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CONVERGENCE OF ADAPTIVE FEM FOR SOME ELLIPTIC

OBSTACLE PROBLEM WITH INHOMOGENEOUS DIRICHLET

DATA

MICHAEL FEISCHL, MARCUS PAGE, AND DIRK PRAETORIUS

Abstract. In this work, we show the convergence of adaptive lowest-order FEM (AFEM) for an
elliptic obstacle problem with non-homogeneous Dirichlet data, where the obstacle χ is restricted
only by χ ∈ H2(Ω). The adaptive loop is steered by some residual based error estimator introduced
in Braess, Carstensen & Hoppe (2007) that is extended to control oscillations of the Dirichlet
data, as well. In the spirit of Cascon et al. (2008), we show that a weighted sum of energy
error, estimator, and Dirichlet oscillations satisfies a contraction property up to certain vanishing
energy contributions. This result extends the analysis of Braess, Carstensen & Hoppe (2007)
and Page & Praetorius (2013) to the case of non-homogeneous Dirichlet data as well as certain
non-affine obstacles and introduces some energy estimates to overcome the lack of nestedness of
the discrete spaces.
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1. Introduction

1.1. Comments on prior work. Adaptive finite element methods based
on various types of a posteriori error estimators are a famous tool in science and
engineering and are used to deal with a wide range of problems. As far as elliptic
boundary value problems are concerned, convergence and even quasi-optimality of
the adaptive scheme is well understood and analyzed, see e.g. [5, 16, 19, 29, 30, 37,
38].

In recent years the analysis has been extended and adapted to cover more general
applications, such as the p-Laplacian [40], mixed methods [13], non-conforming
elements [14], and obstacle problems. The latter is a classic introductory example
to study variational inequalities which represent a whole class of problems that often
arise in physical and economical context. One major application is the oscillation of
a membrane that must stay above a certain obstacle. Other examples are filtration
in porous media or the Stefan problem (i.e. melting solids), in both of which non-
homogeneous Dirichlet data play an important role. Also in the financial world,
obstacle problems arise, e.g. in the valuation of the American put option [34], where
one has to deal with various non-affine obstacles. For a broader understanding of
these problems, we refer to [21] and the references therein. The great applicability in
many scientific areas thus make numerical analysis and mathematical understanding
of the obstacle problem both, interesting and important. As far as a posteriori
error analysis is concerned, we refer to [6, 8, 9, 17, 26, 31, 39]. Convergence of
an adaptive method for elliptic obstacle problems with globally affine obstacle was
proven in [10, 33]. Both of these works, however, considered homogeneous Dirichlet
boundary data and affine obstacles only.
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In [11], the authors generalized the analysis of [10] to general H1(Ω)-obstacles.
Convergence of the proposed method is, however, only proved up to some consisten-
cy errors, and the analysis relies on homogeneous Dirichlet conditions. Moreover,
some steps in the analysis are somewhat unclear, as the reliability proof depends
on certain estimates which are not explained or properly cited.

1.2. Contributions of current work. We treat the case of a general obstacle
χ ∈ H2(Ω). By a simple transformation and allowing non-homogeneous Dirichlet
data (Prop. 4), this can, however, be reduced to the case of a constant zero-obstacle.
Since our analysis works for general globally affine obstacles, even without the
reduction step, we consider affine obstacles and non-homogeneous Dirichlet data
in the following. We follow the ideas from [33], i.e. adaptive P1-FEM for some
elliptic obstacle problem with globally affine obstacle. Contrary to [10, 11, 33],
however, we allow non-homogeneous Dirichlet boundary data g ∈ H1(Γ), which are
approximated by some gℓ via nodal interpolation within each step of the adaptive
loop. In contrast to the aforementioned works, we thus do not have nestedness of
the discrete ansatz sets, which is a crucial ingredient of the prior convergence proofs.
In the spirit of [16] and in analogy to [33], we show that our adaptive algorithm,
steered by some estimator ̺ℓ, guarantees that the combined error quantity

∆ℓ := J (Uℓ)− J (uℓ) + γ ̺2ℓ + λ apx2ℓ(1)

is a contraction up to some vanishing perturbations αℓ → 0, i.e.

∆ℓ+1 ≤ κ∆ℓ + αℓ,(2)

with 0 < γ, κ < 1, λ > 0, and αℓ ≥ 0. The data oscillations on the Dirichlet bound-
ary are controlled by the term apxℓ, and the quantity uℓ denotes the continuous
solution subject to discrete boundary data gℓ, which is introduced to circumvent
the lack of nestedness of the discrete spaces. Convergence then follows from a weak
reliability estimate of ̺ℓ, namely

̺ℓ → 0 ⇒ ‖u− Uℓ‖H1(Ω) → 0,(3)

since ̺ℓ . ∆ℓ → 0 as ℓ → ∞. We point out that our convergence proof makes
use of the so called estimator reduction and is thus fairly independent of the mesh-
refinement strategy. This is an improvement over the earlier works [10, 11] which
rely on the discrete local efficiency of the underlying estimator and therefore require
mesh-refinement strategies which guarantee the so-called interior node property.

1.3. Outline of current work. In Section 2, we formulate the continuous
model problem and recall its unique solvability. In Section 3, the same is done
for the discretized problem. Section 4 is a collection of the main results of this
paper. Here, we introduce the error estimator ̺ℓ, which is a generalization of the
corresponding estimators from [10, 33]. We then state its weak reliability (Theorem
7) and our version of the adaptive algorithm (Algorithm 9). Finally (Theorem
10), we state that the sequence of discrete solutions indeed converges towards the
continuous solution u ∈ H1(Ω). The subsequent Sections 5–7 are then devoted to
the proofs of the aforementioned results and numerical illustrations.

2. Model Problem

2.1. Problem formulation. We consider an elliptic obstacle problem in R
2

on a bounded Lipschitz domain Ω with polygonal boundary Γ := ∂Ω. An obstacle
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on Ω is defined by the smooth function χ ∈ H2(Ω). Moreover, we consider inho-
mogeneous Dirichlet data g ∈ H1/2(Γ) and thus additionally require χ ≤ g almost
everywhere on Γ. As is usually done in practice, to define a local error estimator,
we assume additional regularity g ∈ H1(Γ) in Section 4.2. By

A := {v ∈ H1(Ω) : v ≥ χ a.e. in Ω, v|Γ = g a.e. on Γ},(4)

we denote the set of admissible functions. For given f ∈ L2(Ω), we consider the
energy functional

J (v) =
1

2
〈〈v , v〉〉 − (f, v),(5)

with the bilinear form

〈〈u , v〉〉 =
∫

Ω

∇u · ∇v dx for all u, v ∈ H1(Ω)(6)

and with the L2-scalar product

(f, v) =

∫

Ω

fv dx.(7)

By ||| · |||, we denote the energy norm on H1
0 (Ω) induced by 〈〈· , ·〉〉. The obstacle

problem then reads as follows: Find u ∈ A such that

J (u) = min
v∈A

J (v).(8)

2.2. Unique solvability. For the sake of completeness and to collect the main
arguments needed below, we recall the proof that the obstacle problem (8) admits
a unique solution. We stress that the following argument holds for any measurable
obstacle χ with meaningful trace χ|Γ. Our restriction to smooth obstacles χ ∈
H2(Ω) is needed only for the equivalent reformulation in Section 2.3.

Proposition 1. For given data (χ, g, f) ∈ H2(Ω)×H1/2(Γ)×L2(Ω), the obstacle
problem (8) admits a unique solution u ∈ A which is equivalently characterized by
the variational inequality

〈〈u , v − u〉〉 ≥ (f, v − u)(9)

for all v ∈ A. �

The following two lemmata provide the essential ingredients to prove Proposi-
tion 1. We start with a well-known abstract result, cf. e.g. [7, Section 2.4–2.6].

