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Abstract In this paper, the authors consider complex Ginzburg-Landau equation
(CGL) in three spatial dimensions

ut = ρu + (1 + iγ)∆u− (1 + iµ) |u|2σ
u + f,

where u is an unknown complex-value function defined in 3+1 dimensional space-time
R3+1, ∆ is a Laplacian in R3, ρ > 0, γ, µ are real parameters, Ω ∈ R3 is a bounded
domain. By using the method of Galërkin and Faedo-Schauder fix point theorem we
prove the existence of approximate solution uN of the problem. By establishing the
uniform boundedness of the norm ‖uN‖ and the standard compactness arguments, the
convergence of the approximate solutions is considered. Moreover, the existence of the
periodic solution is obtained .
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1. Introduction

The generalized complex Ginzburg-Landau (CGL) equation describes the evolution
of a complex-valued u = u (x, t) by

ut = ρu + (1 + iγ)∆u− (1 + iµ) |u|2σ u .

It has a long history in physics as a generic amplitude equation near the onset of
instabilities that lead to chaotic dynamics in fluid mechanical systems, as well as in the
theory of phase transitions and superconductivity. It is a particularity interesting model
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because it is a dissipative version of the nonlinear Schrödinger equation−A Hamiltonian
equation which can possess solutions that form localized singularities in finite time.

Ghidaglia and Héorn [1], Doering et al [2], Promislow [3], etc. studied the finite
dimensional Global attractor and related dynamic issues for the one or two spatial
dimensional GLE with cubic nonlinearity (σ = 1) :

ut − (1 + iγ)∆u + (1 + iµ) |u|2 u− ρu = 0.

where i =
√−1, a > 0. and γ, µ are given real numbers. Bartuccelli, Constantin,

Doering, Gibbon and Gisselfalt [4] deal with the “soft” and “hard” turbulent behavior
for this equation. In [5], Bu considered the global existence of the Cauchy problem of
the following 2D GLE:

ut − (ν + iα)∆u + (µ + iβ) |u|2q u− γu = 0

with q = 1 and q = 2, αβ > 0, or |β| ≤
√

5
2

. Doering, Gibbon and Levermore [6] inves-

tigated weak and strong solutions for this equation. Mielke [7] discussed the solution
of this equation in weighted Lp space and derived some new bounds and investigated
some properties of attractors. We consider the equation with non-homogeneous term
in three spatial dimensions as follows

ut = ρu + (1 + iγ)∆u− (1 + iµ) |u|2σ u + f(x, t), (1.1)

u(0, x) = u0(x), x ∈ Ω (1.2)

with periodic boundary condition

Ω = (0, L)× (0, L)× (0, L), u is Ω− periodic, (1.3)

where u is an unknown complex-value function defined in 3+1dimensional space-time
R3+1, ∆ is a Laplacian in R3, ρ > 0, γ, µ are real parameters, the function f(x, t) is
ω−periodic in time t.
Here, by using the Galerkin method and Leray-Schauder fixed point theorem, we will
show the existence of approximate solution uN (t) of the problem (1.1) − (1.3) . We
establish the uniform boundedness of the norm ‖uN (t)‖ , by standard compactness
arguments get convergence of the approximate solution, and obtain the existence of the
time periodic solution for the problem (1.1)− (1.3) .

Our assumptions on σ, γ, µ are (A):
(i) By choosing suitable γ,

σ ≤ min

{ √
1 + γ2

√
1 + γ2 − 1

− 1,
1
4

√
1 + γ2

√
1 + γ2 − 1

}
;
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(ii) There is a positive number δ > 0, such that

0 < σ <
1√

1 +
(

µ− γδ2

1 + δ2

)2

− 1

.

The rest of this paper is arranged as follows. First, we introduce the work space and
abstract problem in Section 2. We give the definition of approximate solution for
our problem and construct approximate solution by the method of Faedo-Galërkin in
Section 3. Next, in Sections 4 and 5 respectively we derive a uniform a priori estimate
of approximate solution in L2 and in H1,H2 space. Finally we prove the consequence of
sequence of the approximate solutions and obtain the existence of the periodic solution
for the problem (1.1)− (1.3) in three-dimension space.

2. Work Space and Abstract Problem

Let
L2

per (Ω) = {u ∈ L2 (Ω) , u is a periodic function},
the norm in L2

per (Ω) is the same as one in L2 (Ω) with the inner product

(u.v) =
∫

Ω
u (x) v∗(x)dx.

