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Abstract We prove that the C0 boundedness of solution implies the global exis-
tence and uniqueness of C1 solution to the initial-boundary value problem for linearly
degenerate quasilinear hyperbolic systems of diagonal form with nonlinear boundary
conditions. Thus, if the C1 solution to the initial-boundary value problem blows up in
a finite time, then the solution itself must tend to the infinity at the starting point of
singularity.
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1. Introduction

For first order quasilinear hyperbolic systems, generically speaking, the classical
solution exists only locally in time and the singularity will appear in a finite time
(see [1-3] and the references therein). In some cases, however, the global existence of
classical solution can be obtained. For example, for the Cauchy problem for quasilinear
hyperbolic systems with weakly linearly degenerate characteristic fields (WLD), the
classical solution exists globally in time provided that the initial data are suitably small
and decay at the infinity [4]. This tells us that the formation of singularity depends
strongly on the character of characteristics of the system. For the initial-boundary
value problem, the situation is quite different. Even for quasilinear hyperbolic systems
of diagonal form with linearly degenerate characteristic fields (a special case of WLD),
the solution itself may blow up in a finite time (see [5]). Then it is natural to ask whether
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the classical C1 solution exists globally in time when the solution itself can be controlled.
The answer of this question is positive for homogeneous reducible hyperbolic systems
and, more generally, for homogeneous rich hyperbolic systems with linearly degenerate
characteristic fields, for which Lax transformation can be used to simplify the equations
[5, 6]. In this paper, we want to extend this result to general homogeneous hyperbolic
systems of diagonal form with linearly degenerate characteristic fields.

We consider then the following strictly hyperbolic system of diagonal form :

∂ui

∂t
+ λi(u)

∂ui

∂x
= 0 (i = 1, ..., n) (1.1)

for t ≥ 0 and x ∈ [0, 1], where u = (u1, ..., un), the eigenvalues λi(u) (i = 1, ..., n) are
supposed to be smooth and satisfy

λ1(u) < ... < λm(u) < 0 < λm+1(u) < ... < λn(u) (1.2)

for any given u on the domain under consideration. Moreover, suppose λi(u) (i =
1, ..., n) are all linearly degenerate in the sense of P.D.Lax, i.e.,

∂λi(u)
∂ui

≡ 0 (i = 1, ..., n). (1.3)

The system (1.1) is supplemented by the initial conditions

t = 0 : ui = ϕi(x) (i = 1, ..., n) (1.4)

for x ∈ [0, 1] and the boundary conditions

x = 0 : uk = gk(t, u1, ..., um) (k = m + 1, ..., n), (1.5)

x = 1 : uj = gj(t, um+1, ..., un) (j = 1, ...,m) (1.6)

for t ≥ 0, where ϕi and gi (i = 1, ..., n) are all C1 functions with respect to their
arguments, and the conditions of C1 compatibility are supposed to be satisfied at
points (t, x) = (0, 0) and (0, 1) respectively.

When λi (i = 1, ..., n) are constants, it has been proved (see [5]) that the initial-
boundary value problem (1.1)-(1.6) always admits a unique global C1 solution. This
shows that without the nonlinearity of system, the nonlinear boundary conditions can
not lead to the formation of singularity; otherwise, the C1 solution may blow up in a
finite time. The goal of this paper is to prove that if the C1 solution to the initial-
boundary value problem (1.1)-(1.6) blows up in a finite time, then the solution itself
must tend to the infinity at the starting point of singularity. This kind of blow up
phenomenon is similar to the breakdown of C1 solution to the Cauchy problem for
inhomogeneous reducible quasilinear hyperbolic systems of diagonal form with linearly
degenerate characteristic fields (see [7] or Chapter 2 in [3]).
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According to the local existence and uniqueness of C1 solution (see [8], [9]), there
exists δ > 0 depending on the C1 norm of the given data such that the problem (1.1)-
(1.6) has a unique C1 solution u = u(t, x) on the domain

D(δ) def= {(t, x) | 0 ≤ t ≤ δ, 0 ≤ x ≤ 1}. (1.7)

Then, in order to get the global existence and uniqueness of C1 solution u = u(t, x)
to the problem (1.1)-(1.6) for all time t ≥ 0, it suffices to prove that for any given
T0 > 0, if this problem admits a unique C1 solution on D(T ) with 0 < T ≤ T0, then
the following uniform a priori estimate on the C1 norm of solution holds :

||u(t, .)||C1[0,1]
def=

n∑
i=1

(
||ui(t, .)||C0[0,1] + ||∂xui(t, .)||C0[0,1]

)
≤ C1(T0), ∀ t ∈ [0, T ],

(1.8)
where C1(T0) is a positive constant independent of T but possibly depending on T0.
Thus, we formulate our theorem as follows.