Lemma 2. Let H be a Hilbert space with scalar product 〈〈· , ·〉〉 and K ⊆ H be a
closed, convex, and non-empty subset. Then, for given L ∈ H∗, the variational
problem

J (u) = min
v∈K

J (v) with J (v) =
1

2
〈〈v , v〉〉 − 〈L , v〉(10)

has a unique solution u ∈ K, where 〈· , ·〉 denotes the dual pairing between H and
H∗. In addition, this solution is equivalently characterized by the variational in-
equality

〈〈u , v − u〉〉 ≥ 〈L , v − u〉(11)

for all v ∈ K. �
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To apply Lemma 2, we observe that the obstacle problem (8) can be shifted
into a setting with homogeneous Dirichlet data and H = H1

0 (Ω). This involves a
standard lifting operator L : H1/2(Γ) → H1(Ω), see e.g. [27, Theorem 3.37], with
the properties

(Lv)|Γ = v and ‖Lv‖H1(Ω) ≤ C1 ‖v‖H1/2(Γ) for all v ∈ H1/2(Γ),(12)

where the constant C1 > 0 depends only on Ω.
With elementary algebraic manipulations, see e.g. [25, Section II.6], one obtains

the following well-known link between the obstacle problem (8) and the abstract
minimization problem (10) from Lemma 2.

Lemma 3. Let ĝ ∈ H1(Ω) be an arbitrary extension of g ∈ H1/2(Γ), e.g., ĝ = Lg.
For u ∈ A and u− ĝ = ũ ∈ K := {ṽ ∈ H1

0 (Ω) : ṽ ≥ χ− ĝ}, the following statements
are equivalent:

(i) u solves the obstacle problem (8).
(ii) u satisfies 〈〈u , v − u〉〉 ≥ (f, v − u) for all v ∈ A.
(iii) ũ satisfies 〈〈ũ , ṽ − ũ〉〉 ≥ (f, ṽ − ũ)− 〈〈ĝ , ṽ − ũ〉〉 for all ṽ ∈ K. �

We thus conclude that the continuous obstacle problem

J (u) = min
v∈A

J (v),(13a)

with the set of admissible functions

A := {v ∈ H1(Ω) : v ≥ χ a.e. in Ω, v|Γ = g a.e. on Γ},(13b)

admits a unique solution. Moreover, standard arguments show that this solution
does not depend on the special choice of ĝ.

2.3. Reduction to problem with zero obstacle. The following proposition
allows us to restrict the considered problem (13) with H2(Ω)-obstacle to the case
where the obstacle χ is even zero. This provides the formulation which can be
treated by our adaptive method below.

Proposition 4. For some smooth obstacle χ ∈ H2(Ω), the obstacle problem (13)
with data (χ, g, f) is equivalent to the obstacle problem with data (0, g−χ|Γ, f+∆χ).
If ũ ∈ H1(Ω) solves the obstacle problem with data (0, g − χ|Γ, f +∆χ), u = ũ+ χ
is the unique solution with respect to the data (χ, g, f).

Proof. The solution u ∈ A of the obstacle problem with data (χ, g, f) is charac-
terized by

〈〈u , v − u〉〉 ≥ (f, v − u)

for all v ∈ A = {v ∈ H1(Ω) : v ≥ χ a.e. in Ω, v|Γ = g}. Substitution ũ := u − χ
and ṽ := v − χ shows that this is equivalent to

〈〈ũ , ṽ − ũ〉〉 ≥ (f, ṽ − ũ)− 〈〈χ , ṽ − ũ〉〉 for all ṽ ∈ Ã,

where Ã := {ṽ ∈ H1(Ω) : ṽ ≥ 0 a.e. in Ω, v|Γ = g − χ|Γ}. Finally, integration by
parts with w := ṽ − ũ ∈ H1

0 (Ω) proves

−〈〈χ , ṽ − ũ〉〉 = −
∫

Ω

∇χ · ∇w dx =

∫

Ω

∆χw dx.

This concludes the proof. �
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2.4. Model problem. According to the observation of Proposition 4, we may
restrict to the case χ = 0 in the following. Having obtained a FE approximation

Uℓ of u for the zero obstacle case, we may simply consider Ũℓ := Uℓ + χ to obtain
an approximation of the original problem with obstacle χ ∈ H2(Ω). Note that the
overall error is then equivalent to the error of the reduced obstacle problem since

‖u− Uℓ‖H1(Ω) = ‖u− χ− Uℓ + χ‖H1(Ω) = ‖ũ− Ũℓ‖H1(Ω).

Since our analysis directly covers affine obstacles, we shall, however, allow that χ
is globally affine rather than simply zero on Ω. Put explicitly, we consider Prob-
lem (13) with respect to the data (χ, g, f) ∈ P1(Ω) ×H1(Γ) × L2(Ω), i.e. we may
avoid the reformulation of Proposition 4 in this particular case. As mentioned
above, we again emphasize the assumed additional regularity g ∈ H1(Γ).

3. Galerkin Discretization

3.1. Problem formulation. For the numerical solution of (13) by means
of an adaptive finite element method, we consider conforming and in the sense of
Ciarlet regular triangulations Tℓ of Ω and denote the standard P1-FEM space of
globally continuous and piecewise affine functions by S1(Tℓ). Note that a discrete
function Vℓ ∈ S1(Tℓ) cannot satisfy the inhomogeneous Dirichlet conditions g in
general. We therefore have to approximate g ≈ gℓ ∈ S1(Tℓ|Γ), where the space
S1(Tℓ|Γ) := {Vℓ|Γ : Vℓ ∈ S1(Tℓ)} denotes the space of globally continuous and
piecewise affine functions on the boundary Γ. For this discretization, we assume
additional regularity g ∈ H1(Γ) and consider the approximation gℓ ∈ S1(Tℓ|Γ)
which is derived by nodal interpolation of the boundary data. Note that nodal
interpolation is well-defined since the Sobolev inequality on the 1D manifold Γ
predicts the continuous inclusion H1(Γ) ⊂ C(Γ). Altogether, the set of discrete
admissible functions Aℓ is given by

Aℓ := {Vℓ ∈ S1(Tℓ) : Vℓ ≥ χ in Ω, Vℓ = gℓ on Γ},(14a)

and the discrete minimization problem reads: Find Uℓ ∈ Aℓ such that

J (Uℓ) = min
Vℓ∈Aℓ

J (Vℓ).(14b)

Remark 5. Note that χ ≤ g ∈ H1(Γ) ⊂ C(Γ), implies that χ(z) ≤ g(z) = gℓ(z) for
all nodes z ∈ Γ. Since χ is affine, we conclude χ ≤ gℓ on Γ for the nodal interpolant
gℓ ∈ S1(Tℓ|Γ).

3.2. Notation. From now on, Nℓ denotes the set of nodes of the regular
triangulation Tℓ. The set of all interior edges E = T+ ∩ T− for certain elements
T+, T− ∈ Tℓ is denoted by EΩ

ℓ . The set of all edges of Tℓ is denoted by Eℓ. In
particular, Eℓ|Γ := EΓ

ℓ := Eℓ\EΩ
ℓ contains all boundary edges and provides some

partition of Γ.
We recall that S1(Tℓ) =

{
Vℓ ∈ C(Ω) : Vℓ|T affine for all T ∈ Tℓ

}
denotes the

conforming P1-finite element space. Moreover, S1
0 (Tℓ) = S1(Tℓ) ∩ H1

0 (Ω) =
{
Vℓ ∈

S1(Tℓ) : Vℓ|Γ = 0
}
.

3.3. Unique solvability. In this section, we recall that the discrete obstacle
problem (14) admits a unique solution which is again characterized by a variational
inequality.
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Figure 1. For each triangle T ∈ T , there is one fixed reference
edge, indicated by the double line (left, top). Refinement of T is
done by bisecting the reference edge, where its midpoint becomes
a new node. The reference edges of the son triangles are opposite
to this newest vertex (left, bottom). To avoid hanging nodes, one
proceeds as follows: We assume that certain edges of T , but at
least the reference edge, are marked for refinement (top). Using
iterated newest vertex bisection, the element is then split into 2,
3, or 4 son triangles (bottom).

Proposition 6. The discrete obstacle problem (14) admits a unique solution Uℓ ∈
Aℓ, which is equivalently characterized by the variational inequality

〈〈Uℓ , Vℓ − Uℓ〉〉 ≥ 〈f , Vℓ − Uℓ〉(15)

for all Vℓ ∈ Aℓ. �

The proof of Proposition 6 is obtained as in the continuous case. It relies on the
fact that discrete boundary data gℓ ∈ S1(Tℓ|Γ) can be lifted to a discrete function
ĝℓ ∈ S1(Tℓ) with ĝℓ|Γ = gℓ. The proof of the latter is a consequence of (and even
equivalent to, see [18]) the existence of the Scott-Zhang quasi-interpolation operator
Pℓ : H1(Ω) → S1(Tℓ), see [36], which is a linear and continuous projection onto
S1(Tℓ), i.e.

