u_{n}\right) / \partial t$ converges to $\partial B_{S}(x, u) / \partial t$ in $\mathcal{D}^{\prime}\left(Q_{T}\right)$ as $n$ tends to $+\infty$.
- Since $\operatorname{supp}\left(S^{\prime}\right) \subset[-M, M]$, we have for $n \geq M$,

$$
S^{\prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right)=S^{\prime}\left(u_{n}\right) a\left(x, t, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right) \text {, a.e. in } Q_{T} .
$$

The pointwise convergence of $u_{n}$ to $u$ and (3.39) as $n$ tends to $+\infty$ and the bounded character of $S^{\prime}$ permit us to conclude that

$$
\begin{equation*}
S^{\prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \rightharpoonup S^{\prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right), \quad \operatorname{in}\left(L^{p^{\prime}}\left(Q_{T}\right)\right)^{N} \tag{3.46}
\end{equation*}
$$

as $n$ tends to $+\infty . S^{\prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right)$ has been denoted by $S^{\prime}(u) a(x, t, u, \nabla u)$ in Eq. (2.12).

- Regarding the 'energy' term, we have

$$
S^{\prime \prime}\left(u_{n}\right) a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n}=S^{\prime \prime}\left(u_{n}\right) a\left(x, t, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right) \nabla T_{M}\left(u_{n}\right), \quad \text { a.e. in } Q_{T} .
$$

The pointwise convergence of $S^{\prime}\left(u_{n}\right)$ to $S^{\prime}(u)$ and (3.39) as $n$ tends to $+\infty$ and the bounded character of $S^{\prime \prime}$ permit us to conclude that $S^{\prime \prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n}$ converges to $S^{\prime \prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right) \nabla T_{M}(u)$ weakly in $L^{1}\left(Q_{T}\right)$. Recall that

$$
S^{\prime \prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right) \nabla T_{M}(u)=S^{\prime \prime}(u) a(x, t, u, \nabla u) \nabla u, \quad \text { a.e. in } Q_{T} .
$$

- Since $\operatorname{supp}\left(S^{\prime}\right) \subset[-M, M]$, by (3.43), we have

$$
S^{\prime}\left(u_{n}\right)\left(g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)+H_{n}\left(x, t, \nabla u_{n}\right)\right) \rightarrow S^{\prime}(u)(g(x, t, u, \nabla u)+H(x, t, \nabla u))
$$

strongly in $L^{1}\left(Q_{T}\right)$, as $n$ tends to $+\infty$.
As a consequence of the above convergence result, we are in a position to pass to the limit as $n$ tends to $+\infty$ in equation (3.45) and to conclude that $u$ satisfies (2.12).

It remains to show that $B_{S}(x, u)$ satisfies the initial condition (2.13). To this end, firstly remark that, $S$ being bounded, $B_{S}^{n}\left(x, u_{n}\right)$ is bounded in $L^{\infty}\left(Q_{T}\right)$. Secondly, (3.45) and the above considerations on the behavior of the terms of this equation show that $\partial B_{S}^{n}\left(x, u_{n}\right) / \partial t$ is bounded in $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$. As a consequence, an Aubin's type lemma (see, e.g, [29]) implies that $B_{S}^{n}\left(x, u_{n}\right)$ lies in a compact set of $C^{0}\left([0, T], L^{1}(\Omega)\right)$. It follows that on the one hand, $B_{S}^{n}\left(x, u_{n}\right)(t=0)=B_{S}^{n}(x, 0)=0$ converges to $B_{S}(x, u)(t=0)$ strongly in $L^{1}(\Omega)$. On the other hand, the smoothness of $S$ implies that $B_{S}(x, u)(t=0)=0$ in $\Omega$.

As a conclusion, steps 1-5 complete the proof of Theorem 3.1.

