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Abstract We consider the partial regularity of weak solutions to the weighted
Landau-Lifshitz flow on a 2-dimensional bounded smooth domain by Ginzburg-Landau
type approximation. Under the energy smallness condition, we prove the uniform local
C∞ bounds for the approaching solutions. This shows that the approximating solu-
tions are locally uniformly bounded in C∞(Reg({uε})

⋂
(Ω̄×R+)) which guarantee the

smooth convergence in these points. Energy estimates for the approximating equations
are used to prove that the singularity set has locally finite two-dimensional parabolic
Hausdorff measure and has at most finite points at each fixed time. From the uniform
boundedness of approximating solutions in C∞(Reg({uε})

⋂
(Ω̄×R+)), we then extract

a subsequence converging to a global weak solution to the weighted Landau-Lifshitz
flow which is in fact regular away from finitely many points.
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1. Introduction

In this paper, we are concerned with the existence and regularities of global weak
solutions to initial and boundary value problem for the weighted Landau-Lifshitz flow

1
2
∂tu− 1

2
u× ∂tu−∇ · (a(x)∇u) = a(x)|∇u|2u in Ω×R+, (1.1)

u = u0 on Ω× {0}
⋃

∂Ω×R+,

where ”×” denotes the usual vector product in R3, the domain Ω ⊂ R2 is open, bounded
and smooth. The initial and boundary data u0 is assumed to be a smooth map into
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the standard sphere S2 ⊂ R3. In the classical sense, the equation (1.1) is equivalent to

ut = u×∇ · (a(x)∇u)− u× (u×∇ · (a(x)∇u)).

This problem is a special case of magnetization motion equation suggested in 1935
by Landau and Lifshitz, i.e.

∂S

∂t
= λ1S ×He − λ2S × (S ×He),

where λ2 > 0 is the Gilbert damping constant, λ1 is a constant, S = (S1, S2, S3)
is the magnetization vector, and He is effective field which can be computed by the
formula He := ∂

∂S emag(u), emag(u) being the total energy. In particular, if we take
nonhomogeneous effective magnetic energy as emag(u) = 1

2

∫
Ω a(x)|∇u|2dx, we then

obtain (1.1).
If a(x) ≡ 1, the equation (1.1) reads as

1
2
∂tu− 1

2
u× ∂tu−4u = |∇u|2u in Ω×R+,

which has been widely discussed by mathematicians. Early in 1987, Zhou and Guo [1]
had obtained the global existence of weak solutions and in 1991 [2], Zhou, Guo and Tan
established the existence and uniqueness of smooth solution for 1-D problem. In 1993,
for 2-D problem, Guo and Hong [3] found the close relations between this equation and
harmonic map heat flow and proved the existence of partially regular solution which
was first obtained for harmonic map heat flow by Chen and Struwe [4]. In 1998, also for
2-D problem, Chen Y. Ding S. and Guo B. proved that any weak solution with finite
energy is smooth away from finitely many points [5]. For high dimensional problem, we
refer to recent results by Liu [6] for the partial regularity of stationary weak solutions,
by Ding and Guo [7] for the partial regularity of stationary weak solutions to Landau-
Lifshitz-Maxwell equations in 3 dimensions, and by [8] for the partial regularity of weak
solutions in 3 and 4 dimensions. We refer also to Paul Harpes’ results [9] for the partial
regularity of 2-D problem by Ginzburg-Landau approximations.

Concerning the Landau-Lifshitz equation where the coefficient is a function, a(x) 6≡
constant, there are not many discussions. So far as we know, the only results are
the following. In 1999, Ding S., Guo, B. and Su, F [10] obtained the existence of
measure-valued solution to the 1-D compressible Heisenburg chain equation

~Zt = (G(~Zx)~Z × ~Zx)x,

where G(~Zx) is a matrix function. In the same year, in [11], these authors proved the
existence and uniqueness of smooth solution to the 1-D inhomogeneous equation

~Zt = f(x)~Z × ~Zxx + f ′(x)~Z × ~Zx.

Recently, Lin, J. and Ding, S. extends this problem in [12], where the function f(x) is
replaced by f(x, t) and the method to get the estimates is different from that in [11].
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For higher dimensions inhomogeneous Landau-Lifshitz equations, there are few re-
sults concerning the existence and partial regularities of weak solutions. In this paper,
following the idea of Paul Harpes’s work [9], we use the Ginzburg-Landau approxima-
tions to discuss the partial regularities for the global weak the solutions to (1.1). The
Ginzburg-Landau appoximations uε : Ω̄ × R+ → R3 to Landau-Lifshitz flow (1.1) are
the solutions of

1
2
∂tuε − 1

2
uε × ∂tuε −∇ · (a(x)∇uε) =

1
ε2

a(x)(1− |uε|2)uε in Ω×R+, (1.2)

uε = u0 on (Ω× {0})
⋃

(∂Ω×R+), (1.3)

where a(x) is a positive smooth function satisfying 0 < m ≤ a(x) ≤ M . For small
ε > 0, we can see that the maps {uε}ε approximate the weighted Landau-Lifshitz flow
in Ω × R+. For fixed ε > 0, the smooth solution to (1.2)-(1.3) on Ω × R+ exists
and if u0 ∈ W 1,2(Ω; S2) ∩W

3
2 (∂Ω; S2), it is unique in W 1,2

loc

⋂
L∞(W 1,2) := W 1,2

loc (Ω ×
R+;R3)

⋂
L∞(W 1,2). The existence is obtained by Galerkin’s method. C∞ regularity

follows from a standard bootstrap argument. The total energy of the approximate flow
at time t ≥ 0 is defined by

Gε(uε(t)) :=
∫

Ω
gε(uε(x, t))dx, (1.4)

where
gε(uε(x, t)) = a(x)[

1
2
|∇uε|2 +

1
4ε2

(1− |uε|2)2]. (1.5)

In Lemma 3.1 and in Section 3, we will see that the total energy of the ε approximation
always decreases. The local energy given by

Gε(uε(t), BΩ
R(x0)) :=

∫

BR(x0)
T

Ω
gε(uε(x, t))dx (1.6)

may concentrate at space-time points (x0, t0) as ε ↘ 0, either for fixed t = t0 or for
variable t ↗ t0 or t ↘ t0. It characterizes the local ”asymptotic behavior” of the
weighted flow . Here asymptotic refers to the limits ε ↘ 0. We will show that all the
derivatives of the family of maps {uε}ε>0 are locally uniformly bounded on a regular
set Reg{uε}ε>0 consisting of all points z0 = (x0, t0) ∈ Ω × (0,∞) for which there is
R0 = R0(z0), such that

lim sup
ε↘0

sup
t0−R2

0<t<t0

Gε(uε(t), BΩ
R0

(x0)) < ε0, (1.7)

for a constant ε0 > 0 that will be determined later in Lemmas 2.6 and 2.8. The comple-
ment S({uε}ε>0) := Ω×R+\Reg{uε}ε>0 is referred to as the energy-concentration set.
The main results in this paper can be stated as follows: the approximation solutions
converge to the global weak solution of (1.1) with Dirichlet condition. This convergence
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is smooth in Reg{uε}ε>0, while the energy-concentration set is closed, with locally fi-
nite parabolic Hausdorff measure. Delicate energy inequality shows that, in fact, the
singular set consists of finitely many points as observed in [9] and [5]. Such Ginzburg-
Landau penalty method was first used to study the harmonic map heat flow in higher
dimensions by Chen and Struwe in [4]. So we have obtained the so called Chen-Struwe
solution for our problem.

