GLOBAL ATTRACTORS OF REACTION-DIFFUSION SYSTEMS AND THEIR HOMOGENIZATION*

Zhang Xingyou and Hu Xiaohong
(College of Math. and Physics, Chongqing University, 400030, China)
(E-mail: zhangxy@cqu.edu.cn; xiaohongcq@hotmail.com)
(Received Jun. 12, 2003)

Abstract

In this paper, we study the existence of the global attractor $\mathcal{A}^{\varepsilon}$ of reaction-diffusion equation $$
\partial_{t} u^{\varepsilon}(x, t)=A_{\varepsilon} u^{\varepsilon}(x, t)-f\left(x, \varepsilon^{-1} x, u^{\varepsilon}(x, t)\right),
$$ and the homogenized attractor \mathcal{A}^{0} of the corresponding homogenized equation, then give explicit estimates for the distance between the attractor $\mathcal{A}^{\varepsilon}$ and the homogenized attractor \mathcal{A}^{0}.

Key Words Homogenization; global attractor; reaction-diffusion systems; almostperiodic function; Diophantine conditions.

2000 MR Subject Classification 35B40, 35K57. Chinese Library Classification O175.25, O175.29.

1. Introduction and Main Results

We consider the reaction-diffusion system

$$
\left\{\begin{array}{l}
\partial_{t} u^{\varepsilon}(x, t)=A_{\varepsilon} u^{\varepsilon}(x, t)-f\left(x, \varepsilon^{-1} x, u^{\varepsilon}(x, t)\right), \quad(x, t) \in \Omega \times \mathbf{R}^{+} \tag{1.1}\\
\left.u^{\varepsilon}(x, t)\right|_{\partial \Omega}=0,\left.\quad u^{\varepsilon}(x, t)\right|_{t=0}=u_{0}
\end{array}\right.
$$

where Ω is a bounded domain in \mathbf{R}^{3} and $0<\varepsilon \leq \varepsilon_{0}<1$. Here $u^{\varepsilon}=u^{\varepsilon}(x, t)=$ $\left(u_{\varepsilon}^{1}, \cdots, u_{\varepsilon}^{k}\right)$ is an unknown vector-valued function. The second order elliptic differential operators A_{ε} have the form as follows:

$$
\begin{equation*}
A_{\varepsilon} u:=\operatorname{diag}\left(A_{\varepsilon}^{1} u^{1}, \cdots, A_{\varepsilon}^{k} u^{k}\right) \tag{1.2}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{\varepsilon}^{l} u^{l}=\sum_{i, j=1}^{3} \partial_{x_{i}}\left(a_{i j}^{l}\left(\varepsilon^{-1} x\right) \partial_{x_{j}} u^{l}(x)\right) \tag{1.3}
\end{equation*}
$$

[^0]where the functions $a_{i j}^{l}(y), l=1, \cdots, k, y \in \mathbf{R}^{3}$, are assumed to be symmetric, smooth and \mathbf{Y}-periodic with respect to $y \in \mathbf{R}^{3}$, where $\mathbf{Y} \subset \mathbf{R}^{3}$ is a fixed cube. The uniform ellipticity condition
\[

$$
\begin{equation*}
\sum_{i, j=1}^{3} a_{i j}^{l}(y) \zeta_{i} \zeta_{j} \geq \nu|\zeta|^{2}, \quad \forall y, \zeta \in \mathbf{R}^{3} \tag{1.4}
\end{equation*}
$$

\]

is also assumed (with an appropriate $\nu>0$) to be valid for operators A_{ε}^{l}. We impose that $f(x, y, u)$ is almost-periodic ([1]) with respect to $y \in \mathbf{R}^{3}$ and satisfies the conditions as follows:

$$
\begin{align*}
& f \in C^{1}\left(\mathbf{R}^{k}, \mathbf{R}^{k}\right), \quad \partial_{z} f(x, y, z) \zeta \zeta \geq-C_{2} \zeta \zeta, \quad \forall \zeta \in \mathbf{R}^{k} \tag{1.5}\\
& |f(x, y, u)| \leq C\left(1+|u|^{p}\right), \quad \forall(x, y) \in \Omega \times \mathbf{R}^{3} \tag{1.6}\\
& \sum_{l=1}^{k} f^{l} u^{l}\left|u^{l}\right|^{p_{l}} \geq C \sum_{l=1}^{k}\left|u^{l}\right|^{p_{l}+2}-C_{1}, \quad \forall u \in \mathbf{R}^{k} \tag{1.7}
\end{align*}
$$

where $p \geq 1, p_{i} \geq 2(p-1), i=1, \cdots, k$. It is assumed also that the initial data $u_{0} \in\left(L^{2}(\Omega)\right)^{k}$.

