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Abstract. In this paper, we are concerned with the existence of nodal type bound state
for the following stationary nonlinear Schrödinger equation

−∆u(x)+V(x)u(x)= |u|p−1u, x∈R
N , N≥3,

where 1< p< (N+2)/(N−2) and the potential V(x) is a positive radial function and
may decay to zero at infinity. Under appropriate assumptions on the decay rate of
V(x), Souplet and Zhang [1] proved the above equation has a positive bound state. In
this paper, we construct a nodal solution with precisely two nodal domains and prove
that the above equation has a nodal type bound state under the same conditions on
V(x) as in [1].
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1 Introduction

In this paper, we consider the time-independent nonlinear Schrödinger equation

−∆u(x)+V(x)u(x)= |u|p−1u, x∈R
N , N≥3, (1.1)

where 1< p< (N+2)/(N−2). We assume that V(x) satisfies the following conditions:

(V1) V(x) is a radially symmetric and locally Hölder continuous function.
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(V2) There exist a, A>0 and α∈ [0,2(N−1)(p−1)/(p+3)) such that

a

1+|x|α
≤V(x)≤A. (1.2)

We call a function u a bound state of (1.1) if u∈H1(RN)\{0} and satisfies

∫

RN
∇u∇v+V(x)uvdx=

∫

RN
|u|p−1uvdx for all v∈C∞

0 (RN). (1.3)

Furthermore, a function u0 is called a nodal type bound state of (1.1) if u0 is a bound state

of (1.1) and u±
0 6≡0, where u+

0 (x)=max{u0(x),0} and u−
0 (x)=min{u0(x),0}.

In the past two decays, much attention has been paid to the existence of bound states

for problem (1.1) under the assumption that lim|x|→+∞V(x)> 0. For example, if V(x)
satisfies

(V3) there exists V0>0 such that V(x)≥V0 for all x∈R
N , and

(V4) lim
|x|→+∞

V(x)=+∞, Rabinowitz [3] proved that (1.1) has a bound state by a variant

version of mountain pass theorem. If V(x) satisfies (V3) and

(V5) lim
|x|→+∞

V(x)= sup
x∈RN

V(x)<+∞.

Li, et al. [4] proved that there is a ground state, that is the least energy solution among

all bound states, for problem (1.1). When V(x) may change sign in R
N and satisfies

lim|x|→+∞V(x)>0, Ding and Szulkin [5] showed the existence of bound states for prob-

lem (1.1). Under the conditions (V3) and (V4), Bartsch, et al. [2] proved the existence of

nodal type bound states for problem (1.1).

In order to find the bound states of (1.1), ones usually use variational method to look

for the nonzero critical points of the energy functional given by

I(u)=
1

2

∫

RN

(

|∇u|2+V(x)u2
)

dx−
1

p+1

∫

RN
|u|p+1dx, u∈HV , (1.4)

where

HV =

{

u∈D1,2(RN) :
∫

RN
V(x)u2dx<∞

}

with the norm

‖u‖HV
=

(

∫

RN
[|∇u|2+V(x)u2]dx

)
1
2

if V(x)≥0 on R
N ,

and otherwise, if V(x) changes sign in R
N, HV is substituted by HV+ . We note that HV

or HV+ is a subspace of H1(RN) if V(x) satisfies lim|x|→+∞V(x)> 0. So, in this case the
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nonzero critical point of (1.4) must be the bound state of (1.1). Then it is natural to ask

whether there is a bound state for problem (1.1) if V(x) satisfies lim|x|→+∞V(x)=0.