2. Estimates for Strong Parabolic System

In this section, we will show that, under the uniform smallness condition (1.7)
on the local energy, all higher derivatives of uε are locally and uniformly bounded.
Here ”uniform” of course always means uniform in ε > 0. In Section 2.1, we first
recall some facts about Lp estimates for strongly parabolic system and Cα estimates
for parabolic system in divergence form. In Section 2.2, we derive the L∞ and Lp

bounds for the right hand side of (1.2) which are necessary for us to get the uniform
bounds of 1

ε2
a(x)(1 − |uε|2) for Lp estimates. In Section 2.3, we prove that all the

derivatives of uε and 1
ε2

a(x)(1 − |uε|2) are locally uniformly bounded if the energy
density satisfies the condition lim sup

ε↘0
sup

PR(z0)
gε(uε(x, t)) < C0, which, we will prove,

may be verified under the uniformly smallness condition (1.7). Here, z0 = (x0, t0) and
PR(z0) = BR(x0) × (t0 − R2, t0). Finally in Section 2.4, we will pay our attentions to
the estimates similar to above for the approximating solutions near the boundary.

2.1 Some estimates about strongly parabolic system

We recall some facts about Lp estimates for strongly parabolic system and Cα

estimates for parabolic systems in divergence form. We first rewrite the equation (1.2)
in the form

∂tuε −M(uε)a(x)4uε −M(uε)∇a(x) · ∇uε = M(uε)
1
ε2

a(x)(1− |uε|2)uε := fε(uε),

where M(uε) is a matrix whose maximal and minimal eigenvalue can be estimated as
follows

m|ξ|2 ≤ ξT a(x)M(uε)ξ =
a(x)

1
2(1 + |uε|2)

{|ξ|2 + (uε · ξ)2} ≤ 2M |ξ|2, ∀ ξ ∈ R3. (2.1)

We therefore may write (1.2) as

Lε(uε) := ∂tuε −M(uε)a(x)4uε −M(uε)∇a(x) · ∇uε = fε(uε),

where the coefficient-matrix M(uε) is smooth with respect to uε. Note that Lε defines
a strongly parabolic system in the Petrovskii sense [13]. So Lp global and local esti-
mates hold for such system. We list two a priori Lp estimates concerning the strongly
parabolic system in the Petrovskii sense.
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Fact 2.1 (Global Lp estimates) Let fε ∈ Lp(Ω× [0, T ];R3) and u0 ∈ W 2,p(Ω; R3).
A solution of Lε(v) = fε in (Ω × (0, T );R3) with v = u0 on (Ω × {0}) ⋃

(∂Ω × (0, T ))
satisfies

‖v‖
W 2,1

p
(Ω× [0, T ]) ≤ Cp(Ω, T, ωuε)(‖fε‖Lp(Ω×[0,T ]) + ‖u0‖W 2,p(Ω)). (2.2)

Fact 2.2 (Local Lp estimates) Let fε ∈ Lp(Ω × [0, T ];R3) and u0 ∈ W 2,p(Ω; R3).
A solution of Lε(v) = fε in (Ω × (0, T );R3) with v = u0 on (Ω × {0}) ⋃

(∂Ω × (0, T ))
satisfies

‖v‖
W 2,1

p (PΩ
δR(z0))

≤ C̃p(R, Ω, T, ωuε)(‖fε‖Lp(PΩ
R (z0))

+‖v‖Lq(PΩ
δR(z0)) + δBR

T
∂Ω‖u0‖

W
2− 1

p ,p
(BΩ

R

T
∂Ω)

), (2.3)

for all 1 ≤ q ≤ p. Here, δBR
T

∂Ω = 1 if BR
⋂

∂Ω 6= ø and 0 otherwise. The trace theo-
rem of course implies ‖u0‖

W
2− 1

p ,p
(∂Ω)

≤ ‖u0‖W 2,p(Ω). The constants Cp and C̃p depend

on the indicated quantities and additionally on the uniform lower and upper bounds for
the eigenvalues of a(x)M(uε), that is m and 2M are chosen to be independent of ε > 0.
Note that Cp and C̃p also depend on the modulus of continuity of the coefficients of the
leading term, i.e., the modulus of continuity ωuε of uε.

The equation can also be written in the divergence form

Lε(v) := ∂tv−a(x)∇·(M(uε)∇v)+a(x)(∂kM(uε)∂kuε)∂kv−M(uε)∇a(x) ·∇v = fε(uε).

We can now give the Cα estimates for the above systems in the divergence form

Fact 2.3 If we assume

lim sup
ε↘0

sup
PΩ

R

|∇uε| < ∞, (2.4)

then v ∈ Cγ, γ
2 (PΩ

δR;R3) for some γ ∈ (0, 1) and any δ ∈ (0, 1). If the right hand side
fε ∈ Lp(PΩ

R ;R3) with p > 2, we have the following estimate for the mixed Hölder-norm
of v on PΩ

δR

‖v‖
Cγ,

γ
2 (PΩ

δR;R3)
≤ C(fε), (2.5)

where the bound C(fε) depends on the parabolicity constants, δ, sup
PΩ

R

|uε|, ‖fε‖Lp(PΩ
R ) and

also depends on ‖u0‖Cγ(BR
T

∂Ω) if BR
⋂

∂Ω 6= Ø.

If (2.4) holds and ‖fε‖Lp(PΩ
R ) or sup

PΩ
R

|∇uε| are uniformly bounded with respect to

ε > 0, then the estimate (2.5) holds for uε and is uniform in ε > 0. The assumption
sup
PΩ

R

|∇uε| ≤ C however does not include the time derivatives. (2.5) enables us to obtain

bounds on the modulus of continuity with respect to time variable. Thus the modulus
of the continuity of uε on PΩ

δR is bounded from above independent of ε > 0. Therefore
the estimates (2.2) and (2.3) are now uniform in ε > 0.
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2.2 L∞ and Lp bounds for 1
ε2

a(x)(1− |uε|2)
We first derive sup-norm of uε and use the multiplication of (1.2) with −uε to obtain

1
4
∂tρε − 1

2
a(x)4ρε − 1

2
∇a(x)∇ρε +

1
ε2

a(x)ρε = a(x)|∇uε|2 + a(x)
1
ε2

ρ2
ε

where ρε = 1 − |uε|2. On the parabolic boundary, ρε = 1 − |u0|2 = 0. We get ρε ≥ 0
in Ω × R+ by using the maximum principle, i.e. |uε| ≤ 1. In the sequel we try to
derive L∞ and Lp bounds for 1

ε2
a(x)(1− |uε|2). To this aim, we consider the following

auxiliary problem

∂tf − a(x)4f −∇a(x) · ∇f +
1
ε2

a(x)f = a(x)g in PR, (2.6)

|f | ≤ a on ∂PR. (2.7)

The parabolic boundary of PR is denoted as ∂PR = BR(0)×{−R2}⋃
∂BR(0)×[−R2, 0].