Efendiev and Zelik (see [2]) studied the problem (1.1) when $f(x, y, u)$ is independent of y. Fiedler and Vishik (see [3]) studied the case when the $A_{\varepsilon} u$ in (1.1) is replaced by $a \Delta u$. In fact, one can obtain the existence of solutions and attractors for (1.1) with $f(x, y, u)$ depending on y by the standard method as those in [4]. However, when estimate the distance between the attractors for (1.1) and the attractors of the homogenized equation, the arguments in [2] or [3] don't work. We have to overcome these difficulties by combining the ideas in [3], [2] and analyzing carefully the properties of periodic and almost-periodic functions.

In order to simplify our expression, we denote $H=\left(L^{2}(\Omega)\right)^{k}, V=\left(W_{0}^{1,2}(\Omega)\right)^{k}$, $F=\left(L^{\infty}(\Omega)\right)^{k},\|\cdot\|_{\left(W^{l, p}(\Omega)\right)^{k}}=\|\cdot\|_{l, p}$.

Theorem 1.1 If the assumptions (1.2) - (1.7) hold, and the initial data $u_{0} \in H$, then for any $T>0, \varepsilon>0$, the problem (1.1) possesses a unique solution $u^{\varepsilon}(x, t) \in$ $L^{\infty}([0, T] ; H) \cap L^{2}([0, T] ; V), u^{\varepsilon} \in C\left(R^{+} ; H\right)$. The mapping $S_{t}^{\varepsilon}: u_{0} \longrightarrow u^{\varepsilon}(x, t)$ defines a continuous semigroup $S_{t}^{\varepsilon}: H \longrightarrow H$. If, furthermore, $u_{0} \in V$, then $u^{\varepsilon}(x, t) \in$ $L^{\infty}([0, T] ; V) \cap L^{2}\left([0, T] ; W^{2,2}(\Omega)\right), u^{\varepsilon} \in C\left(R^{+} ; V\right)$.

Theorem 1.2 If the assumptions (1.2) - (1.7) hold, and $u_{0} \in H$, then for every $\varepsilon>0$, the semigroup S_{t}^{ε} generated by the equation (1.1) possesses a global compact attractor $\mathcal{A}^{\varepsilon}$ in H.

Theorem 1.1 can be proved by the Faedo-Galerkin method with the help of R.Temam [4], and the details of the proof are omitted. Similar arguments as in [4] for the problem (1.1) yield the a prior estimates needed about $u^{\varepsilon}(x, t)$ in H and V, and we omit the details. Then Theorem 1.2, whose proof is also omitted, can be easily proved by the standard arguments [4, Theorem 1.1.1].

By the standard homogenization theory, one can obtain the homogenized problem (2.11), for which one can prove the similar results to Theorems 1.1 and 1.2. In order to
estimate the L^{2}-distance between the attractors for (1.1) and the attractors of the homogenized equation (2.11), we can obtain the a prior estimates required, whose proofs are also omitted, by the similar arguments as those in [2] under the better initial data condition (see Section 2). Under some additional assumptions (mainly the so-called Diophantine conditions (2.21)), we have

Theorem 1.3 Let the assumptions of Theorem 1.2, (2.1), (2.2) and the assumptions of Proposition 2.2 (see Section 2) hold. Let $u_{0} \in F \cap V$ and let $u^{\varepsilon}(x, t)$ be the solution, defined in Theorem 1.1, of the problem (1.1), $u^{0}(x, t) \in L^{\infty}([0, T] ; H) \cap$ $L^{2}([0, T] ; V)$ be the solution of the problem (2.11), then $\forall t>0$, we have

$$
\left\|u^{\varepsilon}(x, t)-u^{0}(x, t)\right\|_{H} \leq C \varepsilon^{\frac{2}{3}} e^{\beta t},
$$

where the constant $C>0$ depends only on $\left\|u_{0}\right\|_{F \cap V}$ and $\beta>0$ is a constant independent of u^{ε} and u^{0}.