And let
Hk

per (Ω) = {u ∈ Hk (Ω) , u is a periodic function},
the norm in Hk

per (Ω) is the same as one in Hk (Ω) . Let X be a Banach space, we
denote that Ck (ω, X) = {f : (−∞,+∞) → X, f (j) is continuous, j = 0, 1, · · · k, f is a
periodic function}
When k = 0, we replace C0 (ω, X) with C (ω, X) . Let A = −[(1 + iγ)∆ + d], where d

is a real number, the domain of operator A is D (M) = H2
per (Ω) . Then by the result

of [8] , we know that −A generates an analytic semigroups on L2
per (Ω) . The set of all

linear independent eigenvectors of operator A is an orthogonal basis of L2
per (Ω) , and

we can choose a real number d < 0 such that 0 ∈ ρ (A), where ρ (A) denotes the resolve
set of operator A.

Let
N (u) = (ρ− d) u− (1 + iµ) |u|2σ u,

N is a nonlinear operator from H2
per (Ω) to L2

per (Ω).

The problem (1.1)−(1.3) can be written into an abstract problem in the space C
(
ω, L2

per (Ω)
)

as follows

ut + Au = N (u) + f, (2.1)

u (·, t) = u (·, t + ω) , (2.2)

where f ∈ C
(
ω, H1

per (Ω)
)

.
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3. Approximate Solutions

Let {φj}∞j=1 be an normal orthogonal basis of the space H2
per (Ω) , and for each j, ωj is

a eigenvector of the operator A. Let µj be the eigenvalue of the operator A correspond-
ing to φj , j = 1, 2, · · · . For any number N, we denote that HN = span {φ1, φ2, · · · , φN} .

Definition 3.1(approximate solution) Let f ∈ C
(
ω, H1

per (Ω)
)

, for any num-
ber N and a group function (d1N (t) , d2N (t) , · · · dNN (t)) where undermined functions
dkN (t) (k = 1, 2, · · · , N) of variable t ∈ R+ belong to C1 (ω, C) and C is the set of all

complex numbers, the function uN (t) =
N∑

k=1
dkN (t) φk ∈ C (ω, HN (Ω)) is called an

approximate solution of (2.1) (2.2) if it satisfies the system as follows

(uNt + AuN , φj) = (N (uN ) + f, φj) , j = 1, 2, · · ·N, (3.1)

uN (·, t) = uN (·, t + ω) . (3.2)

In order to prove that (3.1) (3, 2) has an approximate solution, we definite an image

F in C1 (ω, HN (Ω)). For any vN (t) =
N∑

k=1
akN (t) φk ∈ C1 (ω, HN (Ω)) , the differential

equation system

(uNt + AuN , φj) = (N (vN ) + f, φj) , j = 1, 2, · · ·N, (3.3)

is an linear ordinary differential equation system about(d1N (t) , d2N (t) , · · · , dNN (t)).
By the theory of ordinary differential equation, there exist a unique (d1N (t) , d2N (t) ,

· · · , dNN (t)) and the image F :vN → uN is a continuous and compact image from the
space C1 (ω, HN (Ω)) to itself. For the existence of approximate solution of the problem
(1.1) (1.3), it is sufficient to prove that the image F has a fixed point in C1 (ω, HN (Ω)) .

We prove the existence of fixed point of the image F by Leray-Schauder fixed point
theorem. For this purpose, we introduce operator Fλ with parameter λ. Similar to the
image F , the image Fλ : vN − uN is defined by the equation system as follows

(uNt + AuN , φj) = (λN (vN ) + f, φj) , j = 1, 2, · · ·N,

where 0 ≤ λ ≤ 1. For λ ∈ [0, 1], Fλ also is a continuous and compact image from
C1 (ω, HN ) to itself. It is obvious that F1 = F . As λ = 0, the equations system (2.1),
(2.2) has a unique solution ũN (t) =

(
d̃1N (t) , d̃2N (t) , · · · d̃NN (t)

)
∈ C1 (ω, HN ). Hence

F0 has a unique fixed point ũN (t) in C1 (ω, HN ). For the existence of fixed point of the
image F , using to Leray-Schauder fixed point theorem, we need only to prove that if
the equation FλuN = uN has a solution uN (t), it must satisfy the inequality as follows

sup
0≤t≤ω

‖uN (t)‖ ≤ K1,

where K1 is a positive constant which is independent of λ and depends only on ρ, γ,

µ, σ, ω, L and f.
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4. A Priori Estimate

Lemma 4.1 Assume that f ∈ C
(
ω, L2

per (Ω)
)
, if FλuN = uN , 0 ≤ λ ≤ 1, then

there exists a positive constant K1, such that

sup
0≤t≤ω

‖uN (t)‖ ≤ K1. (4.1)

Proof We have FλuN = uN , i.e.