Lemma 2.1 Let a > 0, ε ∈ (0, 1), g ∈ C0(PR), with ε2supPR
|g| ≤ a. Let f ∈

C0(PR)
⋂

C2(PR) be a solution of (2.6) and (2.7). Then there exists R0 depending on
m, M , and M1 = max

x∈Ω̄
|∇a(x)| such that for any δ ∈ (0, 1), R ∈ (0, R0) we have

1
ε2
|f | ≤ sup

PΩ
R

|g|+ 2a

ε2
exp(−1

ε
(1− δ2)2R4) on PδR.

Proof Taking w(x, t) = 2a exp[−1
ε (R

2 − x2)(R2 + t)], we have

ε2[∂tw − a(x)4w −∇a(x) · ∇w] + a(x)w

= w[a(x)− ε(R2 − x2)− a(x)4|x|2(R2 + t)2 − a(x)ε · 4(R2 + t)

−ε∇a(x) · 2x(R2 + t)]

≥ w(m− εR2 − 4MR4 − 4εMR2 − 2RεM1R
2).

Therefore there exists R0 depending on m ,M , M1 such that if R ∈ (0, R0), ε ∈ (0, 1)
there holds

ε2[∂tw − a(x)4w −∇a(x) · ∇w] + a(x)w > 0 in PR,

w = 2a on ∂PR.

For f1 = f − ε2 sup
PR

|g| and f2 = f + ε2 sup
PR

|g|, we have |f1| ≤ 2a |f2| ≤ 2a on ∂PR and

ε2[∂tf1 − a(x)4f1 −∇a(x) · ∇f1] + a(x)f1 = ε2a(x)g − a(x)ε2 sup
PR

|g| ≤ 0

≤ ε2[∂tw − a(x)4w −∇a(x) · ∇w] + a(x)w.

Therefore we obtain by comparison principle that

f1 − w ≤ 0 in PR. (2.8)
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Similarly, we have
f2 + w ≥ 0 in PR. (2.9)

Combining (2.8) with (2.9), one gets

−w − ε2 sup
PΩ

R

|g| ≤ f ≤ w + ε2 sup
PΩ

R

|g|,

which yields the desired conclusion

1
ε2
|f | ≤ sup

PΩ
R

|g|+ 1
ε2

w ≤ sup
PΩ

R

|g|+ 2a

ε2
exp(−1

ε
(1− δ2)2R4).

If BR
⋂

Ω 6= Ø and f ≡ 0 on BR
⋂

∂Ω, we still have the local estimate near the
boundary, i.e., on PΩ

δR := (BδR
⋂

Ω)
⋂

(−δ2R2, 0).

Lemma 2.2 Consider a smooth domain Ω ⊂ R2, a > 0, ε ∈ (0, 1), g ∈ C0(PR),
with ε2 sup

PR

|g| ≤ a. Let f ∈ C0(PR)
⋂

C2(PR) be a solution of (2.6) and (2.7) and

f = 0 on ∂Ω
⋂

PR. Then there exist R0, depending on m, M and M1 such that for any
δ ∈ (0, 1), R ∈ (0, R0), we have

1
ε2
|f | ≤ sup

PΩ
R

|g|+ 2a

ε2
exp(−1

ε
(1− δ2)2R4) on PΩ

δR.

In the sequel, we will derive a priori Lp estimates for the equation (2.6) and (2.7).
First we give L1 estimates.

Lemma 2.3 Let Ω ⊂ R2 be bounded smooth domain, a > 0, ε ∈ (0, 1), g ∈ C0(PR).
For any nonnegative function f ∈ C1(Ω× (0, T ))

⋂
C2(Ω× (0, T )) satisfying

∂tf − a(x)4f −∇a(x) · ∇f +
1
ε2

a(x)f ≤ a(x)g in Ω× (0, T ),

f = 0 on (Ω× {0})
⋃

(∂Ω× (0, T )),

there hold
(1) There exists some constant c > 0 only depending on M and m such that

‖ 1
ε2

f‖L1(Ω×(0,T )) ≤ c‖g‖L1(Ω×(0,T )). (2.10)

(2) For any R, ρ > 0 and z0 = (x0, t0) ∈ Ω× (0, T ) with R2 + ρ2 < t0, we have
∫

PΩ
R (z0)

1
ε2
|f |dz ≤ c

∫

PΩ
R+ρ(z0)

(|g|+ c

ρ2
|f |)dz. (2.11)
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Proof of (1) Multiplying the equation (2.6) with f√
f2+δ2

, we obtain:

∂t|f | · |f |√
f2 + δ2

+ a(x) · |∇f |2√
f2 + δ2

(1− f2

f2 + δ2
) +

1
ε2

a(x)
f2

√
f2 + δ2

= a(x)g · f√
f2 + δ2

+ div(a(x)∇f
f√

f2 + δ2
). (2.12)

Integrating (2.12) over Ω × (0, t), letting δ → 0 and using the monotone convergence
theorem, we have

sup
0≤t≤T

∫

Ω
|f(x, t)|dx +

∫ T

0

∫

Ω
a(x)

1
ε2
|f(x, t)|dxdt ≤

∫ T

0

∫

Ω
a(x)|g(x, t)|dxdt,

From the above inequality, we obtain
∫ T

0

∫

Ω

1
ε2
|f(x, t)|dxdt ≤ M

m

∫ T

0

∫

Ω
|g(x, t)|dxdt.

Take C = M
m , we have

‖ 1
ε2

f‖L1(Ω×(0,T )) ≤ c‖g‖L1(Ω×(0,T )).

Proof of (2) Multiplying the equation (2.6) with f√
f2+δ2

(x, t)φ2(x)η(t) where

the cut-off function φ(x) satisfying 0 ≤ φ(x) ∈ C∞(Ω) with sptφ ⊂ BR+ρ(x0) and
φ ≡ 1 on BR(x0), η(t) satisfies η(t) ∈ C∞(R+) with 0 ≤ η(t) ≤ 1, η(t0 − R2 − ρ2) = 1
and η(t) ≡ 1, |∇φ| ≤ c

ρ , |∇2φ| ≤ c
ρ2 and |∂tη| ≤ c

ρ2 , we obtain

∂t(|f |φ2η)
|f |√

f2 + δ2
+ a(x) · |∇f |2φ2η√

f2 + δ2
(1− f2

f2 + δ2
) +

1
ε2

a(x)
f2φ2η√
f2 + δ2

= a(x)g · fφ2η√
f2 + δ2

+ div(a(x)∇f
fφ2η√
f2 + δ2

)

−a(x)∇f
f√

f2 + δ2
2φ∇φη + |f |φ2∂tη. (2.13)

Integrating (2.13) over Ω× (0, t) and letting δ → 0, we get

sup
t0−(R2+ρ2)≤t≤t0

∫

BR
Ω

|f(x, t)|dx +
∫

PΩ
R

a(x)
1
ε2
|f(x, t)|dxdt

≤
∫

PΩ
R+ρ

(a(x)|g(x, t)|+ c

ρ2
|f(x, t)|)dxdt.