Theorem 1.4 Let the assumptions of Theorem 1.3 and (2.39) hold. Let $\mathcal{A}^{\varepsilon}$ be the global attractor of the equation (1.1) and \mathcal{A}^{0} be the global attractor of the homogenized equation (2.11), and define the fractional convergence rate $k=\frac{2 \rho}{3 \rho+3 \beta}$, then there exists a constant $C>0$ such that

$$
d\left(\mathcal{A}^{\varepsilon}, \mathcal{A}^{0}\right):=\operatorname{dist}_{H}\left(\mathcal{A}^{\varepsilon}, \mathcal{A}^{0}\right) \leq C \varepsilon^{k}, \quad 0<\varepsilon \leq \varepsilon_{0} .
$$

2. The Homogenization and the Estimates of Errors

First, we study the homogenization of the problem (1.1). In addition to the assumptions (1.2)-(1.7), we assume the initial data $u_{0} \in F \cap V$ and the $f(x, y, z)$ satisfies the conditions as follows:

$$
\begin{equation*}
f^{l}(x, y, z)=\sum_{j=1}^{q} b_{l}^{j}(x, y) f_{j l}(z), \quad\left|b_{l}^{j}(x, y)\right| \leq C \tag{2.1}
\end{equation*}
$$

where $f^{l}(x, y, z), l=1, \ldots, k$, are the components of $f(x, y, z)$. Let

$$
\begin{equation*}
\sum_{l=1}^{k}\left|\partial_{z} f^{l}(x, y, z)\right| \leq C_{1}\left(|z|^{4}+1\right) . \tag{2.2}
\end{equation*}
$$

Recall that $w \in A P\left(\mathbf{R}^{3}\right)$ (the set of almost-periodic functions) possesses the mean value which can be calculated by :

$$
\begin{equation*}
\langle w\rangle=\langle w\rangle_{x}:=\lim _{T \rightarrow \infty} \frac{1}{2^{3} T^{3}} \int_{[-T, T]^{3}} w(x) \mathrm{d} x, \tag{2.3}
\end{equation*}
$$

and the Fourier expansion as follows (see [5])

$$
\begin{equation*}
w(x)=\sum_{\hat{w}(\xi) \neq 0} \hat{w}(\xi) e^{i(x, \xi)}, \tag{2.4}
\end{equation*}
$$

where the amplitudes $\hat{w}(\xi) \in \mathbf{C}, \xi \in \mathbf{R}^{3}$, defined by $\hat{w}(\xi)=\left\langle w(x) e^{-i(x, \xi)}\right\rangle$. We denote by $\operatorname{Trig}\left(\mathbf{R}^{3}\right)$ the space of all finite trigonometric polynomials of the form (2.4)

$$
\begin{equation*}
\operatorname{Trig}\left(\mathbf{R}^{3}\right):=\left\{w(x)=\sum_{k=1}^{K} w_{k} e^{i\left(x, \xi_{k}\right)}: K \in \mathbf{N}, \xi_{k} \in \mathbf{R}^{3}, w_{k} \in \mathrm{C}\right\} . \tag{2.5}
\end{equation*}
$$

We state a classical result in the homogenization theory:
Proposition 2.1([6, 7]) Let $g \in W^{-1,2}(\Omega)$ and $v^{\varepsilon} \in V$ be the solution of the equation $A_{\varepsilon} v^{\varepsilon}=g$, where the operator A_{ε} is defined by (1.3). Then,

$$
\left\{\begin{array}{l}
v^{\varepsilon} \rightharpoonup v^{0} \quad \text { weakly in } V, \tag{2.6}\\
A_{\varepsilon} v^{\varepsilon} \rightharpoonup A_{0} v^{0} \quad \text { weakly in } H,
\end{array}\right.
$$

where $v^{0} \in V$ is a unique solution of the homogenized problem $A_{0} v^{0}=g$. The operator A_{0} is defined by the form as follows:

$$
\begin{equation*}
A_{0}^{l} v^{0 l}=\sum_{i, j=1}^{3} \partial_{x_{i}}\left(a_{i j}^{0 l} \partial_{x_{j}} v^{0 l}\right), \quad A_{0} v:=\operatorname{diag}\left(A_{0}^{1} v^{1}, \cdots, A_{0}^{k} v^{k}\right), \tag{2.7}
\end{equation*}
$$

and the so-called homogenized coefficients $a_{i j}^{0 l}=\left\langle a_{i j}^{l}(y)\right\rangle+\sum_{m=1}^{3}\left\langle a_{i m}^{l}(y) \partial_{y_{m}} N_{m}^{l}(y)\right\rangle$ are constants, where the \mathbf{Y}-periodic correctors $N_{m}^{l}(y), m=1,2,3, l=1, \cdots, k$, are the solutions of the auxiliary periodic problem as follows:

$$
\begin{equation*}
\sum_{i, j=1}^{3} \partial_{y_{i}}\left(a_{i j}^{l}(y) \partial_{y_{j}} N_{m}^{l}(y)\right)=-\sum_{i=1}^{3} \partial_{y_{i}}\left(a_{i m}^{l}(y)\right), \quad y \in \mathbf{R}^{3} \tag{2.8}
\end{equation*}
$$