(uNt + AuN , φj) = (λN (uN ) + f, φj) , j = 1, 2, · · ·N. (4.2)

Multiply each equation system (3.1) by d∗kN and sum up over j from j = 1 to N to
obtain

(uNt + AuN , uN ) = (λN (uN ) + f, uN ) , (4.3)

i.e.

(uNt − [(1 + iγ)∆ + d]uN , uN ) =
(
λ

(
(ρ− d) uN − (1 + iµ) |uN |2σ uN

)
+ f, uN

)
.

Taking the real part in two sides of the resulting identity yields

1
2

d

dt
‖uN‖2 + ‖∇uN‖2 − d ‖uN‖2 = λ (ρ− d) ‖uN‖2 − λ

∫
|uN |2σ+2 + Re (f, uN ) .

By Young’s inequality and

Re (f, uN ) ≤ ε ‖uN‖2 + k1 (ε) ‖f‖2 , (4.4)

we obtain

1
2

d

dt
‖uN‖2 + ‖∇uN‖2 − d ‖uN‖2 + λ

∫
|uN |2σ+2

=(λ (ρ− d)) ‖uN‖2 + k1 (ε) ‖f‖2 . (4.5)

As
‖uN‖2 ≤ 1

(ρ− d)

∫
|uN |2σ+2 + c, (4.6)

(4.5)+λ×(4.6), we obtain

1
2

d

dt
‖uN‖2 + ‖∇uN‖2 − d ‖uN‖2 ≤ k1 (ε) ‖f‖2 . (4.7)

Considering the periodicity of uN and integrating (4.7) over [0, ω] , we have

−d

ω∫

0

‖uN‖2 dt ≤ k1 (ε) ‖f‖2 ω.
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By the middle value theorem, there exists t∗ ∈ [0, ω], such that

‖uN (t∗)‖2 ≤ −k1 (ε)
d

‖f‖2 .

Integrating (4.7) over(0, ω) from t∗ to t∗ + ω t∗ ∈ [0, ω] yields

‖uN‖2 ≤ 2k1 (ε) ‖f‖2 ω + ‖uN (t∗)‖2

≤ 2k1 (ε) ‖f‖2 ω − k1 (ε)
d

‖f‖2

= K1.

Then (4.1) holds, i.e. there exists a positive costant K1 = K1(ρ, σ, µ, γ, ω, f, L), which
is independent of λ and N , such that the inequality (4.1) holds. By Leray-Schauder
fixed point theorem, F has a fixed point. Here we have the theorem below.

Theorem 4.2 Let f ∈ C
(
ω, L2

per (Ω)
)
, for any number N , (2.1) (2.2) has an

approximate solution uN (t) ∈ C1 (ω, HN (Ω)) .

5. Priori Estimate of Derivative

We have proved that (2.1) (2.2) has a sequence of approximate solutions {uN}∞N=1.

For proving the existence of the strong periodic estimate, it is needed to prove that the
sequence is convergent and the limit is a solution of (2.1) (2.2). For this purpose, we
need some priori estimate about derivative of uN (t) .

Lemma 5.1 If FuN = uN , we have

1
2 (1 + σ)

d

dt

∫
|uN |2σ+2

≤− 1
2

∫
|uN |4σ+2 − 1

4

∫
|uN |2σ−2 ((1 + 2σ)

∣∣∣∇|uN |2
∣∣∣
2

− 2γσ∇|uN |2 · i (uN∇u∗N − u∗N∇uN ) + |uN∇u∗N − u∗N∇uN |2)
+ Re

∫

Ω
f · |uN |2σ u∗N + c. (5.1)

Proof By (3.1), we have
(
uNt + AuN , |uN |2σ uN

)
=

(
N (uN ) + f, |uN |2σ uN

)
.

Taking real part of the resulting identity, we find that

1
2 (1 + σ)

d

dt

∫

Ω
|uN |2σ+2 = ρ

∫

Ω
|uN |2σ+2 + Re (1 + iγ)

∫

Ω
∆uN |uN |2σ u∗N

−
∫

Ω
|uN |4σ+2 +

∫

Ω
f · |uN |2σ u∗N . (5.2)

Since
|u|2 |∇u|2 =

1
4

∣∣∣∇|u|2
∣∣∣
2
+

1
4
|u∇u∗ − u∗∇u|2 , (5.3)
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the second term in the right side of (5.2) is changed into

Re (1 + iγ)
∫

Ω
∆uN |uN |2σ u∗N

=−Re (1 + iγ)
∫

Ω
|∇uN |2 |uN |2σ −Re (1 + iγ)

∫

Ω
σ |uN |2σ−2 u∗N∇uN∇|uN |2

=−
∫

Ω
|∇uN |2 |uN |2σ − σ

2

∫

Ω
|uN |2σ−2

∣∣∣∇|uN |2
∣∣∣
2

+
1
2
γσ

∫

Ω
|uN |2σ−2∇|uN |2 · i (uN∇u∗N − u∗N∇uN )