Recalling the assumption m = min
x∈Ω

|a(x)| ≤ a(x) ≤ max
x∈Ω

|a(x)| = M , we have

∫

PΩ
R (z0)

1
ε2
|f |dz ≤ c

∫

PΩ
R+ρ(z0)

(|g|+ c

ρ2
|f |)dz,

where c depends on the maximum and minimum of a(x) and max
Ω̄
|∇a(x)|.



No.1 Partial regularity for the 2-dimensional weighted Landau-Lifshitz flow 19

Lemma 2.4 Let Ω ⊂ R2 be as above, g ∈ L1
⋂

Lp(Ω× (0, T )) for p ≥ 2, and ε > 0.
For any nonnegative function f ∈ C1(Ω× (0, T ))

⋂
C2(Ω× (0, T )) satisfying

∂tf − a(x)4f −∇a(x) · ∇f +
1
ε2

a(x)f ≤ a(x)g in Ω× (0, T ),

f = 0 on (Ω× {0})
⋃

(∂Ω× (0, T )),

∀δ ∈ (0, 1), z0 = (x0, t0) ∈ Ω× (0, T ] with 0 < R2 < t0, we have

‖ 1
ε2

f‖Lp(PΩ
δR(z0)) ≤ c1‖g‖Lp(PΩ

δR(z0)) + c2ε
2/p, (2.14)

where c1 = c1(p,m, M), c2 = c2(‖g‖Lp(PΩ
R ), ‖f‖L2p−1(PR(z0)), p, δ, R,m, M).

Proof Multiplying the differential inequality by f |f |2s−2φ2η, where s ≥ 1, taking
cut-off functions φ and η as in the proof of Lemma 2.3, we have:

1
2s

∂t(|f |2sφ2η) + a(x)
2s− 1

s2
|∇|f |s|2φ2η +

1
ε2

a(x)|f |2sφ2η

= div(a(x)∇ff |f |2s−2φ2η) +
1
2s
|f |2sφ2∂tη + a(x)gf |f |2s−2φ2η

−a(x)∇|f ||f |2s−12∇φφη. (2.15)

We now estimate the last two terms of (2.15). By Young inequality we have

1
2s

∂t(|f |2sφ2η) + a(x)
2s− 1
2s2

|∇|f |s|2φ2η +
1

2ε2
1
2s

a(x)|f |2sφ2η

≤ div(a(x)∇ff |f |2s−2φ2η)− a(x)(2ε2)2s−1 1
2s
|g|2sφ2η

+
2

2s− 1
|f |2s[a(x)|∇φ|2η + φ2|∂tη|]. (2.16)

Setting p = 2s, multiplying (2.16) by (2s) · ( 1
ε2

)p−1 and integrating over PΩ
R+ρ, we get,

for p ≥ 2,
∫

PΩ
R

(
1
ε2

)p|f |pdz ≤ C(p,m, M){
∫

PΩ
R+ρ

|g|p + ε2
c

ρ2

∫

PΩ
R+ρ

(
1
ε2

)p|f |p}dz. (2.17)

We proceed by using iteration technique as Lemma 3.9 in [9] to finish the proof.

2.3 Higher interior estimates

In this section, we prove that the higher derivatives of uε and 1
ε2

a(x)(1 − |uε|2)
are locally and uniformly bounded in the interior point under the uniform smallness
condition (1.7), where uε are the solutions to approximating equation.
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Lemma 2.5 Let uε be a solution of (1.2) and assume

lim sup
ε↘0

sup
PΩ

R

gε(uε) ≤ C0, (2.18)

where BR(x0) ⊂ Ω, 0 < R2 < t0. Then for any δ ∈ (0, 1), we have

lim sup
ε↘0

‖uε‖Ck(PδR(z0)) ≤ Ck and lim sup
ε↘0

‖ 1
ε2

(1− |uε|2)‖Ck(PδR(z0)) ≤ C̃k,

for all integers k ≥ 0. The constants Ck and C̃k depend on C0, k, R, δ > 0, ‖a(x)‖Ck(Ω).

Proof We prove this lemma by induction. If k=0, we have proved ‖uε‖L∞ ≤ 1.
Using the assumption (2.18), we obtain: sup

PR

√
a(x)|∇uε| ≤ C0, and 1

ε2
a(x)(1− |uε|2)2

≤ C0. Therefore g = |∇uε|2 + 1
ε2

ρ2
ε can be controlled by a multiple of C0(m). Lemma

2.1 implies ‖ 1
ε2

(1 − |uε|2)‖L∞ ≤ C̃0. For k = 1, since the conclusions for k = 0
hold, i.e., lim sup

ε↘0
‖uε‖Lp(PδR(z0)) ≤ Ck and lim sup

ε↘0
‖ 1

ε2
(1− |uε|2)‖Lp(PδR(z0)) ≤ C̃k, using

Cα, α
2 estimate of strongly parabolic systems in divergence form, we know there exists

γ ∈ (0, 1), such that ‖uε‖Cγ,
γ
2
≤ C(‖ 1

ε2
(1− |uε|2)‖Lp). From Lemma 2.1, we know that

‖ 1
ε2

1− |uε|2‖L∞ ≤ C0. Using W 2,1
p estimate, we get

‖uε‖W 2,1
p (PδR)

≤ CP (Ω, T, wuε)(‖
1
ε2

a(x)(1− |uε|2)‖Lp(PR) + ‖uε‖Lq(PR)),

for any 1 ≤ q ≤ p. From Sobolev inequality, we have when p > 2 + 2 = 4,

‖∇uε‖Cα(PδR) ≤ C(m, p, α, δ)‖uε‖W 2,1
p (PδR)

.

We can take derivatives in (2.6) with respect to x to obtain, ∇(a(x)[|∇uε|2 + 1
ε2

(1 −
|uε|2)2]) ∈ Lp. Using (2.6) and Lemma 2.2, we get ∇( 1

ε2
(1 − |uε|2)2) ∈ Lp. Taking

derivatives with respect to x in (1.2), we can get uε ∈ W 3,1
p . By Sobolev embedding

theorem, we know that uε ∈ C1,1. Using (2.6) again, we get 1
ε2

(1 − |uε|2) ∈ C1,1. By
the standard bootstrap argument, we complete the proof.

The following Lemma states that the boundedness of (2.18) is guaranteed by the
smallness of the energy. We prove that the energy density is uniformly bounded in the
regularity points of uε.