P 2
ℓ = Pℓ and ‖Pℓv‖H1(Ω) ≤ C2‖v‖H1(Ω), for all v ∈ H1(Ω),(16)

that preserves discrete boundary conditions, i.e.

(Pℓv)|Γ = v|Γ for all v ∈ H1(Ω) with v|Γ ∈ S1(Tℓ|Γ).(17)

The constant C2 > 0 depends only on the shape regularity constant σ(Tℓ) and on
the diameter of Ω. Moreover, Pℓ has a local first-order approximation property
which is, however, not used throughout.

4. Adaptive Mesh-Refining Algorithm and Main Results

4.1. Newest vertex bisection. For the mesh-refinement, we use newest-
vertex bisection. Assume that Mℓ ⊆ Eℓ is a set of edges which have to be refined.
The refinement rules are shown in Figure 1, and the reader is also referred to [38,
Chapter 5]. We stress a certain decay of the mesh-widths:

• Marked edges E ∈ Mℓ are split into two edges E′, E′′ ∈ Eℓ+1 of half
length, i.e. new nodes z ∈ Nℓ+1\Nℓ are always midpoints of refined edges
E ∈ Eℓ\Eℓ+1.

• If at least one edge E of an element T ∈ Tℓ is marked, T is refined into up
to four son elements T ′ ∈ Tℓ+1 with area |T |/4 ≤ |T ′| ≤ |T |/2, cf. Figure 1.

Moreover, given an initial mesh T0, newest vertex bisection only leads to at most
4 · #T0 similarity classes of triangles. In particular, the generated meshes are
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uniformly shape regular

sup
ℓ∈N

σ(Tℓ) < ∞ with σ(Tℓ) = max
T∈Tℓ

diam(T )2

|T | .(18)

Furthermore, the number of different shapes of e.g. node patches that can occur, is
finite. These observations will be necessary in the scaling arguments below.

4.2. Weakly reliable error estimator. Let u ∈ A denote the continuous
solution of (13) and Uℓ ∈ Aℓ be the discrete solution of (14) for some fixed triangu-
lation Tℓ. To steer the adaptive mesh-refinement, we use some residual-based error
estimator

̺2ℓ :=
∑

E∈EΩ
ℓ

(
ηℓ(E)2 + oscℓ(E)2

)
+

∑

E∈EΓ
ℓ

(
apxℓ(E)2 + oscℓ(E)2

)
(19)

which has essentially been introduced in [10] for homogeneous Dirichlet data g = 0.
First, ηℓ(E)2 denotes the weighted L2-norms of the normal jump

ηℓ(E)2 := hE ‖[∂nUℓ]‖2L2(E) for E ∈ EΩ
ℓ(20)

with hE = diam(E) the length of E and [·] the jump over an interior edge E =
T+∩T− ∈ EΩ

ℓ . Second, for interior edges, oscℓ(E)2 denotes the data oscillations of
f

oscℓ(E)2 := |Ωℓ,E| ‖f − fΩℓ,E
‖2L2(Ωℓ,E) for E ∈ EΩ

ℓ(21)

over the patch Ωℓ,E = T+∪T− associated with E, where the corresponding integral
mean of f is denoted by fΩℓ,E

= (1/|Ωℓ,E|)
∫
Ωℓ,E

f dx. Third, for boundary edges

E ∈ EΓ
ℓ and T ∈ Tℓ the unique element with E ⊆ ∂T ∩ Γ, ̺ℓ involves the weighted

element residuals

oscℓ(E)2 := |T |‖f‖2L2(T ) for E ∈ EΓ
ℓ .(22)

Finally and in order to control the approximation of the nonhomogeneous Dirichlet
data g by its nodal interpolant gℓ, we apply an idea from [4] and use

apxℓ(E)2 := hE ‖(g − gℓ)
′‖2L2(E) for E ∈ EΓ

ℓ ,(23)

where (·)′ denotes the arclength derivative. Here, we exploit the additional regu-
larity assumption g ∈ H1(Γ), see Section 2.4.

To state a reliability result for the proposed error estimator ̺ℓ, we need to intro-
duce a continuous auxiliary problem, which considers the continuous case subject
to the discretized boundary data. Given the discrete Dirichlet data gℓ ∈ S1(Tℓ|Γ),
we define

A⋆
ℓ := {vℓ ∈ H1(Ω) : vℓ ≥ χ a.e. in Ω, vℓ|Γ = gℓ a.e. on Γ}.(24a)

Applying Proposition 1 for the data (χ, gℓ, f), we see that the auxiliary problem

J (uℓ) = min
vℓ∈A⋆

ℓ

J (vℓ)(24b)

admits a unique solution uℓ ∈ A⋆
ℓ . The following theorem now states weak reliability

of ̺ℓ in the sense that ̺ℓ → 0 implies ‖u− Uℓ‖H1(Ω) → 0 as ℓ → ∞. The proof is
given in Section 5 below.

Theorem 7. With uℓ ∈ A⋆
ℓ the solution of the auxiliary problem (24), the error

estimator ̺ℓ from (19) satisfies

1

2
|||uℓ − Uℓ|||2 ≤ J (Uℓ)− J (uℓ) ≤ C2

3 ˜̺2
ℓ ,(25)
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with

˜̺2
ℓ :=

∑

E∈EΩ
ℓ

(
ηℓ(E)2 + oscℓ(E)2

)
+

∑

E∈EΓ
ℓ

oscℓ(E)2,(26)

as well as

‖u− Uℓ‖H1(Ω) ≤ |||u− uℓ|||+
√
2C3 ̺ℓ,(27)

where the constant C3 > 0 depends only on σ(Tℓ) and on Ω. Moreover, there holds

̺ℓ
ℓ→∞−−−→ 0 =⇒ ‖u− Uℓ‖H1(Ω)

ℓ→∞−−−→ 0.(28)

Remark 8. We stress that the reliability estimate (25) depends on χ being affine
and the use of newest vertex bisection in the sense that only finitely many shapes of
node patches and edge patches can occur. For red-green-blue refinement [38, Chap-
ter 5], the equivalence of edge and node oscillations is open. The entire analysis,
however, even applies for a coarser error estimator, where edge oscillations are
bounded in terms of the element residuals ‖hℓf‖L2(T ).

4.3. Convergent adaptive mesh-refining algorithm. We can now state
our version of the adaptive algorithm in the usual form:

Solve 7−→ Estimate 7−→ Mark 7−→ Refine

Throughout, we assume that the Galerkin solution Uℓ ∈ S1(Tℓ) is computed exactly.
For the marking step, we use the strategy proposed by Dörfler [19].

Algorithm 9. Fix an adaptivity parameter 0 < θ < 1, let Tℓ with ℓ = 0 be the
initial triangulation, and fix a reference edge for each element T ∈ T0. For each
ℓ = 0, 1, 2, . . . do:

(i) Compute discrete solution Uℓ ∈ Aℓ.
(ii) Compute ηℓ(E)2, oscℓ(E)2, and apxℓ(E)2 for all E ∈ Eℓ.
(iii) Determine set Mℓ ⊆ Eℓ of minimal cardinality, which satisfies

θ ̺2ℓ ≤
∑

E∈EΩ
ℓ ∩Mℓ

(
ηℓ(E)2 + oscℓ(E)2

)
+

∑

E∈EΓ
ℓ ∩Mℓ

(
apxℓ(E)2 + oscℓ(E)2

)
.(29)

(iv) Mark all edges E ∈ Mℓ for refinement and obtain new mesh Tℓ+1 by newest
vertex bisection.

(v) Increase counter ℓ 7→ ℓ+ 1 and iterate. �

The following theorem states our main convergence results.

Theorem 10. Algorithm 9 guarantees the existence of constants 0 < κ, γ < 1 and
λ > 0 and a sequence αℓ ≥ 0 with lim

ℓ→∞
αℓ = 0 such that the combined error quantity

∆ℓ := J (Uℓ)− J (uℓ) + γ̺2ℓ + λ apx2ℓ ≥ 0(30)

satisfies contraction up to the zero sequence αℓ, i.e.