## References

[1] Boccardo L., Gallouët T., On some nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal., 87 (1989), 149-169.
[2] Boccardo L., Dall'Aglio A., Gallouët T. and Orsina L., Nonlinear parabolic equations with measure data. J. Funct. Anal., 147(1) (1997), 237-258.
[3] Porzio M.-M., Existence of solutions for some noncoercive parabolic equations. Discrete Contin. Dynam. Syst., 5(3) (1999), 553-568.
[4] Dall'Aglio A., Orsina L., Nonlinear parabolic equations with natural growth conditions and $L^{1}$ data. Nonlinear Anal., 27 (1996), 59-73.
[5] Porretta A., Existence results for nonlinear parabolic equations via strong convergence of truncations. Annali di matematica pura ed applicata. (IV), Vol. CLXXVII (1999), 143-172.
[6] Porretta A., Nonlinear equations with natural growth terms and measure data. EJDE. Conference, 09 (2002), 183-202.
[7] Diperna R. J., Lions P.-L., On the Cauchy problem for Boltzman equations: global existence and weak stability. Ann. of Math., 130 (1989), 321-366.
[8] Boccardo L., Giachetti D., Diaz J.-I. and Murat F., Existence and Regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms. J. Diff. Equ., 106 (993), 215-237.
[9] Rakotoson J.-M., Uniqueness of renormalized solutions in a $T$-set for $L^{1}$ data problems and the link between various formulations. Indiana University Math. Jour., 43 (2) (1994).
[10] Dal Maso G., Murat F., Orsina L. and Prignet A., Definition and existence of renormalized solutions of elliptic equations with general measure data. C. R. Acad. Sci. Paris, 325 (1997), 481-486.
[11] Blanchard D., Murat F. and Redwane H., Existence and uniqueness of renormalized solution for a fairly general class of nonlinear parabolic problems. J. Diff. Equ., 177 (2001), 331-374.
[12] Akdim Y., Bennouna J., Bouajaja A., Mekkour M. and Redwane H., Entropy unilateral solutions for strongly nonlinear parabolic problems without sign condition and via a sequence of penalized equations. International Journal of Mathematics and Statistics, 12 (2) (2012).
[13] Akdim Y., Bennouna J., Mekkour M. and Redwane H., Existence of renormalized solutions for parabolic equations without the sign condition and with three unbounded nonlinearities. Appl. Math., (Warsaw) 39 (2012), 1-22.
[14] Di Nardo R., Nonlinear parabolic equations with a lower order term. Commun. Pure Appl. Anal., 9(4) (2010), 929-942.
[15] Di Nardo R., Feo F. and Guibé O., Existence result for nonlinear parabolic equations with lower order terms. Anal. Appl. (Singap.), 2 (2011), 161-186.
[16] Redwane H., Existence of a solution for a class of parabolic equations with three unbounded nonlinearities. Adv. Dyn. Syst. Appl., 2 (2007), 241-264.
[17] Redwane H., Existence results for a class of parabolic equations in Orlicz spaces. Electronic Journal of Qualitative Theory of Diferential Equations, 2 (2010), 1-19.
[18] Akdim Y., Benkirane A. and El Moumni M., Strongly nonlinear variational parabolic initialboundary value problems, submitted.
[19] Youssfi, A., Benkirane A. and El Moumni M., Existence result for strongly nonlinear elliptic unilateral problems with $L^{1}$-data. Complex Variables and Elliptic Equations: An International Journal, (2012), 1-15.
[20] Monetti V.-M. and Randazzo L., Existence results for nonlinear elliptic equations with $p$ growth in the gradient. Riceeche di Matimatica., Vol. XLIX, fasc. 1 (2000), 163-181.
[21] Beckenbak E., Beliman R., Inequalities. Springer-Verlag, 1965.
[22] Lions J.-L., Quelques Méthodes de Résolution des Problème aux Limites Non Linéaires. Dundo. Paris, 1969.
[23] Hardy G.-H., Littlewood J.-E and Pólya G., Inequalities. Cambrige University Press, Cambrige, 1964.
[24] Alvino A., Trombetti G., Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri. Ricerche Math., 27 (1978), 413-428.
[25] Blanchard D. and Murat F., Renormalized solutions of nonlinear parabolic problems with L1 data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A,127 (1997), 1137-1152.
[26] Redwane H., Solution renormalises de problèmes paraboliques et elleptique non linéaires.
[27] Landes R., On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc. Roy. Soc. Edinburgh Sect. A, 89 (1981), 321-366.
[28] Blanchard D. and Redwane H., Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, natural growth terms and $L^{1}$ data. (To appear).
[29] Simon J., Compact sets in the space $L^{p}(0, T, B)$. Ann. Mat. Pura. Appl., 146 (1987), 65-96.


[^0]:    *Corresponding author. Email addresses: akdimyoussef@yahoo.fr (Y. Akdim), abd.benkirane@gmail.com (A. Benkirane), mostafaelmoumni@gmail.com, (M. EL Moumni) redwane_hicham@yahoo.fr (H. Redwane)