Lemma 2.6 There are constants C1 > 0, ε0 > 0, R0 ∈ (0,min{1,
√

t0}) such that
for the solution uε of (1.2) satisfying

sup
t0−R0

2<t<t0

∫

BR0
(x0)

gε(uε(x, t))dx < ε0,

there holds, ∀δ ∈ (0, 1)

sup
PδR0

(z0)
gε(uε) ≤ C

(1− δ)2R2
0

,

where x0 ∈ Ω and BR0 ⊂ Ω.
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Proof Without loss of generality, let (x0, t0) = 0. We set PR := PR(0). For fixed
ε > 0, since the solution uε of (1.2) is smooth, there exist σε ∈ [0, R0) such that

(R0 − σε)2 sup
Pσε

gε = max
0≤σ≤R0

(R0 − σ)2 sup
Pσ

gε

and there is some zε = (xε, tε) ∈ PR(z0) ∈ Pσε , such that eε := gε(uε(zε)) = sup
Pσε

gε.

Setting ρε := 1
2(R0 − σε) such that Pρε(zε) ⊂ Pσε+ρε ⊂ PR0 , we have:

sup
Pρε (zε)

gε ≤ 1
[R0 − (σε + ρε)2]

[R0 − (σε + ρε)2] sup
Pρε+σε (zε)

gε ≤ 4eε.

Setting rε =
√

eερε, we can consider a rescaled map vε = v(y, s) = u(xε+e
− 1

2
ε y, tε+e−1

ε s),
(y, s) ∈ Prε Thus vε satisfies the equation (1.2) with ε̃ :=

√
eεε. By computation,

g√eεε(vε)(0, 0) = 1 and sup
Prε

g√eεε(vε) = 4. We now claim that rε ≤ 2. If it holds,

we can use the definition of rε and set σ = δR0 to finish the proof. We prove it by
contradiction argument. Suppose rε > 2. Since BR0(x0) ⊂ Ω, all the derivatives of vε

are then bounded on P1 independently of ε > 0. Indeed, if lim inf
ε↘0

√
eεε > 0, from the

equation
1
2
∂tvε − 1

2
vε × ∂tvε −∇ · (a(x)∇vε) =

1
ε̃2

a(x)(1− |vε|2)vε,

the claim holds by using the Lp estimates and the fact that |vε| ≤ 1. If lim inf
ε↘0

√
eεε = 0,

then the claim follows from the fact that sup
Prε

g√eεε ≤ 4 and Lemma 2.5. In particular,

all the derivatives of vε are uniformly bounded. Thus
√

∂tgε̃(vε), |∇gε̃(vε)| ≤ C < ∞ in P1.

Therefore, if we choose r0 = min{ 1
4C , 1}, we have

|gε̃(vε)(x, t)− gε̃(vε)(0, 0)|= |∂tgε̃(vε)(x′, t′)||t|+ |∇gε̃(vε)(x′, t′)||x| < 1
2
.

Using the differential mean-value theorem, we get

gε̃(vε)(x, t) > gε̃(vε)(0, 0)− 1
2

>
1
2
,

which implies

1 = g√eεε(vε)(0, 0) ≤ 2
πr2

0

sup
−r2

0<s<0

∫

Br0

g√eεε(vε)dy

≤ C∗ sup
−(

r2
0

eε
+σ2

ε )<t<0

∫

B r0√
eε

+σε(x0)
(xε)

gε(uε)dx. (2.19)

Setting ε1 = min{1
2 , 1

2C∗ }, since rε =
√

eερε > 2 > r0, we get r0√
eε

+ σε ≤ ρε + σε ≤ R0

and ( r0√
eε

)2 +σ2
ε ≤ (ρε +σε)2 ≤ R2

0. Hence, the right hand side of (2.19) ≤ ε1 ≤ 1
2 . This

leads to a contradiction. Therefore, rε ≤ 2.
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2.4 Boundary estimates

In this subsection, we will derive local boundary sup-estimates for the energy den-
sity, thus give the W 2,1

p −estimates for uε and Lp−estimates for 1
ε2

a(x)(1 − |uε|2) near
the boundary.

Lemma 2.7 Let uε be a solution of (1.2) and (1.3) with u0 ∈ W 1,2(Ω; S2)
⋂

W 2,P

(∂Ω; S2). Assume

sup
PΩ

R

gε(uε) ≤ C0 (2.20)

and BR(x0)
⋂

∂Ω 6= Ø, 0 < R2 < t0. Then for any δ ∈ (0, 1), we have

‖uε‖W 2,1
p (PΩ

δR(z0))

≤ C1

(
‖ 1
ε2

(1− |uε|2)‖Lp(PΩ
R (z0)) + ‖uε‖L2(PΩ

R (z0)) + ‖u0‖
W

2− 1
p ,p

(BΩ
R(z0)

T
∂Ω)

)
,

where the constant C1 depends on C0, δ, R, p, Ω, and ‖a(x)‖L∞(Ω). Furthermore, for
any δ ∈ (0, 1) we have

‖ 1
ε2

(1− |uε|2)‖Lp(PΩ
δR(z0))≤C(p, ‖a(x)‖L∞)‖gε‖Lp(PΩ

R ))

+ε
2
p C(‖gε‖Lp(PΩ

R ), p, δ, R, ‖a(x)‖L∞(Ω))

and

‖ 1
ε2

(1− |uε|2)‖L∞(PΩ
δR(z0)) ≤ 4C0 + Oδ(ε),

where ε 7→ Oδ(ε)is a function that depends on δ ∈ (0, 1) and lim
ε↘0

ε−kOδ(ε) = 0 for all

k ∈ N . All the constants also depend on the parabolic constants.

Proof The assumption sup
PΩ

R

gε(uε) ≤ C0 implies that lim sup
ε↘0

sup
PΩ

δR

‖∇uε‖ ≤ C0(m) <

∞. Therefore from Cα estimate, there exists γ ∈ (0, 1) such that ‖uε‖Cγ,
γ
2 (PΩ

δR)
≤ C(fε).

Furthermore sup
PΩ

R

1
ε2

a(x)(1− |uε|2)2 ≤ C. Therefore g = 1
2a(x)(|∇uε|+ 1

ε2
(1− |uε|2)2) ∈

Lp(PΩ
R ). From W 2,1

p estimate, we have

‖uε‖W 2,1
p (PΩ

δR(z0))
≤C1

(
‖ 1
ε2

a(x)(1− |uε|2)‖Lp(PΩ
R (z0))

+‖uε‖L2(PΩ
R (z0)) + ‖u0‖

W
2− 1

p ,p
(BΩ

R(z0)
T

∂Ω)

)
.

From Lemma 2.4, we have

‖ 1
ε2

(1− |uε|2)‖Lp(PΩ
δR(z0))≤C(p, ‖a(x)‖L∞)‖gε‖Lp(PΩ

R )

+ε
2
p C(‖gε‖Lp(PΩ

R ), p, δ, R, ‖a(x)‖L∞(Ω)).
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From Lemma 2.2, we have

‖ 1
ε2

(1− |uε|2)‖L∞(PΩ
δR(z0)) ≤ sup

PΩ
R

|g(uε)|+ 2a

ε2
exp(−1

ε
(1− δ2)2R4).

Note that

g(uε) = [|∇uε|2 +
1
ε2

(1− |uε|2)2]≤4[
1
2
|∇uε|2 +

1
4ε2

(1− |uε|2)2] + Oδ(ε)

≤C0(m) + Oδ(ε),

where lim
ε→0

ε−k · 2a
ε2

exp(−1
ε (1− δ2)2R4 = 0, ∀k ∈ N . The lemma follows.