=− 1
4

∫

Ω
|uN |2σ−2 ((1 + 2σ)

∣∣∣∇|uN |2
∣∣∣
2 − 2γσ∇|uN |2 · i (uN∇uN − u∗N∇uN )

+ |uN∇u∗N − u∗N∇uN |2). (5.4)

The first term in the right side of (5.2) is dudeced by Young’s inequality and Lemma
3.1

ρ

∫

Ω
|uN |2σ+2 =ρ

∫

Ω
|uN |2σ+1 · |uN |

≤1
2

∫

Ω
|uN |4σ+2 +

1
2
ρ2

∫

Ω
|uN |2 ≤ 1

2

∫

Ω
|uN |4σ+2 + c. (5.5)

We infer to Lemma 5.1 from (5.2), (5.4) and (5.5). And thus the proof is completed.

Lemma 5.2 Assume that 2σ + 2 ≤ 2
√

1 + γ2

√
1 + γ2 − 1

holds, if FuN = uN , then we

have

sup
0≤t≤ω

‖uN‖2σ+2
2σ+2 ≤ K2, (5.6)

where ‖·‖p is the norm of Lp (Ω), K2 is a positive constant which is independent of λ

and dependent on ρ, γ, µ, σ, ω, L and f .
Proof Direct calculation yields

1
2σ + 2

d

dt
‖uN‖2σ+2

2σ+2 = Re

∫
|u|2σ u∗NuNtdx

=Re

∫
|uN |2σ u∗N

(
ρuN + (1 + iγ)∆uN − (1 + iµ) |uN |2σ uN

)

=ρ ‖uN‖2σ+2
2σ+2 − ‖uN‖4σ+2

4σ+2 + Re

∫
(1 + iγ) |uN |2σ u∗N∆uN

+ Re

∫

Ω
f · |uN |2σ u∗N . (5.7)

First, we have

Re

∫

Ω
f · |uN |2σ u∗N ≤ 1

2
‖uN‖4σ+2

4σ+2 +
1
2
‖f‖2 (5.8)
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and

Re

∫
(1 + iγ) |uN |2σ u∗N∆uN

=−Re (1 + iγ)
∫
|∇uN | |uN |2σ −Re (1 + iγ)

∫
σ |uN |2σ−2 u∗N∇uN∇|uN |2

=−Re (1 + iγ)
∫
|∇uN |2 |uN |2σ − σ

2
Re (1 + iγ)

∫
|uN |2σ−2

∣∣∣∇|uN |2
∣∣∣
2

+
1
2
γσRe (1 + iγ)

∫
|uN |2σ−2∇|uN |2 · i (uN∇u∗N − u∗N∇uN )

=− 1
4

∫
|uN |2σ−2

(
(2σ + 1)

∣∣∣∇|uN |2
∣∣∣
2 − 2σγ∇|uN |2 · i (uN∇u∗N − u∗N∇uN )

+ |uN∇u∗N − u∗N∇uN |2
)

. (5.9)

The integrand in the last term in (5.9) is a guadratic form in these quantities that will
be nonnegative provided the matrix

(
2σ + 1 γσ

γσ 1

)

is nonnegative define, i. e. whenever 2σ + 2 ≤ 2
√

1 + γ2

√
1 + γ2 − 1

. In this case, neglecting

the third term of (5.7), we have

1
2σ + 2

d

dt
‖uN‖2σ+2

2σ+2 +
1
2
‖uN‖4σ+2

4σ+2 ≤ ρ ‖uN‖2σ+2
2σ+2 +

1
2
‖f‖2

2 . (5.10)

By Young’s inequality with ε

‖uN‖2σ+2
2σ+2 ≤

1
3ρ
‖uN‖4σ+2

4σ+2 + c

(∫
|uN |2σ+2 ≤ 1

3ρ

∫
|uN |4σ+2

4σ+2 + c

)

and then
1

σ + 1
d

dt
‖uN‖2σ+2

2σ+2 ≤ −ρ ‖uN‖2σ+2
2σ+2 + ‖f‖2

2 + c. (5.11)

Considering the periodicity of uN and integrating (5.11) over [0, ω] , we obtain

ρ

ω∫

0

‖uN‖2σ+2
2σ+2 dt ≤

(
‖f‖2 + c

)
ω. (5.12)

By the middle value theorem, we have t∗ ∈ [0, ω], such that

‖uN (t∗)‖2σ+2
2σ+2 ≤

‖f‖2 + c

ρ
. (5.13)
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Integrating (5.11) over(0, ω) from t∗ to t∗ + ω t∗ ∈ [0, ω] yields

‖uN‖2σ+2
2σ+2 ≤ (‖f‖2 + c)ω + ‖uN (t∗)‖2σ+2

2σ+2

≤ (‖f‖2 + c)ω +
‖f‖2 + c

ρ
= K2,

i.e. there exists a positive costant K2 = K2(ρ, σ, µ, γ, ω, f, L), which is independent of
λ and N , such that the inequality (5.6) holds.