∆ℓ+1 ≤ κ∆ℓ + αℓ for all ℓ ∈ N.(31)

In particular, this implies

0 = lim
ℓ→∞

∆ℓ = lim
ℓ→∞

̺ℓ = lim
ℓ→∞

‖u− Uℓ‖H1(Ω)(32)

as well as convergence of the energies

J (u) = lim
ℓ→∞

J (uℓ) = lim
ℓ→∞

J (Uℓ).(33)
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5. Proof of Theorem 7 (Weak Reliability of Error Estimator)

5.1. Stability of continuous problem. For the finite element discretiza-
tion, we have to replace the continuous Dirichlet data g ∈ H1/2(Γ) by appropriate
discrete functions gℓ. To make this procedure feasible, we have to prove that the
solution of the obstacle problem (13) depends continuously on the given data.

In the following, let H be a Hilbert space with scalar product 〈〈· , ·〉〉 and K,K⋆
ℓ ⊂

H be closed, convex, and non-empty subsets of H. We say, that K⋆
ℓ converges to K

in the sense of Mosco [28] if and only if

∀v ∈ K∃vℓ ∈ K⋆
ℓ : vℓ → v strongly in H as ℓ → ∞(34)

and

∀v ∈ H∀vℓ ∈ K⋆
ℓ :

(
vℓ ⇀ v weakly in H =⇒ v ∈ K

)
.(35)

Put explicitly, we say that the set K⋆
ℓ converges towards the set K if every v ∈ K

is the limit of a sequence vℓ ∈ K⋆
ℓ , and if the limit v of any converging sequence

vℓ ∈ K⋆
ℓ is automatically in K. The set K is thus somewhat the collection of all

limits of the converging sequences from K⋆
ℓ . We can now state an abstract stability

result of Mosco:

Lemma 11 ([28, Theorem A]). Assume the sets K,K⋆
ℓ satisfy (34)–(35). Let

L,Lℓ ∈ H∗ be functionals and assume Lℓ → L in H∗ as ℓ → ∞. Finally, let u ∈ K
and uℓ ∈ K⋆

ℓ be the unique solutions of (10) with respect to the data (K, L) and
(K⋆

ℓ , Lℓ), respectively. Then there holds strong convergence

uℓ → u in H as ℓ → ∞,(36)

i.e. the solution of the variational problem (10) depends continuously on the given
data. �

Remark 12. We remark that we have stated [28, Theorem A] only in a simplified
form. In general, the preceding lemma of Mosco includes the approximation of the
bilinear form 〈〈· , ·〉〉 as well, and it also holds for nonlinear variational inequalities,
where the underlying operators Aℓ, A : H → H∗, e.g. Av := 〈〈v , ·〉〉, are assumed to
be Lipschitz continuous and strictly monotone with constants independent of ℓ.

We are now in the position to show that the solution u ∈ A of the obstacle
problem (13) continuously depends on the boundary data g ∈ H1/2(Γ).

Proposition 13. Recall that uℓ ∈ A⋆
ℓ denotes the solution of the auxiliary prob-

lem (24). Provided convergence gℓ → g in H1/2(Γ) of the Dirichlet data, there also
holds convergence uℓ → u in H1(Ω) of the (continuous) solutions as ℓ → ∞.

Proof. As in the proof of Proposition 1, we define the sets

K = {ṽ ∈ H1
0 (Ω) : ṽ ≥ χ− Lg} and K⋆

ℓ = {ṽℓ ∈ H1
0 (Ω) : ṽℓ ≥ χ− Lgℓ}.

We stress that both sets are convex, closed, and non-empty subsets of H1
0 (Ω). As

usual, let H−1(Ω) := H1
0 (Ω)

∗ denote the dual space of H1
0 (Ω). With respect to the

abstract notation, we have L,Lℓ ∈ H−1(Ω) with

〈L , ṽ〉 = (f, ṽ)− 〈〈Lg , ṽ〉〉 and 〈Lℓ , ṽ〉 = (f, ṽ)− 〈〈Lgℓ , ṽ〉〉.
Note that this implies

‖L− Lℓ‖H−1(Ω) ≤ ‖Lg − Lgℓ‖H1(Ω) . ‖g − gℓ‖H1/2(Γ)
ℓ→∞−−−→ 0.

Next, we prove that K⋆
ℓ → K in the sense of Mosco (34)–(35).
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To verify (34), let ṽ ∈ K be arbitrary. Define

v := ṽ + Lg ∈ A
and let wℓ ∈ H1(Ω) be the unique solution of the (linear) auxiliary problem

∆wℓ = 0 in Ω with Dirichlet conditions wℓ = gℓ − g on Γ.

In the next step, we consider

vℓ := v + wℓ ∈ H1(Ω).

Then, there holds vℓ|Γ = gℓ as well as

‖v − vℓ‖H1(Ω) = ‖wℓ‖H1(Ω) . ‖gℓ − g‖H1/2(Γ)
ℓ→∞−−−→ 0.

Since the maximum of H1-functions belongs to H1, we obtain

vℓ := max{χ, vℓ} ∈ H1(Ω).

By definition, there holds vℓ ≥ χ almost everywhere in Ω as well as vℓ|Γ = gℓ since
vℓ|Γ = gℓ ≥ χ|Γ almost everywhere on Γ, see Remark 5. Altogether, this proves
vℓ ∈ Aℓ. Moreover, since the function max{χ, ·} : H1(Ω) → H1(Ω) is well-defined
and continuous (see e.g. [22, Chapter II, Corollary 2.1]), there holds

v = max{χ, v} = lim
ℓ→∞

max{χ, vℓ} = lim
ℓ→∞

vℓ in H1(Ω).

Finally, we observe

ṽℓ := vℓ − Lgℓ ℓ→∞−−−→ v − Lg = ṽ in H1(Ω)

and ṽℓ ∈ K⋆
ℓ .

To verify (35), let vℓ ∈ K⋆
ℓ and assume that the weak limit vℓ ⇀ v ∈ H1

0 (Ω) exists
as ℓ → ∞. According to the Rellich compactness theorem, there is a subsequence
(vℓk) which converges strongly to v in L2(Ω). According to the Weyl theorem,
we may thus extract a further subsequence (vℓkj ) which converges to v pointwise

almost everywhere in Ω. Moreover, by continuity of the lifting operator, there
holds Lgℓkj → Lg in H1(Ω) as j → ∞. Since this implies L2-convergence and

again according to the Weyl theorem, we may choose a subsequence (Lgℓkji ) which
converges to Lg pointwise almost everywhere in Ω. Altogether, the estimate

vℓkji
≥ χ− Lgℓkji a.e. in Ω

and monotonicity of the pointwise limit imply

v ≥ χ− Lg a.e. in Ω,

whence v ∈ K.
Now, we may apply Lemma 11 to see that the unique solutions ũ ∈ K and

ũℓ ∈ K⋆
ℓ of the minimization problems (10) with respect to the data (K, L) and

(K⋆
ℓ , Lℓ), respectively, guarantee

‖ũ− ũℓ‖H1(Ω)
ℓ→∞−−−→ 0.

With Lemma 3, there holds u = ũ + Lg as well as uℓ = ũℓ + Lgℓ. Altogether, we
thus obtain

‖u− uℓ‖H1(Ω) . ‖ũ− ũℓ‖H1(Ω) + ‖g − gℓ‖H1/2(Γ)
ℓ→∞−−−→ 0

and conclude the proof. �
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5.2. Some elementary preliminaries. The next result is an elementary
lemma for variational inequalities, see e.g. [33, Proposition 2].

Lemma 14. Suppose that A is a convex subset of H1(Ω) and f ∈ L2(Ω). Let
U ∈ A be the solution of the variational inequality

〈〈U , V − U〉〉 ≥ (f, V − U) for all V ∈ A.(37)

Then, for all W ∈ A, there holds

1

2
|||U −W |||2 ≤ J (W )− J (U),(38)

i.e. the difference in the H1-seminorm is controlled in terms of the energy. �

5.3. Proof of Theorem 7. We start with estimate (25), where the lower
estimate clearly holds due to Lemma 14. We thus only need to show the upper
estimate. To that end, we define σℓ ∈ H−1(Ω) by

〈σℓ , v〉 := (f, v) − 〈〈uℓ , v〉〉 for all v ∈ H1
0 (Ω).