And the homogenized matrix A_{0} satisfies the coerciveness condition (1.4).
The following lemma, whose proof is easy and so omitted, will be used in the sequel.
Lemma 2.1 Let Assumptions (1.6), (2.1) hold and $f\left(x, y, u^{\varepsilon}\right)$ be almost-periodic in y, assume $u^{\varepsilon} \rightarrow u^{0}$ in $H(\varepsilon \rightarrow 0)$, and denote $f_{0}\left(x, u^{0}\right):=\left\langle f\left(x, y, u^{0}\right)\right\rangle_{y}$, then we have the result as follows:

$$
\begin{gather*}
f\left(x, \varepsilon^{-1} x, u^{\varepsilon}\right) \rightharpoonup f_{0}\left(x, u^{0}\right) \quad \text { weakly in } H . \tag{2.9}\\
f^{l}\left(x, u^{0}\right)=\sum_{j=1}^{q} b_{l}^{0 j}(x) f_{j l}\left(u^{0}\right) . \tag{2.10}
\end{gather*}
$$

Now by the standard homogenization theory we obtain the homogenized problem

$$
\left\{\begin{array}{l}
\partial_{t} u^{0}=A_{0} u^{0}-f_{0}\left(x, u^{0}\right), \quad(x, t) \in \Omega \times \mathbf{R}^{+}, \tag{2.11}\\
\left.u^{0}\right|_{\partial \Omega}=0,\left.\quad u^{0}\right|_{t=0}=u_{0} .
\end{array}\right.
$$

Note that this equation satisfies all assumptions of the equation (1.1), consequently, it admits a unique solution $u^{0}(x, t) \in L^{\infty}([0, T] ; H) \cap L^{2}([0, T] ; V)$ and (2.11) possesses a global attractor \mathcal{A}^{0} in H.

We now specify additional conditions which enable us to estimate the distance between the solutions $u^{\varepsilon}(x, t)$ and $u^{0}(x, t)$ in the norm of H. In order to give the distance estimate of $u^{\varepsilon}(x, t)$ and $u^{0}(x, t)$ in H, we need three propositions (see $\left.[2,3]\right)$.

First, we introduce some results about divergence representations. Let $h(x, y)=$ $h\left(x_{1}, \cdots, x_{3}, y_{1}, \cdots, y_{3}\right)$ be a sufficiently smooth function which is almost-periodic in $y=\left(y_{1}, \cdots, y_{3}\right)$, ie :
(i) there exists a function $H\left(x, w_{1}, \cdots, w_{3}\right)=H\left(x_{1}, \cdots, x_{3}, w_{11}, \cdots, w_{1 k_{1}}, \cdots, w_{31}\right.$, $\left.\cdots, w_{3 k_{3}}\right)$ which is 2π-periodic with respect to each $w_{i j}$. Here $w_{i}=\left(w_{i 1}, \cdots, w_{i k_{i}}\right) \in$ $\mathbf{R}^{k_{i}} . \quad(i=1, \cdots, 3)$
(ii) there exists rationally independent frequency $\alpha_{11}, \cdots, \alpha_{1 k_{1}}, \cdots, \alpha_{3 k_{3}}$ such that

$$
\begin{equation*}
h(x, y)=H\left(x_{1}, \cdots, x_{3}, \alpha_{1} y, \cdots, \alpha_{3} y\right), \tag{2.12}
\end{equation*}
$$

where $\alpha_{l}=\left(\alpha_{l 1}, \cdots, \alpha_{l k_{l}}\right)$. Let $\tilde{H}(x, w)=H(x, w)-H_{0}(x)$, where

$$
\begin{equation*}
H_{0}(x)=\left|T^{k}\right|^{-1} \int_{T^{k}} H\left(x, w_{1}, \cdots, w_{3}\right) \mathrm{d} w_{1} \cdots \mathrm{~d} w_{3} \tag{2.13}
\end{equation*}
$$

where $T^{k}=T^{k_{1}} \times \cdots \times T^{k_{3}}$, and $T^{k_{i}}=\mathbf{R}^{k_{i}} /(\mathbf{Z} \cdot 2 \pi)^{k_{i}}$ is the k_{i}-dimensional torus. Assume that the Fourier series

$$
\begin{equation*}
H(x, w)=\sum_{m} H_{m}(x) e^{i m \cdot w} \tag{2.14}
\end{equation*}
$$

