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1. Introduction

This paper concerns with the Cauchy problem for the following p-Laplacian equation
with point source

∂u

∂t
= D(|Du|p−2Du) + δ(x), (x, t) ∈ Q, (1.1)

u(x, 0) = 0, x ∈ R, (1.2)

where δ(x) is the Dirac measure, p ≥ 2, D =
∂

∂x
, Q = R× (0,+∞), R = (−∞,+∞).

The equation (1.1) is an important degenerate diffusion equation, which can be used
to describe many phenomena in nature such as filtration and dynamics of biological
groups and so on. During the past years, there were a tremendous amount of papers
devoted to such kinds of equations without singular sources. However, as we know, the
investigation about the equations with measure data is quite fewer. For the case p = 2,
in [1] Li Huilai proved the existence of the solutions to parabolic equations with measure
data, and in [2] Pang Zhiyuan, Wang Yaodong and Jiang Lishang studied the optimal
control problems for semilinear diffusion equations with Dirac measure. F. Abergel,
A. Decarreau and J. M. Rakotoson [3] dealt with a class of equations with measure
data, and studied the existence and uniqueness of the solutions of the initial boundary
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value problem in a bounded domain. Yuan Hongjun and Wu Gang [4] investigated
the porous medium equation with Dirac measure and gave the existence of the weak
solutions for Cauchy problem. In 1997, Lucio Boccardo, Andrea Dall’Aglio, Thierry
Gallouët and Luigi Orsina [5] studied the initial boundary value problem for a class of
nonlinear parabolic equations with measure data in general form in bounded domains.

In this paper, we deal with the Cauchy problem for one-dimensional p-Laplacian
equation with point source, which is quite different from the initial boundary value
problem in a bounded domain. Just as did in [5], we should first make an approximation
of the Dirac measure. However, based on our approach technique, we require a C∞–
approximation rather than in Lq norm. Then we approximate the Cauchy problem by
a sequence of bounded domains of the form QR,T = (−R, R)× (0, T ). Finally, because
of the degeneracy, we use parabolic regularization to approach the equation. Based
on BV estimates, Lp–type estimates and weighted energy estimates, we establish the
existence and uniqueness of continuous solutions of the problem (1.1), (1.2). Precisely,
we have the following result

Theorem 1.1 The Cauchy problem (1.1), (1.2) admits one and only one contin-
uous solution with compact support.

By the continuous solution, we mean the following

Definition 1.1 A nonnegative function u : Q 7−→ R is said to be a continuous
solution of the Cauchy problem (1.1), (1.2), if for any T ∈ (0,+∞), u ∈ L∞(QT ) ∩
L∞(0, T ;W 1,p(R)) ∩BV (QT ) and the following integral equalities

−
∫∫

QT

u
∂ϕ

∂t
dxdt = −

∫∫

QT

|Du|p−2DuDϕdxdt +
∫ T

0
ϕ(0, t)dt, ∀ϕ ∈ C∞

0 (QT ),

(1.3)

and

ess lim
t→0+

∫

R
ψ(x)u(x, t)dxdt = 0, ∀ψ ∈ C∞

0 (R), (1.4)

hold, where QT = R× (0, T ).

2. Proof of the Main Result

Just as mentioned above, to discuss the existence of continuous solutions of the
problem (1.1), (1.2), we first consider the regularized problem

∂u

∂t
= D

((
|Du|2 +

1
n

)(p−2)/2
Du

)
+ δε(x), (x, t) ∈ QR,T , (2.1)

u(x, 0) = 0, x ∈ (−R, R), (2.2)
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u(±R, t) = 0, t ∈ (0, T ), (2.3)

where QR,T = (−R, R)× (0, T ), R ≡ R(T ) is a properly large enough positive constant
depending only on T , and

δε(x) =
1
ε

j
(x

ε

)
, 0 < ε < 1,

j(x) =





1
A

e1/(|x|2−1), |x| < 1,

0, |x| ≥ 1,

A =
∫

R
e1/(|x|2−1)dx.

Obviously,

0 ≤ δε(x) ∈C∞
0 (R), supp δε = {x ∈ R; |x| ≤ ε},

∫

R
δε(x)dx = 1,

lim
ε→0+

∫

R
δε(x)φ(x)dx = φ(0), φ ∈ C(R).