By using a dynamical approach, Souplet and Zhang [1] proved (1.1) has a positive

bound state under the conditions (V1) and (V2). In [6], Ambrosetti, et al. studied the

existence and concentration behavior of ground states for problem (1.1) with vanishing

potential in more general case. After the work of [6], there are many papers on the exis-

tence of bound states, ground states as well as semi-classical states (where −∆ is replaced

by −ǫ2
∆ for ǫ>0 small) for problem (1.1) with decaying potentials. See [7–14]. The con-

dition that the decaying rate of V is not more than 2 plays an important role in getting

bound states of (1.1) among these papers. So, Ambrosetti and Malchiodi [15] posed an

open question concerning the existence of bound states for (1.1) with fast decaying po-

tentials. Recently, Cao and Peng [16] and Ba, Deng and Peng [17] made much progress in

this open question and proved the existence of multi-peak bound states for (1.1) even if

V has a compact support. In all the above mentioned papers, most of them are devoted

to studying the positive solution of (1.1). To the authors’ knowledge, there are few results

on the existence of nodal solution for problem (1.1) with decaying potentials.

In this paper, inspired by [2], we construct a nodal solution with precisely two nodal

domains, and prove further that this nodal solution has the same exponential decay as in

[11]. Thus, we finally get a nodal type bound state under the same conditions on V(x)
as in [1]. Our result in this paper, for one thing, obtains a nodal solution of problem (1.1)

under the same assumptions on V(x) as those in [1]. For another, it is different from

the result of [2], since the potential V(x) under our conditions may not have the positive

lower bound.

The main result of this paper is the following

Theorem 1.1. Suppose that (V1) and (V2) hold. Then problem (1.1) has a nodal type bound state.

2 Preliminary results

Let

D1,2
r (RN)=

{

u∈D1,2(RN) : u(x)=u(|x|)
}

,

H={u∈D1,2
r (RN) :

∫

RN
V(|x|)u2dx<∞}.

Then (H,〈,〉) is a real Hilbert space with the scalar product given by

〈u,v〉=
∫

RN
∇u∇v+V(|x|)uvdx, ∀ u, v∈H.

The norm of H is defined by

‖u‖=(
∫

RN
|∇u|2+V(|x|)u2dx)

1
2 , ∀ u∈H.
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By [14, Theorem1], we have the following

Proposition 2.1. Suppose that (V1) and (V2) hold. Then for p ∈ (1,(N+2)/(N−2)), the

embedding H →֒ Lp+1(RN) is compact.

We define the energy functional I : H→R by

I(u)=
1

2

∫

RN
(|∇u|2+V(|x|)u2)dx−

1

p+1

∫

RN
|u|p+1dx. (2.1)

Then any nonzero critical point of I is a nontrivial weak solution of problem (1.1). More-

over, by elliptic regularity theory we know that if u∈ H satisfies (1.3), then u must be a

classical solution of problem (1.1).

Now, let u∈H be a nontrivial weak solution of problem (1.1). The set Ω is said to be

a nodal domain of u if Ω is an open and connected subset of R
N such that u has fixed sign

in Ω and u(y)=0 when y∈∂Ω.

We denote the characteristic function of Ω by χΩ. By [18, Lemma2], we have the

following

Proposition 2.2. Let u∈H be a nontrivial weak solution of problem (1.1) and Ω1, Ω2, ··· , Ωn

are nodal domains of u. Then uχΩ1∪,···,∪Ωn ∈H.

3 Proof of the main theorem

Let

M=
{

u∈H : u± 6≡0, 〈I ′(u),u+〉= 〈I ′(u),u−〉=0
}

,

where u+(x)=max{u(x),0} and u−(x)=min{u(x),0}.

Remark 3.1. (i) Obviously, M contains all nodal solutions of problem (1.1). (ii) M6=∅.

Indeed, we can choose two functions ϕ1, ϕ2 ∈C∞

0 (RN), such that ϕ1 ≥ ( 6≡)0, ϕ2 ≤ ( 6≡)0,

and suppϕ1
⋂

suppϕ2=∅.

Let u= t1ϕ1+t2 ϕ2, where t1, t2>0 will be decided later. By the construction of ϕ1, ϕ2,

we have u+= t1 ϕ1, u−= t2 ϕ2 and

〈I ′(u),u+〉= 〈I ′(t1ϕ1+t2 ϕ2),t1ϕ1〉= 〈I ′(t1 ϕ1),t1ϕ1〉.