is convergent. Let

$$
\begin{equation*}
\tilde{h}(x, y)=h(x, y)-H_{0}(x)=\sum_{m \neq 0} H_{m}(x) \exp \left(i \sum_{j=1}^{3} m_{j} \alpha_{j} y_{j}\right), \tag{2.15}
\end{equation*}
$$

where $m_{j}=\left(m_{j 1}, \cdots, m_{j k_{j}}\right) \in \mathbf{Z}^{k_{j}}, \alpha_{j} \in \mathbf{R}^{k_{j}}$ and $y_{j} \in \mathbf{R}$. For any such almost periodic function $h(x, y)$, we construct a corresponding divergence representation by function $S_{\sigma}(x, y), \sigma=1, \cdots, 3$.

$$
\begin{equation*}
\tilde{h}(x, y)=\sum_{\sigma=1}^{3} \partial_{y_{\sigma}} S_{\sigma}(x, y) . \tag{2.16}
\end{equation*}
$$

We shall find $S_{\sigma}(x, y)$ of the form

$$
\begin{equation*}
S_{\sigma}(x, y)=\sum_{m \in \mathbf{Z}^{k} \backslash\{0\}} \eta_{m}^{\sigma}(x) \exp \left(i \sum_{j=1}^{3} m_{j} \alpha_{j} y_{j}\right) . \tag{2.17}
\end{equation*}
$$

From (2.15) - (2.17) we derive:

$$
\begin{equation*}
\sum_{m \neq 0} H_{m}(x) \exp \left(i \sum_{j=1}^{3} m_{j} \alpha_{j} y_{j}\right)=\tilde{h}(x, y)=\sum_{m \neq 0} \sum_{\sigma=1}^{3} m_{\sigma} \cdot \alpha_{\sigma} \eta_{m}(x) \exp \left(i \sum_{j=1}^{3} m_{j} \alpha_{j} y_{j}\right) . \tag{2.18}
\end{equation*}
$$

So (2.16) will hold if

$$
\begin{equation*}
\sum_{\sigma=1}^{3} m_{\sigma} \cdot \alpha_{\sigma} \eta_{m}^{\sigma}(x)=-i H_{m}(x), \tag{2.19}
\end{equation*}
$$

for all $m \in \mathbf{Z}^{k} \backslash\{0\}$. Let the following assumptions be satisfied for some positive δ and δ^{\prime} :

$$
\begin{align*}
& \tilde{b}_{l}^{j}=\tilde{h}_{l}^{j}=\sum_{m \neq 0} H_{l m}^{j}(x) \exp \left(i \sum_{j} m_{j} \alpha_{j} y_{j}\right) . \tag{2.20}\\
& \left|m_{\sigma} \cdot \alpha_{\sigma}\right| \geq c\left|m_{\sigma}\right|^{-\left(k_{\sigma}-1+\delta\right)}, \quad \forall m_{\sigma} \in \mathbf{Z} \backslash\{0\} . \tag{2.21}\\
& \left\|H_{l m}^{j}(x)\right\|_{C^{0}(\bar{\Omega})} \leq c\left(1+\left|m_{\sigma}\right|\right)^{-\left(k_{\sigma}-1+\delta\right)}(1+|m|)^{-\left(k+\delta^{\prime}\right)} . \tag{2.22}\\
& \left\|\partial_{x_{\sigma}} H_{l m}^{j}(x)\right\|_{L^{3}(\Omega)} \leq c\left(1+\left|m_{\sigma}\right|\right)^{-\left(k_{\sigma}-1+\delta\right)}(1+|m|)^{-\left(k+\delta^{\prime}\right)} . \tag{2.23}
\end{align*}
$$

Now we can state the propositions as follows:
Proposition 2.2([3]) Let the coefficients $b_{l}^{j}(x, y)$ of (2.1) satisfy the conditions as follows:
(i) $b_{l}^{j}(x, y)$ are almost-periodic in $y, j=1, \cdots, q$;
(ii) the corresponding frequencies $\alpha_{i j}$ satisfy Diophantine condition (2.21);
(iii) the coefficients $H_{l m}^{j}(x)$ in the series (2.20) of $\tilde{b}_{l}^{j}(x, y)=b_{l}^{j}(x, y)-b_{l}^{0 j}(x)$ satisfy the decay conditions (2.22), (2.23),
then we can represent $\tilde{b}_{l}^{j}(x, y)$ in the form

$$
\begin{equation*}
\tilde{b}_{l}^{j}(x, y)=\sum_{\sigma=1}^{3} \partial_{y_{\sigma}} S_{l \sigma}^{j}(x, y), \tag{2.24}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\left|S_{l \sigma}^{j}(x, y)\right| \leq C_{0}, \quad\left\|\partial_{x_{\sigma}}^{1} S_{l \sigma}^{j}(x, y)\right\|_{L^{3}(\Omega)} \leq C_{0}, \tag{2.25}
\end{equation*}
$$

here $\partial_{x_{\sigma}}^{1}$ indicates partial derivatives with respect to the first argument x of the function $S_{l \sigma}^{j}(x, y)$.