Since uℓ|Γ = Uℓ|Γ, we may argue as in the proof of [10, Theorem 1] to see

|||uℓ − Uℓ|||2 + 〈σℓ , uℓ − Uℓ〉 . ˜̺2
ℓ ,

where the hidden constant depends only on the shape regularity constant σ(Tℓ). A
direct calculation finally shows

J (Uℓ)− J (uℓ) =
1

2
〈〈Uℓ , Uℓ〉〉 − (f, Uℓ)−

(1
2
〈〈uℓ , uℓ〉〉 − (f, uℓ)

)

+
(
〈〈uℓ , uℓ − Uℓ〉〉 − (f, uℓ − Uℓ) + 〈σℓ , uℓ − Uℓ〉

)

=
1

2
|||uℓ − Uℓ|||2 + 〈σℓ , uℓ − Uℓ〉,

whence J (Uℓ)− J (uℓ) . ˜̺2
ℓ .

Next we prove (27). According to the Rellich compactness theorem and the
triangle inequality, there holds

‖u− Uℓ‖H1(Ω) ≃ |||u − Uℓ|||+ ‖g − gℓ‖H1/2(Γ)

≤ |||u − uℓ|||+ |||uℓ − Uℓ|||+ ‖g − gℓ‖H1/2(Γ).

From (25), we infer

|||uℓ − Uℓ|||2 . ˜̺2
ℓ ≤ ̺2ℓ .

From [4, Lemma 2.2], we additionally infer that

‖g − gℓ‖2H1/2(Γ) .
∑

E∈EΓ
ℓ

apxℓ(E)2 ≤ ̺2ℓ ,

and the constant depends only on Γ and the local mesh ratio of EΓ
ℓ = Tℓ|Γ, whence

on Ω and σ(Tℓ). The combination of the last three estimates yields (27). More-
over, according to the last estimate, the convergence ̺ℓ → 0 implies gℓ → g in
H1/2(Γ) as ℓ → ∞. According to the stability result from Proposition 13, this
yields convergence uℓ → u in H1(Ω), and we also conclude the proof of (28). �
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6. Proof of Theorem 10 (Convergence of AFEM)

The idea of our convergence proof is roughly sketched as follows: Dörfler mark-
ing (29) yields that ̺ℓ is contractive up to |||Uℓ+1 − Uℓ|||, see Section 6.1. Since
there seems to be no estimate for this term to be available (recall nonconformity
Aℓ 6⊆ Aℓ+1), we introduce a discrete auxiliary problem with solution Uℓ+1,ℓ which
allows to control

|||Uℓ+1 − Uℓ||| ≤ |||Uℓ+1 − Uℓ+1,ℓ|||+ |||Uℓ+1,ℓ − Uℓ|||
in terms of the energy J (Uℓ)−J (Uℓ+1,ℓ), see Section 6.3. In Section 6.4, we finally
follow the concept of [16] to prove Theorem 10.

6.1. Estimator reduction. The following contraction estimate is called esti-
mator reduction in [3, 16].

Proposition 15. Suppose that the set Mℓ ⊆ Eℓ satisfies (29) and that marked
edges are refined as stated in Section 4.1. Then, there holds

̺2ℓ+1 ≤ q ̺2ℓ + C4|||Uℓ+1 − Uℓ|||2(39)

with some contraction constant q ∈ (0, 1) which depends only on θ ∈ (0, 1). The
constant C4 > 0 additionally depends only on the initial mesh T0.

Since the proof of Proposition 15 follows along the lines of the proof of [33,
Proposition 3], we only sketch it for brevity.

Sketch of proof. First, the Young inequality proves for arbitrary δ > 0

̺2ℓ+1 ≤
∑

E′∈Eℓ+1

oscℓ+1(E
′)2 +

∑

E′∈EΓ
ℓ+1

apxℓ+1(E
′)2

+ (1 + δ)
∑

E′∈EΩ
ℓ+1

hE′ ‖[∂nUℓ]‖2L2(E′) + (1 + δ−1)
∑

E′∈EΩ
ℓ+1

hE′ ‖[∂n(Uℓ+1 − Uℓ)]‖2L2(E′).

(40)

A scaling argument allows to estimate the last term by
∑

E′∈EΩ
ℓ+1

hE′ ‖[∂n(Uℓ+1 − Uℓ)]‖2L2(E′) ≤ C |||Uℓ+1 − Uℓ|||2,(41)

and the constant C > 0 depends only on σ(Tℓ). Next, one investigates the reduction
of the other three terms if the mesh is refined locally: According to [33, Lemma 5],
it holds that

∑

E′∈EΩ
ℓ+1

hE′ ‖[∂nUℓ]‖2L2(E′) ≤
∑

E∈EΩ
ℓ

ηℓ(E)2 − 1

2

∑

E∈EΩ
ℓ ∩Mℓ

ηℓ(E)2.(42)

Next, [33, Lemma 6] resp. [32, Lemma 3.9.6] yields

∑

E′∈Eℓ+1

oscℓ+1(E
′)2 ≤

∑

E∈Eℓ

oscℓ(E)2 − 1

4

∑

E∈Eℓ∩Mℓ

oscℓ(E)2.(43)

Moreover, it is part of the proof of [2, Theorem 5.4] that

∑

E′∈EΓ
ℓ+1

apxℓ+1(E
′)2 ≤

∑

E∈EΓ
ℓ

apxℓ(E)2 − 1

2

∑

E∈EΓ
ℓ ∩Mℓ

apxℓ(E)2.(44)
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Combining the estimates (40)–(44) and using the Dörfler marking (29), we easily
obtain

̺2ℓ+1 ≤ (1 + δ)(1− θ/4) ̺2ℓ + (1 + δ−1)C |||Uℓ+1 − Uℓ|||2.
Finally, we may choose δ > 0 sufficiently small to guarantee q := (1+δ)(1−θ/4) < 1
to end up with (39). �

Remark 16. In the conforming case Aℓ ⊆ Aℓ+1, it is easily seen that the sequence
Uℓ of discrete solutions tends to some limit U∞ which is the unique Galerkin so-
lution with respect to the closure of

⋃∞
ℓ=0 Aℓ, see [32, Lemma 3.3.8]. Therefore,

limℓ |||Uℓ+1 − Uℓ||| = 0, and elementary calculus predicts that (39) already implies
limℓ ̺ℓ = 0, cf. e.g. [3, Proposition 1.2]. Then, Theorem 7 would conclude that
limℓ ‖u − Uℓ‖H1(Ω) = 0, i.e. u = U∞. — Now that Aℓ 6⊆ Aℓ+1, we did neither
succeed to prove that the a priori limit U∞ exists nor the much weaker claim that
limℓ |||Uℓ+1 − Uℓ||| = 0.

6.2. Some a priori convergence results. In the adaptive algorithm, the mesh
Tℓ+1 is obtained by local refinement of elements in Tℓ, see Section 4.1. Consequently,
the discrete spaces S1(Tℓ) are nested, i.e.,

S1(Tℓ) ⊆ S1(Tℓ+1) for all ℓ ∈ N(45)

and the analogous inclusion also holds for the spaces S1(Tℓ|Γ) ⊆ S1(Tℓ+1|Γ) on the
boundary. This is exploited in the following lemma which is part of the proof of [1,
Proposition 10].

Lemma 17. The nodal interpolants gℓ ∈ S1(Tℓ|Γ) of some Dirichlet data g ∈ H1(Γ)
converge to some a priori limit in H1(Γ), i.e. there holds

‖g∞ − gℓ‖H1(Γ)
ℓ→∞−−−→ 0(46)

for a certain element g∞ ∈ H1(Γ). �

In the following, we will only use the convergence of gℓ to g∞ inH1/2(Γ) as well as
the uniform boundedness sup

ℓ∈N

‖gℓ‖H1/2(Γ) < ∞ which is an immediate consequence.

Proposition 18. The sequence uℓ ∈ A⋆
ℓ of solutions of the continuous auxiliary

problem (24) converges to some a priori limit u∞ ∈ H1(Ω), i.e.