By virtue of the standard theory for parabolic equations, we see that the regularized
problem (2.1) – (2.3) has a classical solution uε,R, n ∈ C∞(QR,T ), and the maximum
principle shows that

0 ≤ uε,R, n ≤ C, (2.4)

where the constant C depends only on ε and R. From now on we denote by C various
constant, which value may be different from line to line.

Lemma 2.1 Let uε,R, n be a solution of the regularized problem (2.1) – (2.3). Then

∫ R

−R

∣∣∣∣
∂uε,R,n

∂t

∣∣∣∣ dx ≤ C, (2.5)

∫ R

−R
|Dvε,R,n|dx ≤ C, (2.6)

where C is a positive constant independent of ε, R and n, and

vε,R,n =
(
|Duε,R, n|2 +

1
n

)(p−2)/2
Duε,R, n.

Proof Conveniently, denote u = uε,R, n. Differentiating (2.1) with respect to t,
we have

∂w

∂t
= aD2w + DaDw, (2.7)
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where w =
∂u

∂t
and

a =
(
|Du|2 +

1
n

)(p−2)/2[
1 + (p− 2)

(
|Du|2 +

1
n

)−1
|Du|2

]
.

Clearly,
w(x, 0) = δε(x), x ∈ (−R, R),

w(±R, t) = 0, t ∈ (0, T ).

Multiply (2.7) by
w√

w2 + η
and integrate over QR,t = (−R, R)× (0, t). Integrating by

parts yields
∫∫

QR,t

w√
w2 + η

∂w

∂τ
dxdτ

=
∫∫

QR,t

w√
w2 + η

aD2wdxdτ +
∫∫

QR,t

w√
w2 + η

DaDwdxdτ

=−
∫∫

QR,t

D

(
w√

w2 + η

)
aDwdxdτ

−
∫∫

QR,t

w√
w2 + η

DaDwdxdτ +
∫∫

QR,t

w√
w2 + η

DaDwdxdτ

=−
∫∫

QR,t

ηa|Dw|2
(w2 + η)3/2

dxdτ ≤ 0.

Notice
∫∫

QR,t

w√
w2 + η

∂w

∂τ
dxdτ

=
∫ R

−R

∫ t

0

∂

∂τ

(∫ w

0

s√
s2 + η

ds

)
dτdx

=
∫ R

−R

∫ w(x,t)

0

s√
s2 + η

dsdx−
∫ R

−R

∫ δε(x)

0

s√
s2 + η

dsdx.

We have
∫ R

−R

∫ w(x,t)

0

s√
s2 + η

dsdx ≤
∫ R

−R

∫ δε(x)

0

s√
s2 + η

dsdx ≤
∫ R

−R
δε(x)dx ≤ C.

Letting η → 0+, we see that ∫ R

−R
|w(x, t)|dx ≤ C,

that is
∫ R

−R

∣∣∣∣
∂u

∂t

∣∣∣∣ dx ≤ C.
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Combining the above with the equation (2.1), we have
∫ R

−R

∣∣∣D
((
|Du|2 +

1
n

)(p−2)/2
Du

)
+ δε(x)

∣∣∣dx ≤ C.

Thus ∫ R

−R

∣∣∣D
((
|Du|2 +

1
n

)(p−2)/2
Du

)∣∣∣dx ≤ C.

Denoting vε,R,n = (|Duε,R, n|2 + 1
n)(p−2)/2Duε,R, n we obtain that
∫ R

−R
|Dvε,R,n|dx ≤ C.

The proof is completed.

Lemma 2.2 Let uε,R, n be a solution of the regularized problem (2.1) – (2.3). Then
∫∫

QR,T

|Duε,R, n|pdxdt ≤ C, (2.8)

where C is a positive constant depending only on ε, R, and T .

Proof Conveniently, denote u = uε,R, n. Multiplying (2.1) by u and integrating
over QR,T yield

∫∫

QR,T

∂u

∂t
udxdt = −

∫∫

QR,T

(
|Du|2 +

1
n

)(p−2)/2
|Du|2dxdt +

∫∫

QR,T

δε(x)udxdt.