Proposition 2.3([3]) Let the assumptions (1.2)-(1.7), (2.1), (2.2) and Proposition 2.2 hold. Then

$$
\begin{equation*}
\left|\left(f\left(x, \varepsilon^{-1} x, u^{\varepsilon}\right)-f_{0}\left(x, u^{\varepsilon}\right), u^{\varepsilon}-u^{0}\right)\right| \leq \varepsilon C\left\|u^{\varepsilon}-u^{0}\right\|_{V} \tag{2.26}
\end{equation*}
$$

where the constant $C>0$ depends only on $\left\|u_{0}\right\|_{F \cap V}$.
Denote (see [5]):

$$
\begin{equation*}
u_{1}^{\varepsilon}(t)=u^{0}(t)+\varepsilon \sum_{k=1}^{3} N_{k}\left(\varepsilon^{-1} x\right) \partial_{x_{k}} u^{0}(t) \tag{2.27}
\end{equation*}
$$

where $N_{k}\left(\varepsilon^{-1} x\right), k=1,2,3$, are the solutions of the problem (2.8). Note that the function $u_{1}^{\varepsilon}(t)$ doesn't satisfy the 0-Dirichlet boundary condition. In order to avoid this
difficulty, we introduce a family of cut-off functions $\tau^{\varepsilon}(x)$ satisfying two conditions as follows (see [5]): (1) $\tau^{\varepsilon}(x) \in C_{0}^{\infty}(\Omega), 0 \leq \tau^{\varepsilon} \leq 1, \tau^{\varepsilon}(x) \equiv 1$ off the ε-neighborhood of the boundary of Ω; (2) $\varepsilon\left|\nabla_{x} \tau^{\varepsilon}(x)\right| \leq C$ in Ω, where the constant C is independent of ε. Thus we take

$$
\begin{align*}
w^{\varepsilon}(t) & =u_{1}^{\varepsilon}(t)-\varepsilon\left(1-\tau^{\varepsilon}(x)\right) \sum_{k=1}^{3} N_{k}\left(\varepsilon^{-1} x\right) \partial_{x_{k}} u^{0}(t) \\
& =u^{0}(t)+\varepsilon \tau^{\varepsilon}(x) \sum_{k=1}^{3} N_{k}\left(\varepsilon^{-1} x\right) \partial_{x_{k}} u^{0}(t) . \tag{2.28}
\end{align*}
$$

Then, obviously, $w^{\varepsilon}(t) \in V$. we need the proposition as follows:
Proposition 2.4([2]) Let the assumption (1.4) hold, and let $w^{\varepsilon}(t), A_{\varepsilon} u^{\varepsilon}, A_{0} u^{0}$ be defined by (2.28), (1.3), (2.7) respectively, $u^{\varepsilon}(t), u^{0}(t)$ be the solution of the equation (1.1), (2.11) respectively. Then

$$
\begin{equation*}
\left(A_{\varepsilon} u^{\varepsilon}(t)-A_{0} u^{0}(t), u^{\varepsilon}(t)-w^{\varepsilon}(t)\right) \leq C \varepsilon^{\frac{2}{3}}\left\|u^{0}(t)\right\|_{2,2}^{2}, \tag{2.29}
\end{equation*}
$$

where the constant $C>0$ is independent of ε.
Proof of Theorem 1.3 Denote $v(x, t)=u^{\varepsilon}(x, t)-u^{0}(x, t)$. Subtracting (2.11) from (1.1), we get

$$
\begin{equation*}
\partial_{t} v=A_{\varepsilon} u^{\varepsilon}-A_{0} u^{0}-\left(f\left(x, \varepsilon^{-1} x, u^{\varepsilon}\right)-f_{0}\left(x, u^{\varepsilon}\right)\right)-\left(f_{0}\left(x, u^{\varepsilon}\right)-f_{0}\left(x, u^{0}\right)\right) . \tag{2.30}
\end{equation*}
$$