The following Lemma states that the boundedness of (2.20) can be verified if the
energy density is uniformly bounded in the regularity points of uε.

Lemma 2.8 Let uε be a solution to (1.2) and (1.3) with u0 ∈ W 1,2(Ω; S2)
⋂

C2

(∂Ω; S2). There are constants C0 = C0(‖u0‖C2(∂Ω), E0,Ω) and ε0 = ε0(‖u0‖C2(∂Ω),
E0,Ω) > 0, such that if for some z0 = (x0, t0) and R0 ∈ (0,min{1,

√
t0}),

lim sup
ε↘0

sup
t0−R0

2<t<t0

∫

BR0
(x0)

T
Ω

gε(uε(x, t))dx < ε0,

then for any δ ∈ (0, 1), we have

lim sup
ε↘0

sup
PΩ

δR0
(z0)

gε(uε) ≤ C

(1− δ)2R2
0

.

The proof is similar to the interior case, one can refer to Theorem 3.4 in [9].

3. Energy Estimates

In this section, we will prove that the total energy of the smooth weighted flow of
(1.2) and (1.3) is decreasing. Recalling that in the first section we have defined the
total energy Gε(uε(t)) :=

∫
Ω gε(uε(x, t))dx and the local energy Gε(uε(t), BΩ

R(x0)) :=∫
BR(x0)

T
Ω gε(uε(x, t))dx respectively.

Lemma 3.1 Let uεbe a solution of (1.2) and (1.3). Then, we have

Gε(uε(T ) +
1
2

∫ T

0

∫

Ω
|∂tuε|2dxdt = Gε(uε(0) = E(u0) = E0. (3.1)

Proof We multiply the equation (1.2) by ∂tuε and integrate over Ω to get
∫

Ω

1
2
|∂tuε|2dx +

∂

∂t

∫

Ω

1
2
a(x)|∇uε|2 = − ∂

∂t

∫

Ω

1
4ε2

a(x)(1− |uε|2)2.
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Integrating the above equality over [0, T] leads to

∫ T

0

∫

Ω

1
2
|∂tuε|2dxdt +

∫

Ω
a(x)[

1
2
|∇uε|2 +

1
4ε2

(1− |uε|2)2](T )

=
∫

Ω
a(x)[

1
2
|∇u0|2 +

1
4ε2

(1− |u0|2)2] = Gε(uε(0)) := E0.

(3.1) follows.
The following Lemma deals with the estimate for the local energy of the flow.

Lemma 3.2 Let uε be a solution of (1.2) and (1.3). Then, for 0 ≤ T1 < T2 we have

Gε(uε(T2), BΩ
R(x0)) ≤ Gε(uε(T1), BΩ

2R(x0)) +
C

R2

∫ T2

T1

Gε(uε(t), BΩ
2R(x0))dt. (3.2)

Proof We multiply the equation (1.2) by ∂tuεφ
2, where φ is a cut-off function sat-

isfying φ(x) ∈ C∞
c (Ω), 0 ≤ φ(x) ≤ 1, φ ≡ 1 on BR(x0)

⋂
Ω; φ ≡ 0 on (B2R(x0)

⋂
Ω)C ,

|∇φ| ≤ C
R2 , and then integrate over BΩ

2R = B2R(x0)
⋂

Ω to derive
∫

BΩ
2R

1
2
|∂tuε|2φ2dx−

∫

BΩ
2R

∇ · (a(x)∇uε) · ∂tuεφ
2dx

=
∫

BΩ
2R

1
ε2

a(x)(1− |uε|2)uε · ∂tuεφ
2dx.

Integrating by parts, we have,
∫

BΩ
2R

1
2
|∂tuε|2φ2dx +

∂

∂t

∫

BΩ
2R

1
2
a(x)|∇uε|2φ2dx +

∂

∂t

∫

BΩ
2R

1
4ε2

a(x)(1− |uε|2)2φ2dx

= −2
∫

BΩ
2R

a(x)∇uε∂tuε∇φφdx

≤ 1
2

∫

BΩ
2R

|∂tuε|2φ2dx + 8
∫

BΩ
2R

a(x)2|∇uε|2|∇φ|2dx.

Integrating over [T1, T2], using the assumption that a(x) ≤ max
x∈Ω

|a(x)| = M and the

property of the cut-off function φ, we get

Gε(uε(T2), BΩ
R(x0)) ≤ Gε(uε(T1), BΩ

2R(x0)) +
C

R2

∫ T2

T1

Gε(uε(t), BΩ
2R(x0))dt.

The lemma follows.

Lemma 3.3 ∀η > 0, ∃T0 > 0, R0 > 0, such that ∀x0 ∈ Ω and ∀ε > 0, there holds

sup
0≤t≤T0

Gε(uε(t), BΩ
R0

(x0)) ≤ η. (3.3)
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Proof For each fixed η > 0, using the absolute continuity of integration, we can
choose R0 small enough to guarantee

Gε(uε(0), BΩ
2R0

(x0)) =
∫

B2R0
(x0)

T
Ω

1
2
a(x)|∇u0|2dx ≤ η

2
.

Setting T1 = 0, T2 = T0 = R2
0η

2CE0
in (3.2) and choosing T0 small enough we have

Gε(uε(t), BΩ
R0

(x0))≤Gε(uε(0), BΩ
2R0

(x0)) +
C

R2
0

∫ t

0
Gε(uε(t), BΩ

2R0
(x0))dt

≤ η

2
+

C

R2
0

T0E0 ≤ η.

Taking supremum for t over [0, T0], one has sup
0≤t≤T0

Gε(uε(t), BΩ
R0

(x0)) ≤ η. (3.3) is

proved.

4. Hausdorff-Measure Estimate for Singularity

First of all, it follows from energy estimates (3.1) and (3.2) that for any 0 ≤ s < t

Gε(uε(t), BΩ
R(x0)) ≤ Gε(uε(s), BΩ

2R(x0)) +
C(t− s)E0

R2
. (4.1)

Define δ0 := ε0
2CE0

, where ε0 is the constant from (2.6) and (2.8). We may assume
0 < δ0 < 1, otherwise we can choose a larger C.

Lemma 4.1 Let uε be a solution of (1.2) and (1.3) with u0 ∈ W 1,2(Ω; S2)
⋂

C2

(∂Ω; S2). Then the following assertions are equivalent:
(1) z0 = (x0, t0) ∈ Reg({uε}ε>0).
(2) ∃δ, R > 0, such that lim sup

ε↘0
sup

t0−δ<t<t0

Gε(uε(t), BΩ
R(x0)) < ε0.

(3) ∃δ > 0, such that lim
R↘0

lim sup
ε↘0

sup
t0−δ<t<t0

Gε(uε(t), BΩ
R(x0)) = 0.

(4) ∃R > 0, such that lim sup
ε↘0

1
R2

∫ t0
t0−R2

∫
BΩ

R(x0) gε(uε)dxdt < 1
4δ0ε0.