‖u∞ − uℓ‖H1(Ω)
ℓ→∞−−−→ 0(47)

for some function u∞ ∈ H1(Ω). In particular, there holds

J (u∞) = lim
ℓ→∞

J (uℓ).(48)

Proof. Since convergence in H1(Γ) implies convergence in L2(Γ), the Weyl theo-
rem applies and proves that a subsequence (gℓk) converges to g∞ pointwise almost
everywhere on Γ. Therefore, the limit function g∞ ∈ H1(Γ) satisfies g∞ ≥ χ almost
everywhere on Γ. In particular, the obstacle problem (13) with g = g∞ has also a
unique solution u∞ ∈ H1(Γ). Applying the stability result from Proposition 13, we
obtain convergence of uℓ to u∞ in H1(Ω) as ℓ → ∞. �

6.3. Discrete energy estimates. The main difficulty which we suffered in
our analysis is that it is not clear that |||Uℓ+1 − Uℓ||| resp. J (Uℓ+1) − J (Uℓ) tend
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to zero as ℓ → ∞. We circumvent this question by introducing a discrete auxiliary
problem: Find Uℓ+1,ℓ ∈ Aℓ+1,ℓ such that

J (Uℓ+1,ℓ) = min
Vℓ+1∈Aℓ+1,ℓ

J (Vℓ+1).(49a)

where the admissible set reads

Aℓ+1,ℓ :=
{
Vℓ+1 ∈ S1(Tℓ+1) : Vℓ+1 ≥ χ in Ω, Vℓ+1 = gℓ on Γ

}
.(49b)

Applying Proposition 6 to the data (Aℓ+1,ℓ, gℓ) instead of (Aℓ, gℓ), we see that the
auxiliary problem (49) admits a unique solution Uℓ+1,ℓ ∈ Aℓ+1,ℓ.

Our first lemma is a key ingredient of the upcoming proofs. It states that one
may change the boundary data of a discrete function and control the influence
within Ω.

Lemma 19. Let Wℓ+1 ∈ S1(Tℓ+1) with Wℓ+1|Γ = gℓ+1. Define W ℓ
ℓ+1 ∈ S1(Tℓ+1)

by

W ℓ
ℓ+1(z) =

{
Wℓ+1(z) for z ∈ Nℓ+1\Γ,
gℓ(z) for z ∈ Nℓ+1 ∩ Γ.

(50)

Then, with the local mesh-width hℓ ∈ L∞(Γ) defined by hℓ|E = hE, there holds

‖Wℓ+1 −W ℓ
ℓ+1‖H1(Ω) ≤ C5 ‖h1/2

ℓ (gℓ+1 − gℓ)
′‖L2(Γ) ≤ C6 ‖gℓ+1 − gℓ‖H1/2(Γ),(51)

where C5, C6 > 0 depend only on T0 and on Ω.

Proof. By definition, we have W ℓ
ℓ+1 ∈ S1(Tℓ+1) with W ℓ

ℓ+1|Γ = gℓ. Moreover,

there holds W ℓ
ℓ+1|T = Wℓ+1|T for all T ∈ Tℓ+1 \ T Γ

ℓ+1. Let T = conv{z1, z2, z3} ∈
T Γ
ℓ+1 and ΦT : Tref → T be the affine diffeomorphism with reference element Tref =

conv{(0, 0), (0, 1), (1, 0)}.
The transformation formula and norm equivalence on P1(Tref) prove

‖Wℓ+1 −W ℓ
ℓ+1‖L2(T ) = |T |1/2 ‖(Wℓ+1 −W ℓ

ℓ+1) ◦ΦT ‖L2(Tref )

. |T |1/2
3∑

j=1

|(Wℓ+1 −W ℓ
ℓ+1) ◦ ΦT (z

ref
j )|

≤ |Ω|1/2
3∑

j=1

|(Wℓ+1 −W ℓ
ℓ+1)(zj)|

as well as

‖∇(Wℓ+1 −W ℓ
ℓ+1)‖L2(T ) . σ(Tℓ) ‖∇

(
(Wℓ+1 −W ℓ

ℓ+1) ◦ ΦT

)
‖L2(Tref )

. σ(Tℓ)
3∑

j=1

|(Wℓ+1 −W ℓ
ℓ+1)(zj)|.

Now, we consider the nodes z ∈ {z1, z2, z3} of the triangle T : For z ∈ Nℓ ∩ Γ holds
gℓ(z) = gℓ+1(z) by definition of the nodal interpolants. Therefore,

(Wℓ+1 −W ℓ
ℓ+1)(z) = 0 if z ∈ (Nℓ+1 ∩ Ω) ∪ (Nℓ ∩ Γ).

Thus, it only remains to consider nodes z ∈ (Nℓ+1\Nℓ) ∩ Γ. In this case (see

Section 4.1), z is the midpoint of a refined edge Êz of the unique father T̂ ∈ Tℓ
with T ⊆ T̂ , and there even holds Êz ⊂ Γ. Let ẑ ∈ Nℓ be an arbitrary endpoint of

Êz. Then,

(Wℓ+1 −W ℓ
ℓ+1)(ẑ) = (gℓ+1 − gℓ)(ẑ) = 0,
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and the fundamental theorem of calculus, now applied for the arclength derivative,
yields

|(Wℓ+1 −W ℓ
ℓ+1)(z)| ≤

∣∣∣
∫ z

ẑ

(gℓ+1 − gℓ)
′ dΓ

∣∣∣ ≤ |z − ẑ|1/2 ‖(gℓ − gℓ+1)
′‖L2(Êz)

.

Combining our observations, we have now shown

‖Wℓ+1 −W
ℓ
ℓ+1‖H1(T ) .

∑

Ê∈EΓ
ℓ

Ê⊂∂T̂

h
1/2

Ê
‖(gℓ − gℓ+1)

′‖L2(Ê) ≃
(

∑

Ê∈EΓ
ℓ

Ê⊂∂T̂

hÊ‖(gℓ − gℓ+1)
′‖2

L2(Ê)

)1/2

.

Finally, note that each edge Ê ∈ EΓ
ℓ belongs only to one element T̂ ∈ Tℓ. Thus, Ê

can at most be selected by all (but at most four) sons T ∈ Tℓ+1 of T̂ , cf. Figure 1.
This observation yields

‖Wℓ+1 −W ℓ
ℓ+1‖2H1(Ω) =

∑

T∈T Γ
ℓ+1

‖Wℓ+1 −W ℓ
ℓ+1‖2H1(T ) .

∑

Ê∈EΓ
ℓ

h
1/2

Ê
‖(gℓ − gℓ+1)

′‖2
L2(Ê)

.

With the local mesh-width function hℓ ∈ L∞(Γ), this estimate reads

‖Wℓ+1 −W ℓ
ℓ+1‖H1(Ω) . ‖h1/2

ℓ (gℓ − gℓ+1)
′‖L2(Γ) . ‖gℓ − gℓ+1‖H1/2(Γ),

where we have used a local inverse estimate from [15, Proposition 3.1] in the last
step. We stress that the constant depends only on the local mesh-ratio of Tℓ+1|Γ,
whence on σ(Tℓ+1). This concludes the proof. �

With the notation of Lemma 19, we can now formulate an additional convergence
result.

Proposition 20. The sequence of discrete solutions Uℓ+1,ℓ ∈ Aℓ+1,ℓ satisfies

|J (Uℓ+1,ℓ)− J (Uℓ+1)|+ |J (Uℓ+1,ℓ)− J (U ℓ
ℓ+1)| ≤ C7 ‖gℓ+1 − gℓ‖H1/2(Γ)

ℓ→∞−−−→ 0

(52)

with some constant C7 > 0 which only depends on T0.
To prove Proposition 20, we start with the observation that the energy functional

J (·) is coercive.
Lemma 21. For each sequence wℓ ∈ H1(Ω) with changing boundary data wℓ|Γ =
gℓ, bounded energy implies uniform boundedness in H1(Ω), i.e.

sup
ℓ∈N

J (wℓ) < ∞ =⇒ sup
ℓ∈N

‖wℓ‖H1(Ω) < ∞.(53)

Proof. Note that triangle inequalities and the Friedrichs inequality yield

‖wℓ‖L2(Ω) ≤ ‖wℓ − Lgℓ‖L2(Ω) + ‖Lgℓ‖L2(Ω)

. ‖∇(wℓ − Lgℓ)‖L2(Ω) + ‖Lgℓ‖L2(Ω)

. ‖∇wℓ‖L2(Ω) + ‖Lgℓ‖H1(Ω)

. ‖∇wℓ‖L2(Ω) +M

with M = supℓ ‖gℓ‖H1/2(Γ) < ∞, where we have finally used continuity of L and
a priori convergence of gℓ, cf. Lemma 17. Consequently, we obtain

‖wℓ‖H1(Ω) . ‖∇wℓ‖L2(Ω) +M

and therefore

J (wℓ) =
1

2
‖∇wℓ‖2L2(Ω) − (f, wℓ) & (‖wℓ‖H1(Ω) −M)2 − ‖f‖L2(Ω)‖wℓ‖H1(Ω).
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The implication (53) is an immediate consequence. �

Lemma 22. The sequence of discrete solutions Uℓ ∈ Aℓ from Algorithm 9 satisfies

sup
ℓ∈N

|J (Uℓ)| < ∞ as well as sup
ℓ∈N

‖Uℓ‖H1(Ω) < ∞.(54)

Proof. According to Lemma 21 with wℓ = Uℓ, it is sufficient to prove boundedness
of the energy. To that end, we define

Vℓ := maxℓ{PℓLgℓ − χ, 0}+ χ ∈ Aℓ,

where maxℓ denotes the nodewise max-function, i.e. maxℓ{v, w} ∈ S1(Tℓ) is defined
by

maxℓ{v, w}(z) := max{v(z), w(z)} for all z ∈ Nℓ.