By virtue of (2.4) and (2.5), we further obtain
∫∫

QR,T

|Du|pdxdt ≤
∫∫

QR,T

(
|Du|2 +

1
n

)(p−2)/2
|Du|2dxdt

=−
∫∫

QR,T

∂u

∂t
udxdt +

∫∫

QR,T

δε(x)udxdt

≤C.

The proof is completed.
Utilizing the results in [6], we can easily obtain that the Hölder norms of uε,R, n and

Duε,R, n are bounded. Combining this with (2.4), (2.5) and Lemma 2.2, we conclude
that there exist a subsequence of {uε,R,n}, denoted by {uε,R,n} itself, and a bounded
nonnegative function

uε,R ∈ L∞(QR,T ) ∩ L∞(0, T ;W 1,p(−R, R)) ∩BV (QR,T ),

such that

uε,R,n ∈ BV (QR, T ),
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uε,R,n −→ uε,R, uniformly in QR, T , (2.9)

Duε,R,n −→ Duε,R, uniformly in QR, T . (2.10)

By an approximate process, we can easily get the existence of solutions of the
following problem

∂u

∂t
= D(|Du|p−2Du) + δε(x), (x, t) ∈ QR,T , (2.11)

u(x, 0) = 0, x ∈ (−R, R), (2.12)

u(±R, t) = 0, t ∈ (0, T ). (2.13)

On the other hand, following the idea of [7], we know that problem (2.11) – (2.13)
has at most one solution. And according to (2.6), we obtain

∫ R

−R
|Dvε,R|dx ≤ C, (2.14)

where vε,R = |Duε,R|p−2Duε,R, C is a positive constant independent of ε and R.
Now, we will prove the finite propagation of disturbances of uε,R, for which the

following estimates are needed. For this purpose, we want the following weighted
energy equality.

Lemma 2.3 Let uε,R be a solution of the problem (2.11) – (2.13). Then for any
0 ≤ ρ ∈ C2(Ω) with suppρ ∩ suppδε = ∅, we have

1
2

∫ R

−R
ρ(x)u2

ε,R(x, t)dx = −
∫∫

QR,t

|Duε,R|p−2Duε,RD(ρ(x)uε,R(x, τ))dxdτ, (2.15)

where QR,t = (−R, R)× (0, t).

Proof Multiplying the equation (2.1) by ρ(x)uε,R, n and then integrating over QR,t

yield

1
2

∫ R

−R
ρ(x)u2

ε,R, n(x, t)dx

=−
∫∫

QR,t

(
|Duε,R, n|2 +

1
n

)(p−2)/2

Duε,R, nD(ρ(x)uε,R, n(x, τ))dxdτ

=−
∫∫

QR,t

ρ′(x)uε,R, n

(
|Duε,R, n|+ 1

n

)(p−2)/2

Duε,R, ndxdτ

−
∫∫

QR,t

ρ(x)
(
|Duε,R, n|+ 1

n

)(p−2)/2

|Duε,R, n|2dxdτ.

Noticing (2.9), (2.10) and letting n →∞, we see that (2.15) holds.
The following two Lemmas are also required.
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Lemma 2.4 (Hardy’s inequality [8])
∫

R
(x)k

+|u|pdx ≤ C

∫

R
(x)k+p

+ |Du|pdx,

where k ≥ 0, p > 1, provided that the integrals on both sides exists.

Lemma 2.5 (Weighted Nirenberg’ inequality [9])

(∫

R
(x)k

+|u|pdx

)1/p

≤ C

(∫

R
(x)k

+|Du|pdx

)a/p (∫

R
(x)k

+|u|qdx

)(1−a)/q

,

where k is a nonnegative integer, (x)+ = max{x, 0}. Provided that the integral on the
right hand side exists, and

1
2
≤ a < 1,

1
p

=
1

1 + k
+ a

(1
p
− 2

1 + k

)
+ (1− a)

1
q
.

Proposition 2.1 Let u be the solution of the approaching problem (2.11) – (2.13),
then

suppu(·, t) ⊂ [R1, R2], a.e.t ∈ (0, T ),

where
R1 = −1− C2T

µ, R2 = 1 + C3T
µ,

with the positive constants C2, C3, µ depend only on p.