(5) ∃δ,R > 0, such that lim sup
ε↘0

sup
t0−δ<t<t0+δ

Gε(uε(t), BΩ
R(x0)) = 0

Sketch of the proof we can easily prove them by using the energy estimates,
Lemma 2.6 and 2.8 which characterize the supnorm of energy density under the small-
ness energy condition. For the details, we refer to [9].

Corollary 4.1 Let uε be a solution of (1.2) and (1.3) with u0 ∈ W 1,2(Ω; S2)
⋂

C2

(∂Ω; S2). Let {εi}i be a sequence with εi ↘ 0 as i →∞. Then the following holds
(1) Reg({uε}ε) and Reg({uεi}i) are open in Ω×R+.
(2) There exists some T0 > 0, such that Ω× (0, T0) ⊂ Reg({uε}ε).
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Proof of Corollary 4.1
(1) follows from Lemma 4.1 (5) which is the characterization of regularity point.
(2) follows from Lemma 3.1 and Lemma 3.3. We can set η = ε0 where ε0 is

determined in Lemma 2.6 and Lemma 2.8 to obtain a corresponding T0. Then Lemma
4.1(2) implies that T0 satisfies the conclusion. This completes the proof.

Set QR(z) := BR(x)×(t−R2, t+R2) for z = (x, t). LetH2 denote the 2-dimensional
parabolic Hausdorff measure.

Using the Vitali’s Covering theorem [14], we can give the Hausdorff measure esti-
mate for singularity set.

Theorem 4.1 Let uε be a solution of (1.2) and (1.3) with u0 ∈ W 1,2(Ω; S2)
⋂

C2

(∂Ω; S2). Let {εi}i be a sequence with εi ↘ 0 as i →∞. Then the following hold
(1) S({uε}ε) has locally finite two-dimensional parabolic Hausdorff-measure. More

precisely there is a constant K1 = K1(E0, ε0) > 0, such that for any compact interval
I ⊂ R+, H2(S({uε}ε)

⋂
(Ω× I)) ≤ K1|I|.

(2) There is a constant K2 = K2(E0, ε0) > 0, such that for any t > 0, the set
St(S({uε}ε) := S(S({uε}ε)

⋂
(Ω× {t}) consist of at most K2 points.

Proof The proof is similar to Proposition 4.3 in [9].

5. Passing to the Limits

In this section, we prove

Theorem 5.1 Let uε be a solution of (1.2) and (1.3) with u0 in W 1,2(Ω; S2)
⋂

W
3
2
,2

(∂Ω; S2). Then there is at least one sequence {uεi}i and u∗ ∈ W 1,2
loc (Ω×R+;S2)

⋂
L∞(R+;

W 1,2(Ω; S2)) such that uεi ⇀ u∗ weakly in W 1,2
loc (Ω×R+;R3) and weak* in L∞(R+;W 1,2

(Ω; R3)). Moreover there hold
(1) For any such sequence {uεi}i, we have lim

i→∞
uεi = u∗ and 1

ε2
(1−|uε|2) → |∇u∗|2

in C∞(Reg({uεi}i)
⋂

(Ω×R+)).
(2) u∗ is a smooth solution of (1.1) in Reg({uεi}i)

⋂
(Ω×R+) and a global distri-

butional solution in W 1,2
loc (Ω × R+)

⋂
L∞(R+;W 1,2(Ω; R3)). Furthermore, u∗ satisfies

the initial and boundary condition in the sense lim
R↘0

u∗(·, t) = u0 in W 2,2(Ω; R3) and

u∗|∂Ω = u0|∂Ω as a W 2,2(Ω; R3)−trace for a.e. t > 0 respectively.

Proof From the local energy estimates in Lemma 3.2, we see that {uεi} is uni-
formly bounded in W 1,2

loc (Ω×R+)
⋂

L∞(R+;W 1,2(Ω; R3)). From the weak compactness,
and using the diagonal method, we can see that, there is u∗ ∈ W 1,2

loc (Ω×R+;R3)
⋂

L∞(R+;
W 1,2(Ω; R3)), and a subsequence {εi}i, such that uεi ⇀ u∗ weakly in W 1,2

loc (Ω×R+;R3)
and weakly* in L∞(R+;W 1,2(Ω; R3))

(1) From Lemma 2.6, we can see that ∀z0 ∈ Reg({uεi}i)
⋂

(Ω×R+), sup
PδR(z0)

gε(uε) ≤
C1

(1−δ)2R2
0
. By Lemma 2.5, we obtain lim

i→∞
uεi = u∗ in PδR(z0). Since the point z0 is

arbitrary, we get lim
i→∞

uεi = u∗ in C∞(Reg({uεi}i)
⋂

(Ω×R+);R3).
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(2) We multiply the equation (1.2) by uεi to get

uεi ×
1
2
∂tuεi − uεi × (

1
2
uεi × ∂tuεi)− uεi ×∇ · (a(x)∇uεi) = 0.

Using Lemma 2.5 that 1
ε2i

(1−|uεi |2) is uniformly bounded in Reg({uεi}i)
⋂

(Ω×R+),

we get (1 − |uεi |2) → 0 smoothly, i.e. |uε∗(x, t)| = 1 in Reg({uεi}i)
⋂

(Ω × R+). Now
from

−→a × (
−→
b ×−→c ) = (−→a · −→c )

−→
b − (−→a · −→b )−→c (5.1)

and the fact that |u∗(x, t)| = 1, we can let εi approach to 0 to obtain

1
2
u∗ × ∂tu∗ − 1

2
u∗ × (u∗ × ∂tu∗)− u∗ ×∇ · (a(x)∇u∗) = 0

in the sense of distribution. It is easy to get

1
2
∂tu∗ − 1

2
u∗ × ∂tu∗ −∇ · (a(x)∇u∗) = a(x)|∇u∗|2u∗. (5.2)

From the equation (1.2)

1
2
∂tuεi −

1
2
uεi × ∂tuεi −∇ · (a(x)∇uεi) =

1
ε2i

a(x)(1− |uεi |2)uεi ,

we can see that the left side the above equation converges to that of (5.2) and corre-
spondingly obtain

1
ε2i

(1− |uεi |2) → |∇u∗|2 in C∞(Reg({uεi}i)
⋂

(Ω×R+)).

In the sequel, we will rigorously prove that u∗ is the distributional W 1,2
loc

⋂
L∞(W 1,2)–

solution of (1.1)

1
2
∂tu∗ − 1

2
u∗ × ∂tu∗ −∇ · (a(x)∇u∗) = a(x)|∇u∗|2u∗ in Ω×R+.

Note that the sequence {uεi}i converges weakly in W 1,2(Ω×R+;S2) and smoothly
on Reg({uεi}i)

⋂
(Ω × R+). Furthermore, since St({uεi}i) := S({uεi})

⋂
(Ω × R+) is

finite for all t ≥ 0, we have both uεi → u∗ pointwise a.e. in Ω×R+ and uεi(·, t) → u∗(·, t)
pointwise a.e. in Ω for all t ∈ R+.