Similarly, 〈I ′(u),u−〉= 〈I ′(t2 ϕ2),t2 ϕ2〉.
Notice that

〈I ′(t1 ϕ1),t1 ϕ1〉=
∫

RN
|▽(t1 ϕ1)|

2+V(|x|)|(t1 ϕ1)|
2
dx−

∫

RN
|(t1 ϕ1)|

p+1
dx

=t2
1

(

∫

RN
|▽ϕ1|

2+V(|x|)|ϕ1|
2dx−t

p−1
1

∫

RN
|ϕ1|

p+1dx

)

.
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Then 〈I ′(t1 ϕ1),t1 ϕ1〉=0 if we choose

t1=

(

∫

RN |▽ϕ1|
2+V(|x|)|ϕ1|

2dx
∫

RN |ϕ1|
p+1dx

)
1

p−1

>0.

Similarly, there exists t2>0 such that 〈I ′(t2 ϕ2),t2ϕ2〉=0. By the definition of M, we have

u∈M. Hence M6=∅.

Define the metric d on M by

d(u,v)=‖u−v‖, ∀ u, v∈H.

Then we have the following

Proposition 3.1. If (V1), and (V2) hold, then (M, d) is a complete metric space.

Proof. First we claim that there exists µ>0 such that
∫

RN
|u±|p+1dx≥µ, ∀ u∈M. (3.1)

Indeed, for u∈M, we have

0= 〈I ′(u),u±〉=
∫

RN
|∇u±|2+V(|x|)|u±|2dx−

∫

RN
|u±|p+1dx.

Then by Proposition 2.1, we get (3.1). Let {un}⊂M satisfy

d(un,um)→0, as n, m→+∞.

Then {un} is a Cauchy sequence in H. By the completeness of H, there exists u∈H such

that

‖un−u‖→0, as n→+∞.

Then by Proposition 2.1, we get

‖un−u‖Lp+1 →0, as n→+∞.

This implies

‖u+
n −u+‖Lp+1

n
→0, ‖u−

n −u−‖Lp+1
n
→0. (3.2)

From (3.1) we see that u± 6≡0.

To complete the proof of this proposition, we need only to show that

〈I ′(u),u+〉= 〈I ′(u),u−〉=0.

Since I∈C1(H,R) and un
n
→u strongly in H, we have

‖I ′(un)− I ′(u)‖H−1
n
→0,
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where H−1 denotes the dual space of H. Thus, we deduce that

|〈I ′(u),u+
n 〉|=|〈I ′(u)− I ′(un),u

+
n 〉|≤‖I ′(un)− I ′(u)‖H−1‖u+

n ‖

≤C‖I ′(un)− I ′(u)‖H−1
n
→0. (3.3)

On the other hand, by u+
n

n
⇀u+ weakly in H, we have

〈I ′(u),u+
n 〉

n
→〈I ′(u),u+〉. (3.4)

Combining (3.3) and (3.4), for the unique of the limit, we get 〈I ′(u),u+〉=0. Similarly we

can prove that 〈I ′(u),u−〉= 0. Hence, we see that u∈M and complete the proof of this

proposition.

Define

c1= inf{I(u) : u∈M}.

Now, we follow the argument of [19] to show that c1 is achieved by some u∈M and u is

a nodal solution of problem (1.1).

Lemma 3.1. If (V1), and (V2) hold, then c1 is achieved by some u∈M. Moreover, u is a nodal

solution with precisely two nodal domains of problem (1.1).

Proof. By Proposition 3.1 we know that (M, d) is a complete metric space. It is easy to

check that I is bounded from below on M. Then by Ekeland’s variational principle, there

exists a minimizing sequence {un}⊂M such that

c1≤ I(un)≤ c1+
1

n
, (3.5)

I(v)≥ I(un)−
1

n
‖v−un‖, ∀ v∈M. (3.6)

From un ∈M, we have 〈I ′(un),un〉=0. Thus, for n large enough, we get

c1+1≥ I(un)=

(

1

2
−

1

p+1

)

‖un‖
2.