Lemma 5.3 Under the assumptions of (A), let f ∈ C
(
ω, L2

per (Ω)
)
, if FuN = uN ,

then there exists a positive constant K3 such that

sup
0≤t≤ω

(
‖∇u‖2 + ‖u‖L2σ+2

)
≤ K3, (5.14)

where K3 is a positive constant which is independent of λ and depends only on γ, µ, σ,

ω, L, ω and f , t3 depends on the data R when ‖u0‖ ≤ R.

Proof By (3.1), we have

(uNt + AuN ,∆uN ) = (N (uN ) + f,∆uN ) . (5.15)

Taking the real part of the resulting identity, we find that

1
2

d

dt
‖∇uN‖2 + ‖∆uN‖2 =ρ ‖∇uN‖2 + Re (1 + iµ)

∫

Ω
|uN |2σ uN∆u∗N

+
∫

Ω
f ·∆uN . (5.16)

Due to (5.4), we have

Re (1 + iµ)
∫

Ω
|uN |2σ uN∆u∗N

= −Re (1 + iµ)
∫

Ω
|uN |2σ |∇uN |2 −Re (1 + iµ) σ

∫

Ω
|uN |2σ−2 uN∇u∗N∇|uN |2

=−
∫

Ω
|uN |2σ |∇uN |2 − σ

2

∫

Ω
|uN |p−2

∣∣∣∇|uN |2
∣∣∣
2

+
1
2
µσ

∫

Ω
|uN |p−2∇|uN |2 · i (uN∇u∗N − u∗N∇uN )

=− 1
4

∫

Ω
|uN |2σ−1 ((1 + 2σ)

∣∣∣∇|uN |2
∣∣∣
2 − 2µσ∇|uN |2 · i (uN∇u∗N − u∗N∇uN )

+ |uN∇u∗N − u∗N∇uN |2).
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Thus, we have
1
2

d

dt
‖∇uN‖2 + ‖∆uN‖2

= ρ ‖∇uN‖2 − 1
4

∫

Ω
|uN |2σ−1

(
(1 + 2σ)

∣∣∣∇|uN |2
∣∣∣
2

−2µσ∇|uN |2 · i (uN∇u∗N − u∗N∇uN ) + |uN∇u∗N − u∗N∇uN |2
)

+
∫

Ω
f ·∆uN . (5.17)

Taking a linear combination of (5.17) and (5.1), we obtain

1
2

d

dt
Vδ (uN (t)) + ‖∆uN‖2 +

δ2

2

∫
|uN |4σ+2

≤ ρ ‖∇uN‖2 − 1
4

∫
|u|2σ−2 ((1 + 2σ)

(
1 + δ2

) ∣∣∣∇|uN |2
∣∣∣
2

+ 2σ
(
γδ2 − µ

)
∇|uN |2 · i (uN∇u∗N − u∗N∇uN )

+
(
1 + δ2

)
|uN∇u∗N − u∗N∇uN |2) +

∫

Ω
f ·∆uN + c. (5.18)

Remark : ‖∇uN‖2 +
δ2

1 + σ

∫

Ω
|uN |2σ+2dx a “perturbation” of the NLS energy func-

tion, where δ > 0 is to be chosen, will help to considerably improve the region for which
the global existence of solution can be shown. The technical reason why this particular
combination yields better results than separate estimates on H1 and L2σ+2 norms is
that the problematic term on H1 and L2σ+2 estimates have the same function depen-
dence on the solution u and therefore taking the linear combination and optimization
in δ provides for partial cancellation of this term.

The integrand in the last term in (5.18) is a guadratic form in these quantities that
will be nonnegative provided the matrix

(
(1 + 2σ)

(
1 + δ2

)
σ

(
γδ2 − µ

)

σ
(
γδ2 − µ

) (
1 + δ2

)
)

is nonnegative define, i. e.

σ <
1√

1 + (
µ− γδ2

1 + δ2
)2 − 1

.