We consider the function Wℓ := maxℓ{PℓLgℓ − χ, 0}. Note that, by definition,
|Wℓ(z)| ≤ |(PℓLgℓ−χ)(z)| for all z ∈ Nℓ. According to a standard scaling argument
and PℓLgℓ − χ ∈ S1(Tℓ), we infer, for all T ∈ Tℓ,
‖Wℓ‖L2(T ) . ‖PℓLgℓ − χ‖L2(T ) as well as ‖∇Wℓ‖L2(T ) . ‖∇(PℓLgℓ − χ)‖L2(T )

due to the nodewise estimate. From this, we obtain a constant C > 0 with

‖Vℓ‖H1(Ω) . ‖PℓLgℓ − χ‖H1(Ω) + ‖χ‖H1(Ω) . ‖gℓ‖H1/2(Γ) + ‖χ‖H1(Ω) ≤ C < ∞
since supℓ ‖gℓ‖H1/2(Γ) < ∞ and the operator norm of Pℓ depends only on σ(Tℓ).
Therefore,

J (Uℓ) ≤ J (Vℓ) =
1

2
‖∇Vℓ‖2L2(Ω) − (f, Vℓ) . C (C + ‖f‖L2(Ω)) < ∞

yields sup
ℓ∈N

J (Uℓ) < ∞ and concludes the proof. �

Proof of Proposition 20. According to Lemma 22, we haveM := supℓ ‖Uℓ‖H1(Ω) <
∞. With the aid of Lemma 19, we obtain

J (Uℓ+1,ℓ) ≤ J (U ℓ
ℓ+1) =

1

2
|||U ℓ

ℓ+1|||2 − (f, U ℓ
ℓ+1)

≤ 1

2

(

|||Uℓ+1||| + |||U ℓ
ℓ+1 − Uℓ+1|||

)2 − (f, Uℓ+1) + ‖f‖L2(Ω)‖U ℓ
ℓ+1 − Uℓ+1‖L2(Ω)

= J (Uℓ+1) +
1

2
|||U ℓ

ℓ+1−Uℓ+1|||2 + |||Uℓ+1||| |||U ℓ
ℓ+1−Uℓ+1|||+ ‖f‖L2(Ω)‖U ℓ

ℓ+1−Uℓ+1‖L2(Ω)

≤ J (Uℓ+1) +
1

2
C

2
6 ‖gℓ − gℓ+1‖2H1/2(Γ) + C6 (M + ‖f‖L2(Ω)) ‖gℓ+1 − gℓ‖H1/2(Γ),

(55)

whence

J (Uℓ+1,ℓ)− J (Uℓ+1) . ‖gℓ − gℓ+1‖2H1/2(Γ) + ‖gℓ+1 − gℓ‖H1/2(Γ).

Estimate (55) now reveals supℓ J (Uℓ+1,ℓ) < ∞, whence supℓ ‖Uℓ+1,ℓ‖H1(Ω) < ∞
according to Lemma 21 with wℓ = Uℓ+1,ℓ. Arguing as in (55) with the ansatz

J (Uℓ+1) ≤ J (U ℓ+1
ℓ+1,ℓ) shows

J (Uℓ+1)− J (Uℓ+1,ℓ) . ‖gℓ − gℓ+1‖2H1/2(Γ) + ‖gℓ+1 − gℓ‖H1/2(Γ).

The combination of the last two inequalities yields

|J (Uℓ+1)− J (Uℓ+1,ℓ)| . ‖gℓ − gℓ+1‖2H1/2(Γ) + ‖gℓ+1 − gℓ‖H1/2(Γ)
ℓ→∞−−−→ 0.
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Finally, we recall J (Uℓ+1,ℓ) ≤ J (U ℓ
ℓ+1). Then, the above calculation also yields

|J (U ℓ
ℓ+1)− J (Uℓ+1,ℓ)| = J (U ℓ

ℓ+1)− J (Uℓ+1,ℓ)

=
[
J (U ℓ

ℓ+1)− J (Uℓ+1)
]
+
[
J (Uℓ+1)− J (Uℓ+1,ℓ)

]

. ‖gℓ − gℓ+1‖2H1/2(Γ) + ‖gℓ+1 − gℓ‖H1/2(Γ)
ℓ→∞−−−→ 0.

This concludes the proof. �

We are now ready to prove that the sequence Uℓ ∈ Aℓ of discrete solutions
generated by Algorithm 9 indeed converges towards the exact solution u ∈ A.

6.4. Proof of Theorem 10. With the help of Lemma 19 and Lemma 14
applied twice for Uℓ ∈ Aℓ+1,ℓ, and U ℓ

ℓ+1 ∈ Aℓ+1,ℓ, we obtain

1

2
|||Uℓ+1 − Uℓ|||2 ≤ |||Uℓ+1 − Uℓ+1,ℓ|||2 + |||Uℓ+1,ℓ − Uℓ|||2

≤ 2 |||Uℓ+1 − U ℓ
ℓ+1|||2 + 2 |||U ℓ

ℓ+1 − Uℓ+1,ℓ|||2 + 2
[
J (Uℓ)− J (Uℓ+1,ℓ)

]

≤ 2C2
5‖h1/2

ℓ (gℓ+1 − gℓ)
′‖2L2(Γ) + 4

[
J (U ℓ

ℓ+1)− J (Uℓ+1,ℓ)
]

+ 2
[
J (Uℓ)− J (Uℓ+1,ℓ)

]
.

Recall that ∆ℓ+1 =
[
J (Uℓ+1)−J (uℓ+1)

]
+ γ̺2ℓ+1 + λ apx2ℓ+1. We now use the last

estimate to see
[
J (Uℓ+1)− J (uℓ+1)

]
=

[
J (Uℓ)− J (uℓ)

]
+
[
J (uℓ)− J (uℓ+1)

]

+
[
J (Uℓ+1)− J (Uℓ+1,ℓ)

]
+
[
J (Uℓ+1,ℓ)− J (Uℓ)

]

≤
[
J (Uℓ)− J (uℓ)

]
+
[
J (uℓ)− J (uℓ+1)

]

+
[
J (Uℓ+1)− J (Uℓ+1,ℓ)

]
+ C2

5‖h1/2
ℓ (gℓ+1 − gℓ)

′‖2L2(Γ)

− 1

4
|||Uℓ+1 − Uℓ|||2 + 2

[
J (U ℓ

ℓ+1)− J (Uℓ+1,ℓ)
]
.

Note that according to Proposition 18 and Proposition 20 it holds that

αℓ :=
∣∣J (uℓ)− J (uℓ+1)

∣∣ +
∣∣J (Uℓ+1)− J (Uℓ+1,ℓ)

∣∣+ 2
∣∣J (U ℓ

ℓ+1)− J (Uℓ+1,ℓ)
∣∣

tends to zero as ℓ → ∞. Next, we recall that on the 1D manifold Γ, the derivative
g′ℓ of the nodal interpolant is the elementwise best approximation of the derivative
g′ by piecewise constants, i.e.