From the energy estimates in Lemma 3.1, we have
∫∞
0

∫
Ω |∂tuεi |2dxdt ≤ E0. By

Fatou’s Lemma, the complement of F:= {t ≥ 0| lim inf
εi↘0

∫
Ω |∂tuεi |2(x, t)dx < ∞} has

measure zero. For t0 ∈ F , there is a subsequence, still denoted by uεi , such that
∂tuεi(·, t0) ⇀ ∂tu∗(·, t0) weakly in L2(Ω; R3). By the local energy estimate, we may
assume that, for the same subsequence, we also have ∂tuεi(·, t0) ⇀ ∂tu∗(·, t0) weakly
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in W 1,2(Ω; S2). By the uniqueness of the limit, the whole sequence converges. Hence,
u∗(·, t0) ∈ W 1,2(Ω; S2) and ∂tu∗(·, t0) ∈ L2(Ω; R3) for all t0 ∈ F .

Moreover, since St0({uεi}i) consists of finitely many points, it has zero 2-capacity
in R2, i.e.

Cap2(S
t0({uεi}i)) = 0.

Therefore, from the definition of capacity, there exists a sequence {ηk}k = {ηk,q}k ⊂
C∞

c (R2) such that ηk(x) = 1, ∀ x ∈ St0({uεi}i) and ‖ηk‖W 1,2(R2) → 0 as k → ∞.
For φ ∈ C∞

c (Ω), we multiply the equation (1.2) by (1 − ηk(t))φ(x), with its support
contained in Reg({uεi}i). After passing to the limit k →∞ and using the property of
the test function η, we see that for any t ∈ F :

∫

Ω

1
2
∂tu∗(x, t)φ(x)dx− 1

2
u∗(x, t)× ∂tu∗(x, t)φ(x) + a(x)∇u∗(x, t)∇φ(x)dx

=
∫

Ω
a(x)|∇u∗|2u∗(x, t)φ(x)dx.

The above equation holds for a.e. t ≥ 0. On the other hand, we have u∗ ∈ W 1,2(Ω ×
[0, t];S2) for any t ≥ 0. Therefore the both sides of the above equation are locally
integrable on R+. If multiplying above equation by ψ ∈ C∞

c [0,∞) and integrating over
R+, noticing that linear combinations of Σkakφk(x)ψk(t) with φk(x) ∈ C∞

c (Ω) and
ψk(t) ∈ C∞

c ([0,∞)) being dense in C∞
c (Ω× [0,∞)), we therefore get:

∫ ∞

0

∫

Ω

1
2
∂tu∗(x, t)φ(x, t)dx− 1

2
u∗(x, t)× ∂tu∗(x, t)φ(x, t) + a(x)∇u∗(x, t)∇φ(x, t)dxdt

=
∫ ∞

0

∫

Ω
a(x)|∇u∗|2u∗(x, t)φ(x, t)dxdt,

for any φ(x, t) ∈ C∞
c (Ω × [0,∞)). Thus we have proved that u∗ is a distributional

solution to (1.1). We still need to verify that u∗ satisfy the initial and boundary
condition. Now the equation can be written as

−a(x)4u∗(·, t0) = a(x)|∇u∗|2u∗(·, t0) + f,

where

f = −1
2
∂tu∗(·, t0) +

1
2
u∗ × ∂tu∗(·, t0) +∇a(x)∇u∗(·, t0) ∈ L2(Ω; R3).

By a regularity result due to T.Rivière (see [15]), we have u∗(·, t0) ∈ W 2,2(Ω; S2) if
u0 ∈ W

3
2
,2(∂Ω; S2)

⋂
W 2,2(Ω; S2). This implies u∗(·, t)|∂Ω = u0|∂Ω as a W 2,2−trace for

any t ∈ F . As for the initial condition, we have

lim
t↘0

u∗(·, t) = 0 in W 1,2(Ω; S2).
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As a matter of fact, it follows from the following commutative diagram

uε(x, t) −→ u∗(x, t) as ε ↘ 0 in C∞(Reg({uε})
⋂

(Ω×R+))

↓ t → 0 ↓ t → 0

uε(x, 0) −→ u0(x) as ε ↘ 0 in C∞,

where u0 ∈ W 1,2
⋂

W
3
2
,2(∂Ω) is the boundary value of u∗ ∈ W 2,2 in the trace sense.

Thus we have proved the statement (2) of the theorem.

6. Final Remark

In Section 5, we have proved that the singular set has locally finite 2-D Hausdorff
measure. In fact, we can prove as in corollary 4.7 in [9] that the solution u∗ to (1.1) is
indeed a Chen-Struwe solution. The solution is regular away from finitely many points.

References

[1] Zhou Y L, Guo B L. Weak solution systems of ferromagnetic chain with several variables.
Science in China, 1987, A30: 1251-1266.

[2] Zhou Y L, Guo B L, Tan S. Existence and uniqueness of smooth solution for system of
ferromagnetic chain. Scientia Sinica, Ser A, 1991, 34(2): 157-166.

[3] Guo B L, Hong M C. The Landau-Lifshitz equations of the ferromagnetic spin chain and
harmonic maps. Calc. Var. PDE., 1993, 1: 311-334.

[4] Chen Y, Struwe M. Existence and partial regularity for the heat flow for harmonic maps.
Math. Z., 1989, 201: 83-103.

[5] Chen Y, Ding S, Guo B. Partial regularity for two dimensional Landau-Lifshitz equations.
Acta Mathematics Sinica, New S, 1998 July, 14(13): 423-432.

[6] Liu X. Partial regularity for the Landau-Lifshitz system. Calc. Var., 2004, 20(2): 153-173.
[7] Ding S, Guo B. Hausdorff measure of the singular set of Landau-Lifshitz equations with a

nonlocal term. Comm. Math. Phys., 2004, 250(1): 95-117.
[8] Wang C. On Landau-Lifshitz equation in dimensions at most four. To appear.
[9] Harpes P. Partial compactness for the 2-D Landau-Lifshitz flow. EJDE, 2004, (90): 1-24.

[10] Ding S, Guo B, Su F. Measure-valued solutions to the strongly degenerate compressible
Heisenberg chain equations. Journal of Phys. Math., 1999, 40: 1153-1162.

[11] Ding S, Guo B, Su F. Smooth solution for one-dimensional inhomogeneous Heisenberg
chain equations. Proceedings of the Royal Society of Edinburgh, 1999, 129A: 1171-1184.

[12] Lin J, Ding S. Smooth solution to the one dimensional inhomogeneous non-automorphic
Landau-Lifshitz equation. Proc.R.Soc.A, 462,2006: 2397-2413.

[13] Ladyzenshaya O A, Solonnikov V A, Ural’ceva N N. Linear and Quasi-linear Equations of
Parabolic Type. Rhode Island: American mathematical Society Providence, 1968.

[14] Evans L C, Gariepy R F. Measure Theory and Fine Properties of Functions. Studies in
Advances Math. CRC press, 1992.

[15] Rivière T. Flot des applications harmoniques en dimension deux. in Applications har-
moniques entre varietes: These de l′universite Paris 6 1993.