In this case, neglecting the last term (3.18), we have

1
2

d

dt

(
‖∇uN‖2 +

δ2

1 + σ

∫

Ω
|uN |2σ+2 dx

)
+ ‖∆uN‖2 +

δ2

2

∫

Ω
|uN |4σ+2 dx

≤ ρ ‖∇uN‖2 +
∫

Ω
f ·∆uNdx + c

≤ ρ ‖∇uN‖2 +
1
2
‖∆uN‖2 +

1
2
‖f‖2 + c.
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We get

d

dt

(
‖∇uN‖2 +

δ2

1 + σ

∫

Ω
|uN |2σ+2 dx

)
+ ‖∆uN‖2 + δ2

∫

Ω
|uN |4σ+2 dx

≤ 2ρ ‖∇uN‖2 + ‖f‖2 + c. (5.19)

By Lemma 5.1 and Young’s inequality we have

(2ρ + 1) ‖∇uN‖2 =(2ρ + 1) (−∆uN , uN ) ≤ (2ρ + 1) ‖∆uN‖ ‖uN‖
≤ (2ρ + 1) c ‖∆uN‖ ≤ ‖∆uN‖2 +

1
4

(2ρ + 1)2 c2

and

δ2

2 (1 + σ)

∫

Ω
|uN |2σ+2 =

δ2

2 (1 + σ)

∫

Ω
|uN |2σ+1 |uN |

≤ δ2
∫

Ω
|uN |4σ+2 + c

∫

Ω
|uN |2 ≤ δ2

∫

Ω
|uN |4σ+2 + cK2

1 .

Therefore, we give from (5.19)

d

dt

(
‖∇uN‖2 +

δ2

1 + σ

∫

Ω
|uN |2σ+2 dx

)
+

(
‖∇uN‖2 +

δ2

1 + σ

∫

Ω
|uN |2σ+2 dx

)

≤‖f‖2 + cK2
1 −

1
4

(2ρ + 1)2 c2 + c = k. (5.20)

Considering the periodicity of uN and integrating (5.20) from 0 to ω as follows, we have

ω∫

0

(
‖∇uN‖2 +

δ2

1 + σ

∫

Ω
|uN |2σ+2 dx

)
dt ≤ kω.

By the middle value theorem, there exist t∗ ∈ [0, ω] such that

‖∇uN (t∗)‖2 +
δ2

1 + σ

∫

Ω
|uN (t∗)|2σ+2 dx ≤ k.

Integrating (5.20) from t∗ to t, t ∈ [t∗, t∗ + ω] , we have as follows

‖∇uN (t)‖2 +
δ2

1 + σ

∫

Ω
|uN (t)|2σ+2 dx

≤ kω + ‖∇uN (t∗)‖2 +
δ2

1 + σ

∫

Ω
|uN (t∗)|2σ+2 dx

≤ kω + k = K3.

Therefore, there exists a constant K3 which only depends on ρ, γ, µ, σ, ω, L and f ,
such that

sup
0≤t≤ω

(
‖∇u‖2 + ‖u‖L2σ+2

)
≤ K3.
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This completes the proof of the lemma.
Lemma 5.4 Under the assumption (A) , let f ∈ C

(
ω, H1

per (Ω)
)
, if FuN = uN ,

then there exists a positive constant K4 such that

sup
0≤t≤ω

‖∆uN‖2 ≤ K4, (5.21)

where K4 is only dependent on ρ, γ, µ, σ, ω, L and f .
Proof By (3.1), we have

(
uNt + AuN ,∆2uN

)
=

(
N (uN ) + f,∆2uN

)
. (5.22)

Taking real part of the resulting identity yields

1
2

d

dt
‖∆uN‖2 =ρ ‖∆uN‖2 − ‖∇∆uN‖2

−Re (1 + iµ)
∫

Ω
|uN |2σ uN∆2u∗N + Re

∫

Ω
f ·∆2uNdx. (5.23)

We estimate each term of (5.23). First, we have

Re (1 + iµ)
∫

Ω
|uN |2σ uN∆2uN

=−Re (1 + iµ)
∫

Ω
|uN |2σ ∇uN∇∆u∗N −Re (1 + iµ)

∫

Ω
∇|uN |2σ uN∇∆u∗N

=Re (1 + iµ)
∫

Ω
|uN |2σ ∇uN∇∆u∗N

+ Re (1 + iµ)
∫

Ω
|uN |2σ−2 (uN∇u∗N + u∗N∇uN ) uN∇∆u∗N . (5.24)

We estimate the first term of the right side of (5.24)