‖h1/2
ℓ (g − gℓ+1)

′‖2L2(Γ) + ‖h1/2
ℓ (gℓ+1 − gℓ)

′‖2L2(Γ) = ‖h1/2
ℓ (g − gℓ)

′‖2L2(Γ)(56)

according to the elementwise Pythagoras theorem. So far and with λ = C2
5 , we

thus have derived

∆ℓ+1 ≤
[
J (Uℓ)− J (uℓ)

]
+ γ̺2ℓ+1 + λapx2ℓ+1 + λ ‖h1/2

ℓ (gℓ+1 − gℓ)
′‖2L2(Γ)

− 1

4
|||Uℓ+1 − Uℓ|||2 + αℓ,

≤
[
J (Uℓ)− J (uℓ)

]
+ γ̺2ℓ+1 + λapx2ℓ −

1

4
|||Uℓ+1 − Uℓ|||2 + αℓ,

where we have used the Pythagoras theorem in the second step.
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Next, the estimator reduction of Proposition 15 applies and provides constants
0 < q < 1 and C4 > 0 with

∆ℓ+1 ≤
[
J (Uℓ)− J (uℓ)

]
+ γq̺2ℓ + λapx2ℓ +

(
γC4 −

1

4

)
|||Uℓ+1 − Uℓ|||2 + αℓ

≤
[
J (Uℓ)− J (uℓ)

]
+ γq̺2ℓ + λapx2ℓ + αℓ

provided the constant 0 < γ < 1 is chosen sufficiently small.
Next, from Theorem 7, we infer C−2

3

[
J (Uℓ)− J (uℓ)

]
≤ ̺2ℓ .

We plug this estimate into the last one and use the fact that apx2ℓ ≤ ̺2ℓ to see

∆ℓ+1 ≤ (1 − γεC−2
3 )

[
J (Uℓ)− J (uℓ)

]
+ γ(q + 2 ε) ̺2ℓ + (1 − εγ)λapx2ℓ + αℓ

≤ κ∆ℓ + αℓ,

with κ := max{1−γεC−2
3 , q+2 ε, 1−γε}. For 0 < 2 ε < 1−q, we obtain 0 < κ < 1

and conclude the proof of the contraction property (31).
The application of Lemma 14 for Aℓ ⊆ A⋆

ℓ yields J (uℓ) ≤ J (Uℓ) and hence
∆ℓ ≥ 0. Together with αℓ ≥ 0 and αℓ → 0, elementary calculus yields ∆ℓ → 0 as
ℓ → ∞, cf. [3, Proposition 1.2]. From 0 ≤ ̺ℓ . ∆ℓ, we obtain limℓ ̺ℓ = 0, and the
weak reliability of ̺ℓ stated in Theorem 7 concludes the proof of (32). �
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Figure 2. Galerkin solution U6 on adaptively generated mesh T6
with N = 4.159 elements for θ = 0.8.

7. Numerical Experiments

We consider numerical examples, one of which has also been treated in [10].
The mesh in each step is adaptively generated by Algorithm 9. For the solution
at each level, we use the primal-dual active set strategy from [23]. The numerical
results for example 1 are quite similar to those in [10]. We stress, however, that
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Figure 3. Numerical results for uniform and adaptive mesh-
refinement with θ = 0.8, where

√
εℓ, ̺ℓ, and apxℓ are plotted over

the number of elements N = #Tℓ.

our approach includes the adaptive resolution of the Dirichlet data and, contrary
to [10], the upcoming examples are thus covered by theory.

7.1. Example 1. We consider the obstacle problem with constant obstacle
χ ≡ 0 on the square Ω := (−1.5, 1.5)2 and a constant force f ≡ −2. The Dirichlet
boundary data g ∈ H1(Γ) are given by the trace of the exact solution

u :=

{
r2

2 − ln(r) − 1
2 , r ≥ 1

0, else,

where r = |x| and |·| denotes the Euclidean norm onR
2. The solution is visualized in

Figure 2. We compare uniform and adaptive mesh-refinement, where the adaptivity
parameter θ varies between 0.4 and 0.8. The convergence history for uniform and
adaptive refinement with θ = 0.8 is plotted in Figure 3, where the error is given in
the energy functional, i.e.

εℓ =
∣∣J (Uℓ)− J (u)

∣∣(57)

and the Dirichlet data oscillations apxℓ are defined by (23). Note that due to
Theorem 10, the adaptive algorithm drives the error and thus also the energy εℓ to
zero, whence it makes sense to plot these physically relevant terms. All quantities
are plotted over the number of elements N = #Tℓ of the given triangulation.
Due to high regularity of the exact solution, there are no significant benefits of
adaptive refinement. We observe, however, that error and error estimator, as well as
Dirichlet oscillations show optimal convergence behaviour O(N−1/2) and O(N−3/4)



248 M. FEISCHL, M. PAGE AND D. PRAETORIUS

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

 

 

θ = 0.4

θ = 0.6

θ = 0.8

uniform

O(N−1/2)

Figure 4. Numerical results for
√
εℓ for uniform and adaptive

mesh-refinement with θ ∈ {0.4, 0.6, 0.8}, plotted over the number
of elements N = #Tℓ.

Figure 5. Adaptively generated meshes T5 (left) and T11 (right)
with N = 678 and N = 34.024 elements, respectively, for θ = 0.6.

respectively. Also, the curves of ̺ℓ and
√
εℓ are parallel, which experimentally

confirms classical reliability and efficiency of the underlying estimator ̺ℓ in the
sense of ‖u− Uℓ‖H1(Ω) ≃ ̺ℓ.

Figure 4 compares different values of θ and we can see that each choice of θ ∈
{0.4, 0.6, 0.8} leads to optimal convergence, i.e. the curves basically coincide.
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Finally, Figure 5 shows the adaptively generated meshes after 5 and 11 iterations.
As expected, refinement basically takes place in the inactive zone, i.e. elements
where the discrete solution Uℓ does not touch the obstacle.
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Figure 6. Galerkin solution U10 on adaptively generated mesh
T10 with N = 8.870 elements for θ = 0.6.

7.2. Example 2. In this example, we consider the obstacle problem for a
non-affine H2(Ω) obstacle

χ :=

{
1
10

[
sin

(
5(x+ (1− π/10))

)
+ 1

]
x < −1,

0 else.

on the L-shaped domain Ω := (−2, 2)2\[−2, 0). The right hand side is given in
polar coordinates by

f(r, ϕ) := −r2/3 sin(2ϕ/3)
(
d/dr(γ1)(r)/r + d 2/dr 2γ1(r)

)

−4

3
r−1/3d/dr(γ1)(r) sin(2ϕ/3)− γ2(r),

where d/dr denotes the radial derivative. Moreover, r̄ := 2(r − 1/4) and

γ1(r) :=





1, r̄ < 0,

−6r̄5 + 15r̄4 − 10r̄3 + 1, 0 ≤ r̄ < 1,

0, r̄ ≥ 1,

γ2(r) :=

{
0, r ≤ 5/4,

1, else.
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Figure 7. Numerical results for uniform and adaptive mesh-
refinement with θ = 0.4, where

√
εℓ, ̺ℓ, and apxℓ are plotted over

the number of elements N = #Tℓ.

The Dirichlet data g ∈ H1/2(Γ) are given by the trace of the obstacle χ. Since
the exact solution for this problem is unknown, the Galerkin solution on a uniform
mesh with approximatelyN = #Tℓ = 1.500.000 elements has been used as reference
solution. The non-affine obstacle was treated by means of Proposition 4. Again, we
compare uniform and adaptive mesh-refinement for different adaptivity parameters
θ between 0.4 and 0.8. Figure 7 shows the convergence history for θ = 0.4 plotted
over the number of elements N = #Tℓ. As before, adaptive refinement leads to the
optimal convergence rates O(N−1/2) and O(N−3/4) for

√
εℓ and apxℓ, respectively.

Due to the corner singularity of the exact solution at 0, we observe that uniform
mesh-refinement leads to a suboptimal convergence behaviour.

Figure 8 compares the error for uniform and adaptive mesh refinement, where
the adaptivity parameter θ varies between 0.4 and 0.8. Again, we observe that each
adaptive strategy leads to optimal convergence rates, whereas the convergence rate
for uniform refinement is suboptimal.

In Figure 9, the adaptively generated meshes after 13 and 18 iterations are
visualized. As before, refinement is basically restricted to the inactive zone.
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