So, {un} is bounded in H. Now we will prove that

I ′(un)
n
→0 in H−1. (3.7)

For each n and ϕ∈H, we define the functions h±n : R
3→R by

h±n (t,s,l)=
∫

RN
|∇(un+tϕ+su+

n +lu−
n )

±|2dx+
∫

RN
V(|x|)|(un+tϕ+su+

n +lu−
n )

±|2dx

−
∫

RN
|(un+tϕ+su+

n +lu−
n )

±|p+1dx. (3.8)
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Then we see that h±n are of class C1 and h±n (0,0,0)=0. Moreover, let

v=un+tϕ+su+
n +lu−

n ,

we have that

∂h+n
∂s

(0,0,0)=2
∫

RN
(∇v+∇u+

n +V(|x|)v+u+
n )dx−(p+1)

∫

RN
|v+|pu+

n dx. (3.9)

This implies
∂h+n
∂s

(0,0,0)=(1−p)
∫

RN
|u+

n |
p+1dx. (3.10)

Similarly, we can deduce that

∂h−n
∂l

(0,0,0)=(1−p)
∫

RN
|u−

n |
p+1dx. (3.11)

∂h+n
∂l

(0,0,0)=0,
∂h−n
∂s

(0,0,0)=0. (3.12)

Combining (3.1), (3.10) and (3.11), we get

∂h+n
∂s

(0,0,0)<0,
∂h−n
∂l

(0,0,0)<0. (3.13)

Thus, by the implicit function theorem, there exits δn > 0 and functions sn(t), ln(t) ∈
C1((−δn,δn),R) such that sn(0)= ln(0)=0 and

h±n (t,sn(t),ln(t))=0, ∀ t∈ (−δn, δn). (3.14)

This implies that

vn =un+tϕ+sn(t)u
+
n +ln(t)u

−
n ∈M, ∀ t∈ (−δn, δn). (3.15)

We claim that the sequence {s′n(0)} is bounded.

In fact, from (3.14) we have

∂h+n
∂t

(0,0,0)+
∂h+n
∂s

(0,0,0)s′n(0)+
∂h+n
∂l

(0,0,0)l′n(0)=0.

Then (3.12) implies

s′n(0)=
− ∂h+n

∂t (0,0,0)
∂h+n
∂s (0,0,0)

=
−
[

2
∫

RN(∇u+
n ∇ϕ+V(|x|)u+

n ϕ)dx−(p+1)
∫

RN |u+
n |

p ϕdx
]

(1−p)
∫

RN |u
+
n |p+1dx

.

Thus it follows from (3.1) and ‖un‖≤C that |s′n(0)| ≤C. Similarly, we can also deduce

that the sequence {l′n(0)} is bounded.
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By (3.6) and (3.15) we get

I(un+tϕ+sn(t)u
+
n +ln(t)u

−
n )− I(un)≥

−1

n
‖tϕ+sn(t)u

+
n +ln(t)u

−
n ‖.

Letting t→0+ and t→0−, we have

〈I ′(un),ϕ〉≥
−1

n
‖ϕ+s′n(0)u

+
n +l′n(0)u

−
n ‖, (3.16)

〈I ′(un),ϕ〉≤
1

n
‖ϕ+s′n(0)u

+
n +l′n(0)u

−
n ‖. (3.17)

Since the sequences {s′n(0)} and {l′n(0)} are bounded, combining (3.16) and (3.17) we

have

〈I ′(un),ϕ〉
n
→0, ∀ϕ∈H.

Thus, (3.7) holds. Then by Proposition 2.1, there exists u∈H such that

un →u strongly in H, I(u)= c1 and I ′(u)=0.

From (3.1) we know that u± 6≡0. Hence, u is a nodal solution of problem (1.1).

Next, motivated by [2] we prove that u has precisely two nodal domains. Setting

c̄= inf{I(u) : u∈N}, N ={u∈H\{0} : 〈I ′(u),u〉=0}.

Similar to the proof of (3.1) we have c̄>0. If Ω is a nodal domain of u, by Proposition 2.2

we get uχΩ∈H and

〈I ′(uχΩ),uχΩ〉= 〈I ′(u),uχΩ〉=0.