Re (1 + iµ)
∫

Ω
|uN |2σ ∇uN∇∆u∗N

≤
√

1 + µ2

∫

Ω
|uN |2σ |∇uN | |∇∆uN |

≤
√

1 + µ2 ‖uN‖2σ
8σ ‖∇uN‖L4 ‖∇∆uN‖

≤ 1
12
‖∇∆uN‖2 + 3 (1 + µ) ‖∇uN‖2

L4 ‖uN‖4σ
8σ

≤ 1
12
‖∇∆uN‖2 + 3 (1 + µ) ‖∇∆uN‖

3
2 ‖∇uN‖

1
2 ‖uN‖4σ

8σ

≤ 1
12
‖∇∆uN‖2 +

1
12
‖∇∆uN‖2 + c ‖∇uN‖2

(
‖uN‖8σ

8σ

)2

≤ 1
6
‖∇∆uN‖2 + c. (5.25)

The above result comes from Lemma 5.1 and 5.3. Noting that

2σ + 2 ≤ 2
√

1 + γ2

√
1 + γ2 − 1

,
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hence we choose

σ ≤ min

{ √
1 + γ2

√
1 + γ2 − 1

− 1,
1
4

√
1 + γ2

√
1 + γ2 − 1

}
. (5.26)

Similarly, we can estimate the last term of the right side of (5.14)

Re (1 + iµ)
∫
|uN |2σ−2 (uN∇u∗N + u∗N∇uN ) uN∇∆u∗N ) ≤ 1

6
‖∇∆uN‖2 + c. (5.27)

Re
(
f,∆2uN

)
≤ ε ‖∆uN‖2 + k (ε) ‖∆f‖2 . (5.28)

By (5.23)-(5.25), (5.27) and (5.28), we get

1
2

d

dt
‖∆uN‖2 + ‖∇∆uN‖2 ≤ (ρ + ε) ‖∆uN‖2 + k (ε) ‖∆f‖2 + c.

By Lemma 5.3 we give

‖∆uN‖2 = (−∇∆uN ,∇uN ) ≤ ‖∇∆uN‖ ‖∇uN‖ ≤ c ‖∇∆uN‖ .

By Young’s inequality we have

2 (ρ + ε) ‖∆uN‖2 ≤ 2c (ρ + ε) ‖∇∆uN‖ ≤ ‖∇∆uN‖2 + (ρ + ε)2 c2.

Hence, we have

d

dt
‖∆uN‖2 + 2(ρ + ε) ‖∆uN‖2 ≤ 2k (ε) ‖∆f‖2 + 2c− 2 (ρ + ε)2 c2 = k′. (5.29)

We consider the periodicity of uN , integrating (5.29) from 0 to ω as follows

ω∫

0

‖∆uN‖2 dt ≤ k′ω.

By the middle value theorem, there exist t∗ ∈ [0, ω] such that

‖∆uN (t∗)‖2 ≤ k′.

Integrating (5.29) from t∗∗ to t + ω t ∈ [0, ω] , we have as follows

‖∆uN (t)‖2 ≤ K4ω + ‖∆uN (t∗∗)‖2 = k′ω + k′ = K4.

Therefore, there exists a constant K4 (ρ, γ, µ, σ, L, ω, f) such that

sup
0≤t≤ω

‖∆u‖2 ≤ K4

which concludes Lemma 5.4.
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Lemma 5.5 Let f ∈ C
(
ω, H1

per (Ω)
)
, if FuN = uN , then there exists a positive

constant K5 such that
sup

0≤t≤ω
‖uNt‖2 ≤ K5 . (5.30)

Proof By (3.1), we have

(uNt + AuN , φj) = (N (uN ) + f, φj) , j = 1, 2, · · ·N. (5.31)

Multiply each equation systems (5.31) by d∗kN and sum up over j from j = 1 to N to
obtain

(uNt + AuN , uNt) = (N (uN ) + f, uNt) . (5.32)

Taking real part of the resulting identity, we obtain that

‖uNt‖2 ≤
√

1 + γ2 ‖∆uN‖ ‖uNt‖+ ‖N (uN ) + f + duN‖ ‖uNt‖ . (5.33)

By Agmon inequality

‖u‖∞ ≤ c ‖u‖
1
2

H1(Ω) ‖u‖
1
2

H2(Ω) ≤ K, ∀u ∈ H2(Ω)

and the definition of N (uN ), we have

‖N (uN ) + f + duN‖ =
∥∥∥ρuN − (1 + iµ) |uN |2σ u + f

∥∥∥

≤ ρK +
√

1 + µ2K
2σ+1 + ‖f‖ ≤ K

′
.

Therefore, by the inequality (5.33), Lemma 5.4 and Young’s inequality, there exists a
positive constant K5 such that

sup
0≤t≤ω

‖uNt‖2 ≤ K5,

where K5 is only dependent on ρ, γ, µ, σ, L, f . This completes the proof of Lemma 5.5.

6. Main Theorem

Using Lemmas 5.1−5.5 and existence of approximate solution, we finally get the
main theorem.