Proof Setting ρ(x) = (x − y)k
+ in Lemma 2.3, where y ∈ [1, R) is any fixed

constant. Using Young’s inequality, we have

1
2

∫ R

−R
(x− y)k

+u2(x, t)dx

=−
∫∫

QR,t

|Du|p−2DuD((x− y)k
+u(x, τ))dxdτ

=−
∫∫

QR,t

(x− y)k
+|Du|pdxdτ − k

∫∫

QR,t

(x− y)k−1
+ u|Du|p−2Dudxdτ

≤− 1
2

∫∫

QR,t

(x− y)k
+|Du|pdxdτ + C

∫∫

QR,t

(x− y)k−p
+ updxdτ.

Thus

1
2

∫ R

−R
(x− y)k

+u2(x, t)dx +
1
2

∫∫

QR,t

(x− y)k
+|Du|pdxdτ ≤ C

∫∫

QR,t

(x− y)k−p
+ updxdτ.

From this and
∫∫

QR,t

(x− y)k−p
+ |u|pdxdτ ≤ C

∫∫

QR,t

(x− y)k
+|Du|pdxdτ,
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which is a consequence of Lemma 2.4, we obtain

sup
0<τ≤t

∫ R

−R
(x− y)k

+u2(x, τ)dx ≤ C

∫∫

QR,t

(x− y)k
+|Du|pdxdτ, (2.16)

∫∫

QR,t

(x− y)k
+|Du|pdxdτ ≤ C

∫∫

QR,t

(x− y)k−p
+ updxdτ. (2.17)

Set

fm(y) =
∫∫

QR,t

(x− y)m
+ |Du|pdxdτ, m = 1, 2, · · · ,

f0(y) =
∫ t

0

∫ R

y
|Du|P dxdτ.

From (2.16), (2.17), Lemma 2.5 and Hölder’s inequality, we have

f2p+1(y) =
∫∫

QR,t

(x− y)2p+1
+ |Du|pdxdτ

≤C

∫∫

QR,t

(x− y)p+1
+ updxdτ

≤C

∫ t

0

(∫ R

−R
(x− y)p+1

+ |Du|pdx

)a (∫ R

−R
(x− y)p+1

+ u2dx

)(1−a)p/2

dτ

≤C

∫ t

0

(∫ R

−R
(x− y)p+1

+ |Du|pdx

)a
(∫∫

QR,t

(x− y)p+1
+ |Du|pdxdτ

)(1−a)p/2

dτ

=C [fp+1(y)](1−a)p/2
∫ t

0

(∫ R

−R
(x− y)p+1

+ |Du|pdx

)a

dτ

≤Ct1−a [fp+1(y)]a+(1−a)p/2 ,

where

a =

1
2

+
1

p + 2
− 1

p
1
2

+
2

p + 2
− 1

p

.

Set γ = a + (1 − a)
p

2
. Applying Hölder’ inequality to the right side of the above

inequality, we further obtain

f2p+1(y) ≤Ct1−a

(∫∫

QR,t

(x− y)p+1
+ |Du|pdxdτ

)γ

≤Ct1−a

(∫∫

QR,t

(x− y)2p+1
+ |Du|pdxdτ

)(p+1)γ/(2p+1)
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·
(∫ t

0

∫ R

y
|Du|P dxdτ

)pγ/(2p+1)

≤Ct1−a [f2p+1(y)](p+1)γ/(2p+1) [f0(y)]pγ/(2p+1) .

Therefore
f2p+1(y) ≤ Ct(1−a)/σ[f0(y)]pγ/(2p+1)σ,

where
σ = 1− p + 1

2p + 1
γ > 0.

Using Hölder’s inequality again gives

f1(y) ≤ (f2p+1(y))1/(2p+1)[f0(y)]2p/(2p+1) ≤ Ctλ[f0(y)]θ+1,

where
λ =

1− a

σ(2p + 1)
, θ =

pγ

σ(2p + 1)2
− 1

2p + 1
> 0.

Since f
′
1(y) = −f0(y), we have

f
′
1(y) ≤ −Ct−λ/(θ+1)[f1(y)]1/(θ+1).