Multiplying both sides of (2.30) by v and integrating over Ω, we obtain

$$
\begin{align*}
\left(\partial_{t} v, v\right)= & \left(A_{\varepsilon} u^{\varepsilon}-A_{0} u^{0}, v\right)-\left(f\left(x, \varepsilon^{-1} x, u^{\varepsilon}\right)-f_{0}\left(x, u^{\varepsilon}\right), v\right) \\
& -\left(f_{0}\left(x, u^{\varepsilon}\right)-f_{0}\left(x, u^{0}\right), v\right) . \tag{2.31}
\end{align*}
$$

To prove the theorem, we estimate each term of the right-hand side of (2.31) respectively. Using Proposition 2.4, we derive

$$
\begin{align*}
\sum_{l=1}^{k}\left(A_{\varepsilon}^{l} u_{\varepsilon}^{l}(t)-A_{0}^{l} u^{0 l}(t), v^{l}(t)\right)= & \sum_{l=1}^{k}\left(A_{\varepsilon}^{l} u_{\varepsilon}^{l}(t)-A_{0}^{l} u^{0 l}(t), u_{\varepsilon}^{l}(t)-w^{\varepsilon l}(t)\right) \\
& +\sum_{l=1}^{k}\left(A_{\varepsilon}^{l} u_{\varepsilon}^{l}(t)-A_{0}^{l} u^{0 l}(t), v^{l}(t)-u_{\varepsilon}^{l}(t)+w^{\varepsilon l}(t)\right) \\
\leq & C \varepsilon^{\frac{2}{3}}\left\|u^{0}\right\|_{2,2}^{2}+\left\|A_{\varepsilon} u^{\varepsilon}-A_{0} u^{0}\right\|_{H} \cdot\left\|v-u^{\varepsilon}+w^{\varepsilon}\right\|_{H} . \tag{2.32}
\end{align*}
$$

Note that the definitions (2.27), (2.28) and (2.5) imply the estimate

$$
\begin{equation*}
\left\|v(t)-u^{\varepsilon}(t)+w^{\varepsilon}(t)\right\|_{H} \leq C \varepsilon\left\|u^{0}(t)\right\|_{V} . \tag{2.33}
\end{equation*}
$$

Similar methods as in [2] for the equation (1.1) and (2.11) yield

$$
\begin{gather*}
\int_{T}^{T+1}\left\|A_{\varepsilon} u^{\varepsilon}(t)\right\|_{H}^{2} \mathrm{~d} t+\int_{T}^{T+1}\left\|A_{0} u^{0}(t)\right\|_{H}^{2} \mathrm{~d} t+\int_{T}^{T+1}\left\|u^{0}(t)\right\|_{V}^{2} \mathrm{~d} t+\int_{T}^{T+1}\left\|u^{0}(t)\right\|_{2,2}^{2} \mathrm{~d} t \\
\leq Q\left(\left\|u_{0}\right\|_{F \cap V}\right), \tag{2.34}
\end{gather*}
$$

for the appropriate function Q independent of $T \geq 0$ (here we have implicitly used the elliptic regularity estimate $\left\|u^{0}\right\|_{2,2} \leq C\left\|A_{0} u^{0}\right\|_{H}$). Inserting the estimate (2.33) to (2.32) and integrating over $t \in[0, T]$ then taking the estimate (2.34) into account, we have

$$
\begin{equation*}
\sum_{l=1}^{k} \int_{0}^{T}\left(A_{\varepsilon}^{l} u_{\varepsilon}^{l}(t)-A_{0}^{l} u_{0}^{l}(t), v^{l}\right) \mathrm{d} t \leq \varepsilon^{\frac{2}{3}} Q\left(\left\|u_{0}\right\|_{F \cap V}\right) T \tag{2.35}
\end{equation*}
$$

Applying (2.26) to the second term of the right-hand side of (2.31), integrating over $t \in[0, T]$, using Minkowski-inequality and (2.34), we obtain

$$
\begin{equation*}
\int_{0}^{T}\left|f\left(x, \varepsilon^{-1} x, u^{\varepsilon}(t)\right)-f_{0}\left(x, u^{\varepsilon}(t)\right), v(t)\right| \mathrm{d} t \leq \varepsilon Q_{1}\left(\left\|u_{0}\right\|_{F \cap V}\right) T . \tag{2.36}
\end{equation*}
$$

Assumption (2.2) implies

$$
\begin{align*}
\int_{0}^{T}\left|\left(f_{0}\left(x, u^{\varepsilon}\right)-f_{0}\left(x, u^{0}\right), v\right)\right| \mathrm{d} t & =\int_{0}^{T}\left|\left(\int_{0}^{1} f^{\prime}\left(s u^{\varepsilon}+(1-s) u^{0}\right) \mathrm{d} s \cdot v, v\right)\right| \mathrm{d} t \\
& \leq C_{2} \int_{0}^{T}\|v\|_{H}^{2} \mathrm{~d} t \tag{2.37}
\end{align*}
$$