Theorem 6.1 (Existence of periodic solution) Under the assumption (A), let
f ∈ C

(
ω, H1

per (Ω)
)

then the complex Ginzburg-Landau equation for 3-D has a unique
solution

u (t) ∈ C
(
[0, ω) ; H2

per (Ω)
)
∩ C1

(
[0, ω) ; L2

per (Ω)
)

.

Proof By Lemmas 5.1−5.5, we can choose a subsequence {uNk
(t)} from the se-

quence {uN (t)} such that

uNk
(t) → u (t) , (k →∞)weakly in C

(
[0, ω) ; H2

per (Ω)
)
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uNk
(t) → u (t) , (k →∞) strong in C

(
[0, ω) ; H1

per (Ω)
)

uNk
(t) → u (t) , (k →∞)weakly in C1

(
[0, ω) ; L2

per (Ω)
)

Next, we estimate nonlinear term(1 + iµ) |uNk
|2σ uNk

‖(1 + iµ) |uNk
|2σ uNk

− (1 + iµ) |u|2σ u
∥∥∥

≤
√

1 + µ2
∥∥∥
(
|uNk

|2σ − |u|2σ
)

uNk
+ |u|2σ (uNk

− u)
∥∥∥

≤
√

1 + µ2
∥∥∥f ′ (ξ) (uNk

− u) uNk
+ |u|2σ (uNk

− u)
∥∥∥

(
f (s) = s2σ

)

≤
√

1 + µ2
∥∥f ′ (ξ)

∥∥∞ ‖uNk
‖∞ ‖(uNk

− u)‖+
√

1 + µ2
∥∥∥|u|2σ

∥∥∥∞ ‖(uNk
− u)‖

≤ c ‖(uNk
− u)‖ → 0, (Nk →∞) .

Then we obtain

N (uNk
) → N (u) , k →∞, uniformly in time.

Taking k →∞ from (3.1), we have

(ut + Au, φj) = (N (u) + f, φj) , j = 1, 2, · · · .

By using the density of {φj ; j = 1, 2, · · ·} in L2 (Ω), it follows that: ∀ω ∈ L2 (Ω) ,

(ut + Au, ω) = (N (u) + f, ω) .

Finally, we prove uniqueness of solution.
Let u1 (x, t) and u2 (x, t) be two solutions of the problem (3.1), (3.2). Subtracting the
equations for u1 (x, t) and u2 (x, t) we get

1
2
∂t ‖(u1 − u2)‖2

2 =− ρ ‖(u1 − u2)‖2
2 − ‖∆(u1 − u2)‖2

2,

−Re(1 + iµ)
∫ (

|u1|2σ u1 − |u2|2σ u2

)
(u1 − u2) . (6.1)

Taking the inner product of (6.1) with u1 − u2, and taking real part of the resulting
identity yield

1
2

d

dt
‖u1 − u2‖2

2 =− ρ ‖u1 − u2‖2
2, − ‖∇(u1 − u2)‖2

2,

−Re(1 + iµ)
∫ (

|u1|2σ u1 − |u2|2σ u2

)
(u1 − u2)∗ (6.2)

Noting ∣∣∣|u1|2σ u1 − |u2|2σ u2

∣∣∣ ≤ (2σ + 1) sup
(
|u1|2σ , |u2|2σ

)
|u1 − u2| ,
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by Höder’s inequality and Agmom’s inequality, the above inequality can be estimated
as follows

∫ (
|u1|2σ u1 − |u2|2σ u2) (u1 − u2)

≤(2σ + 1)
∫

sup
(
|u1|2σ , |u2|2σ

)
|u1 − u2|2

≤c(2σ + 1)
(
‖u1‖2σ

L∞ , ‖u2‖2σ
L∞

)
‖u1 − u2‖2

2,

≤c(2σ + 1) (‖u1‖H2 , ‖u2‖H2) ‖u1 − u2‖2
2 . (6.3)

Thus we have from (6.2), (6.3)

1
2

d

dt
‖u1 − u2‖2

2 + ‖∇u1 − u2‖2
2 = (c(2σ + 1)− ρ) (‖u1‖H2 , ‖u2‖H2) ‖u1 − u2‖2

2 .

It follows from Gronwall’s inequality that

‖u1 (x, t)− u2 (x, t)‖2
2 ≤ ek̃T ‖u1 (0)− u2 (0)‖2

2 t ∈ [0, T ] ,

where k̃ = (c(2σ + 1)− ρ) (‖u1‖H2 , ‖u2‖H2). Namely,

‖u1 (x, t)− u2 (x, t)‖ −→ 0, as ‖u1 (0)− u2 (0)‖ −→ 0.

This completes the proof of the theorem.
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