If f1(1) = 0, then Du(x, t) = 0 for x ∈ [1, R], and hence from the boundary value
condition, we see that u(x, t) = 0 for x ∈ [1, R], i.e. suppu(·, t) ⊂ [−R, 1]. If f1(1) 6= 0,
then there exists an interval (1, R∗), such that f1(y) > 0 in (1, R∗), but f1(R∗) = 0.
So, for y ∈ (1, R∗),

(
f1(y)θ/(θ+1)

)′
=

θ

θ + 1
f
′
1(y)

f1(y)1/(θ+1)
≤ −Ct−λ/(θ+1).

Integrating the above inequality over (1, R∗), we obtain

f1(R∗)θ/(θ+1) − f1(1)θ/(θ+1) ≤ −Ct−λ/(θ+1)(R∗ − 1).

Therefore
R∗ ≤ 1 + Ctλ/(θ+1)f1(1)θ/(θ+1) = 1 + Ctµ ≤ 1 + CTµ,

which implies
suppu(·, t) ⊂ [−R, 1 + CTµ].

Similarly
suppu(·, t) ⊂ [−1− CTµ, R].

The proof is completed.
Combining (2.14) with Corollary 2.1, we then see that there exists a positive con-

stant C independent of ε and R, such that

0 ≤ sup
ΩR,T

uε,R ≤ C,
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|Duε,R| ≤ C.

Owing to Corollary 2.1 we know uε,R has compact support. Consequently, we can
extend the domain of definition respect to x to the whole R. So, we get

0 ≤ sup
ΩT

uε ≤ C, (2.18)

|Duε| ≤ C, (2.19)

where C is a positive constant independent of ε and R, and uε is a solution of the
problem

∂u

∂t
= D(|Du|p−2Du) + δε(x), (x, t) ∈ QT , (2.20)

u(x, 0) = 0, x ∈ R. (2.21)

In order to prove the main result, we also need the following Hölder estimate.

Lemma 2.6 Let uε be a solution of the problem (2.20), (2.21). Then

|uε(x1, t1)− uε(x2, t2)| ≤ C(|x1 − x2|+ |t1 − t2|1/2), (2.22)

where C is a positive constant independent of ε.

Proof Since (2.19) implies that

|uε(x1, t)− uε(x2, t)| ≤ C|x1 − x2|, ∀(x1, t), (x2, t) ∈ QT , (2.23)

it remains to prove

|u(x, t1)− u(x, t2)| ≤ C|t1 − t2|1/2, ∀(x, t1), (x, t2) ∈ QT . (2.24)

For any (x, t1)and(x, t2) ∈ QT , satisfy ∆t = t2 − t1 > 0, and x + l ≤ 1, where denote
l = ∆t1/2, we integrate (2.20) over (x, x + l)× (t1, t2). Integrating by parts gives

∫ x+l

x
(uε(z, t2)− uε(z, t1)) dz =

∫ t2

t1

|Duε|p−2Duε

∣∣∣
x+l

x
dt +

∫ t2

t1

∫ x+l

x
δε(z)dzdt.

Using the mean value theorem for integrals, we see that

∫ x+l

x
(uε(z, t2)− uε(z, t1)) dz = l(uε(x∗, t2)− uε(x∗, t1)),

for some x∗ ∈ [x, x + l]. This, together with (2.18) and (2.19) gives

|uε(x∗, t2)− uε(x∗, t1)| ≤ Cl.
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Thus

|uε(x, t2)− uε(x, t1)|
≤|uε(x, t2)− uε(x∗, t1)|+ |uε(x∗, t2)− uε(x∗, t1)|+ |uε(x∗, t1)− uε(x, t1)|
≤Cl = C∆1/2.

The proof is completed.
According to Ascoli-Arzelá’s Theorem, there exist a subsequence of {uε}, supposed

to be {uε} itself, a bounded nonnegative function

u ∈ L∞(QT ) ∩ L∞(0, T ;W 1,p(R)) ∩BV (QT )

and a function χ ∈ Lp/(p−1)(QT ) such that

uε → u, uniformly in QT ,

Duε → Du, uniformly in QT ,

|Duε|p−2Duε → χ, weakly in Lp/(p−1)(QT ).