So, I(uχΩ)≥ c̄>0.

Suppose by contradiction that u has three nodal domains Ω1, Ω2, Ω3 such that

u>0 on Ω1 and u<0 on Ω2.

Then by Proposition 2.2 we have uχΩ1∪Ω2
∈H. Noting that

(uχΩ1∪Ω2
)+=uχΩ1

and (uχΩ1∪Ω2
)−=uχΩ2

,

we see that uχΩ1∪Ω2
∈M. Hence, we get a contradiction as

c1< c1+ c̄≤ I(uχΩ1∪Ω2
)+ I(uχΩ3

)≤ I(u)= c1.

This completes the proof of this lemma.

Lemma 3.2. Suppose that (V1), (V2) hold and let u be the nodal solution of problem (1.1) given

by Lemma 3.1. Then there exist C, ǫ, R>0 such that

|u(x)|≤Cexp{−ǫ|x|
2−α

2 }, ∀ |x|≥R, (3.18)

where α∈ [0, 2(N−1)(p−1)/(p+3)) is given by (V2).
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Proof. By Lemma 3.1, we know that u(|x|) has precisely two nodal domains. That is,

letting r = |x|, then {r ∈ [0,+∞) : u(r) 6= 0} has two connected components. Thus, there

exists R0 > 0 such that u(|x|) on the interval [R0,+∞) has fixed sign. We may as well

assume that u(|x|)≥0 for |x|≥R0.

Since u ∈ H, by (V2) and similar to the proof of (3.3) in [1], there exist C1 > 0 and

γ=N−1−α/2 such that

0≤u(|x|)≤C1|x|
− γ

2 , ∀ |x|≥R0. (3.19)

By (V2), there exists C2>0 such that

V(x)≥C2|x|
−α, ∀ |x|≥R0. (3.20)

Noting that γ/2>α/(p−1), then combining (1.1), (3.19) and (3.20), we can find R1 >R0

such that

−∆u(x)+
1

2
V(x)u(x)

=u(x)

[

(u(x))p−1−
1

2
V(x)

]

≤u(x)[C1|x|
− γ(p−1)

2 −C2|x|
−α]

≤0, for |x|≥R1. (3.21)

Let w(x)=exp{−ǫ|x|
2−α

2 }, where ǫ>0 will be determined later. Then we have

−∆ω(x)=−ε2

(

2−a

2

)2

|x|−α ω(x)+ε

[

N ·
2−α

2
+

α2−4

4

]

|x|
2−α

2 −2ω(x).

This and (3.20) imply that, for |x|≥R0,

−∆w(x)+
1

2
V(x)w(x)

≥

[

C2

2
−ǫ2

(

2−α

2

)2
]

|x|−αw(x)+ε

[

N
2−α

2
+

α2−4

4

]

|x|
2−α

2 −2ω(x). (3.22)

We choose ǫ>0 small enough such that

C3=
C2

2
−ǫ2

(

2−α

2

)2

>0.

Note that 2−(2−α)/2>α. Then there exists R2>R0 such that

C3|x|
−α+ε

[

N ·
2−α

2
+

α2−4

4

]

|x|
2−α

2 −2
>0, ∀ |x|≥R2.
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This and (3.22) imply that

−∆w(x)+
1

2
V(x)w(x)≥0, for |x|≥R2. (3.23)

Setting R=max{R1,R2}, we have from (3.21) and (3.23) that

−∆u(x)+
1

2
V(x)u(x)≤−∆w(x)+

1

2
V(x)w(x), for |x|≥R. (3.24)

We can choose C>0 such that u(x)≤Cw(x) for |x|=R. Then by the comparison theorem

we know that (3.18) holds.

Proof of Theorem 1.1: Noting that 2(N−1)(p−1)/(p+3)<2 for 1< p<(N+2)/(N−2),
then from (3.18) we have u∈L2(RN). Hence, by Lemmas 3.1 and 3.2 we see that problem

(1.1) has a nodal type bound state.
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