Integrating (2.31) over $t \in[0, T]$ and taking account of (2.35)-(2.37), we get

$$
\begin{equation*}
\|v(T)\|_{0,2}^{2} \leq \varepsilon^{\frac{2}{3}} Q\left(\left\|u_{0}\right\|_{F \cap V}\right) T+2 \varepsilon Q_{1}\left(\left\|u_{0}\right\|_{F \cap V}\right) T+2 C_{2} \int_{0}^{T}\|v(T)\|_{H}^{2} \mathrm{~d} t . \tag{2.38}
\end{equation*}
$$

Applying Gronwall's inequality to (2.38) proves Theorem 1.3 .
Now we are ready to derive the error's estimates for the global attractors $\mathcal{A}^{\varepsilon}$ and \mathcal{A}^{0}. To this end, we need some additional information about \mathcal{A}^{0} which we in fact require to be exponentially attracting with exponential rate $\rho>0$. We assume there exists a constant $C=C\left(\varepsilon_{0}\right)$ such that for all $t \geq 0$

$$
\begin{equation*}
d:=\operatorname{dist}_{H}\left(u^{0}, \mathcal{A}^{0}\right) \leq C e^{-\rho t}, \tag{2.39}
\end{equation*}
$$

holds, uniformly for all $u_{0} \in \bigcup_{0<\varepsilon \leq \varepsilon_{0}} \mathcal{A}^{\varepsilon}$, where dist_{H} means the nonsymmetric Hausdorff distance (see [4]), i.e.

$$
\begin{equation*}
\operatorname{dist}_{H}(A, B):=\sup _{x \in A} \inf _{y \in B}\|x-y\|_{H} . \tag{2.40}
\end{equation*}
$$

Proof of Theorem 1.4 Let

$$
\begin{equation*}
\mathcal{B}:=\bigcup_{0<\varepsilon \leq \varepsilon_{0}} \mathcal{A}^{\varepsilon} . \tag{2.41}
\end{equation*}
$$

Pick $0<\varepsilon \leq \varepsilon_{0}$ and $u^{\varepsilon} \in \mathcal{A}^{\varepsilon} \subset \mathcal{B}$, arbitrarily. For $t \geq 0$ chosen below consider $u_{0} \in \mathcal{A}^{\varepsilon}$ such that

$$
\begin{equation*}
S_{t}^{\varepsilon} u_{0}=u^{\varepsilon} . \tag{2.42}
\end{equation*}
$$

Then Theorem 1.3 and (2.39) imply

$$
\begin{equation*}
d\left(u^{\varepsilon}, \mathcal{A}^{0}\right) \leq d\left(u^{\varepsilon}, u^{0}\right)+d\left(u^{0}, \mathcal{A}^{0}\right) \leq C \varepsilon^{\frac{2}{3}} e^{\beta t}+C e^{-\rho t} \tag{2.43}
\end{equation*}
$$

Choose $t \geq 0$, such that $\varepsilon^{\frac{2}{3}} e^{\beta t}=e^{-\rho t}$, thus $t=-\frac{\ln \varepsilon}{\beta+\rho}$. Substituting this choice of t back into (2.43), because of the arbitrariness of u^{ε}, we prove Theorem 1.4.

References

[1] Levitan B., Almost-Periodic Functions, Gostekhizdat, Moscow, 1953
[2] Efendiev M., Zelik S., Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization, Ann. Inst. Poincaré, 19(6)(2002), 961-989 .
[3] Fiedler B., Vishik M.L., Quantitative homogenization of global attractors for reactiondiffusion systems with rapidly oscillating terms, Asympt. Analysis, 34(2003), 159-183.
[4] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1997.
[5] Levitan B., Zhikov V., Almost-Periodic Functions and Differential Equations, Moscow University, 1978.
[6] Zhikov V., Kozlov S., O.Oleinik, Homogenization of Differerntial Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
[7] Cioranscu D., Donato P., An Introduction to Homogenization, Oxford University, New York, 1999.
[8] Lions J.L. and Magenes E., Nonhomogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972.
[9] Zhang X., Two-scale convergence and homogenization of a class of quasi-linear parabolic equations, Acta Math. Appl. Sinica, 19(3)(1996), 431-444.

[^0]: *This work was supported by the Returned Overseas Chinese Scholars Foundations of Educational Ministry and The Key Teachers' Foundations of Chongqing University.