Now, we prove the main result
The Proof of Theorem 1.1 It is easy to verify that

−
∫∫

QT

u
∂ϕ

∂t
dxdt = −

∫∫

QT

χDϕdxdt +
∫ T

0
ϕ(0, t)dt, ∀ϕ ∈ C∞

0 (QT ). (2.25)

For any v ∈ Lp(0, T ;W 1,p(R)) and ψ ∈ C∞
0 (QT ), 0 ≤ ψ ≤ 1, suppψ ⊂ QT , we can

easily obtain
∫∫

QT

ψ(|Duε|p−2Duε − |Dv|p−2Dv)D(uε − v)dxdt ≥ 0. (2.26)

Multiplying (2.20) by ψun and integrating over QT yield
∫∫

QT

ψ|Duε|pdxdt

=
1
2

∫∫

QT

u2
ε

∂ψ

∂t
dxdt−

∫∫

QT

uε|Duε|p−2DuεDψdxdt +
∫∫

QT

δε(x)uεψdxdt. (2.27)

From (2.27) and (2.26), we further obtain

1
2

∫∫

QT

u2
ε

∂ψ

∂t
dxdt−

∫∫

QT

uε|Duε|p−2DuεDψdxdt +
∫∫

QT

δε(x)uεψdxdt

−
∫∫

QT

ψ|Duε|p−2DuεDvdxdt−
∫∫

QT

ψ|Dv|p−2DvD(uε − v)dxdt ≥ 0.
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Letting ε → 0, we obtain

1
2

∫∫

QT

u2 ∂ψ

∂t
dxdt−

∫∫

QT

uχDψdxdt +
∫∫

QT

δ(x)uψdxdt

−
∫∫

QT

ψχDvdxdt−
∫∫

QT

ψ|Dv|p−2DvD(u− v)dxdt ≥ 0. (2.28)

Take ϕ = ψu in (2.25), then

1
2

∫∫

QT

u2 ∂ψ

∂t
dxdt =

∫∫

QT

uχDψdxdt +
∫∫

QT

ψχDudxdt−
∫∫

QT

δ(x)uψdxdt. (2.29)

Substituting this into (2.28), then we deduce that
∫∫

QT

ψ(χ− |Dv|p−2Dv)D(u− v)dxdt ≥ 0. (2.30)

Take v = u− λϕ, λ ≥ 0 with λ ≥ 0, ϕ ∈ C∞
0 (QT ) in (2.30),

∫∫

QT

ψ(χ− |D(u− λϕ)|p−2D(u− λϕ))Dϕdxdt ≥ 0.

Letting λ → 0, we obtain
∫∫

QT

ψ(χ− |Du|p−2Du)Dϕdxdt ≥ 0, ∀ϕ ∈ C∞
0 (QT ).

If we take λ ≤ 0, then we can obtain the opposite inequality. Therefore, if we choose
ψ such that suppϕ ⊂ suppψ and ψ = 1 on suppϕ, then

∫∫

QT

|Du|p−2DuDϕdxdt =
∫∫

QT

χDϕdxdt, ∀ϕ ∈ C∞
0 (QT ).

Consequently,

−
∫∫

QT

u
∂ϕ

∂t
dxdt = −

∫∫

QT

|Du|p−2DuDϕdxdt +
∫ T

0
ϕ(0, t)dt,

that is, equality (1.3) holds. We can easily see that equality (1.4) is also fulfilled.
Next, we prove the uniqueness of the solution. Set u1, u2 to be two solutions of the

Cauchy problem (1.1), (1.2). Let z = u1 − u2. Then for arbitrary ϕ ∈ C∞
0 (QT ), the

following integral holds
∫∫

Qt

∂z

∂t
ϕdxdt = −

∫∫

Qt

(
|Du1|p−2Du1 − |Du2|p−2Du2

)
Dϕdxdt.

Choose ϕ = Hη(z), where

Hη(s) =
s√

s2 + η
, H

′
η(s) =

η

(s2 + η)3/2
,
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then
∫∫

Qt

∂

∂t
Hη(z)dxdt = −

∫∫

Qt

(
|Du1|p−2Du1 − |Du2|p−2Du2

)
DzH

′
η(z)dxdt,

where
Hη(s) =

∫ s

k
Hη(τ)dτ, lim

η→0+
Hη(s) = |s|.

Notice that the right side is no larger than zero, therefore
∫

R
Hη(z)dxdt−

∫

R
Hη(z0)dxdt ≤ 0.

Finally, letting η → 0+, we obtain
∫

R
|z|dxdt ≤ 0.

Hence u1 = u2. The proof is complete.
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