Theorem 1 For any given T0 > 0, let u = u(t, x) be the unique C1 solution to the
initial-boundary value problem (1.1)-(1.6) on the domain D(T ) with 0 < T ≤ T0. If
u = u(t, x) satisfies the following uniform a priori estimate :

||u(t, .)||C0[0,1]
def=

n∑
i=1

||ui(t, .)||C0[0,1] ≤ C0(T0), ∀ t ∈ [0, T ], (1.9)

where C0(T0) is a positive constant independent of T but possibly depending on T0,
then the initial-boundary value problem (1.1)-(1.6) admits a unique global C1 solution
u = u(t, x) on the domain {(t, x)|t ≥ 0, 0 ≤ x ≤ 1}.

This paper is organized as follows. In the next section, we give the main steps
for proving Theorem 1. Then the proof of Theorem 1 is reduced to get an a priori
estimate on an integral form in which we have to control the quantity ∂ul

∂x along the
i-th characteristic for all l 6= i. This is achieved in the last section through an analysis
of the relation between the i-th and the l-th characteristics for all l 6= i.

2. Main steps of proving Theorem 1

Since the C0 norm of solution u = u(t, x) is bounded, it remains to show that

||∂xu(t, .)||C0[0,1]
def=

n∑
i=1

||∂xui(t, .)||C0[0,1] ≤ C1(T0), ∀ t ∈ [0, T ]. (2.1)

To this end, let

vi =
∂ui

∂x
(i = 1, ..., n) (2.2)

and
T1 = min

1≤i≤n
min

|u|≤C0(T0)

1
|λi(u)|

> 0. (2.3)
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In the sequel, we denote by Di (i = 1, 2, ...) various constants depending only on T0.
Without loss of generality, we may suppose that D1 ≥ 1. Then (2.1) follows if we prove
the following a priori uniform estimate for all t ∈ [0, T1] :

1 + ||v(t, .)||C0[0,1]
def= 1 +

n∑
i=1

||vi(t, .)||C0[0,1]

≤ D1

(
1 +

n∑
i=1

||vi(0, .)||C0[0,1]

)
def= D1

(
1 + ||v(0, .)||C0[0,1]

)
. (2.4)

In fact, if (2.4) holds, we may take u(T1, x) as the new initial data on t = T1 and repeat
the same procedure. Since D1 is independent of T , we have for all t ∈ [T1, 2T1],

1 + ||v(t, .)||C0[0,1] ≤ D1

(
1 + ||v(T1, .)||C0[0,1]

)
≤ D2

1

(
1 + ||v(0, .)||C0[0,1]

)
. (2.5)

Hence (2.5) holds for all t ∈ [0, 2T1]. By induction, repeating this procedure at most
N ≤

[
T0
T1

]
+ 1 times, we get

1 + ||v(t, .)||C0[0,1] ≤ DN
1

(
1 + ||v(0, .)||C0[0,1]

)
= DN

1

(
1 + ||ϕ′||C0[0,1]

)
, (2.6)

in which

||ϕ′||C0[0,1]
def=

n∑
i=1

||ϕ′
i||C0[0,1].

This proves (2.1).
For simplicity, we denote by vi = (v1, · · · , vi−1, vi+1, · · · , vn) for i = 1, ..., n. Differ-

entiating the system (1.1) with respect to x and using the condition (1.3), we get

∂vi

∂t
+ λi(u)

∂vi

∂x
= −ai(u, vi)vi (i = 1, ..., n), (2.7)

where
ai(u, vi) =

∑
l 6=i

∂λi(u)
∂ul

vl. (2.8)

Next, differentiating the boundary condition (1.5) with respect to t yields

x = 0 :
∂uk

∂t
=

∂gk

∂t
+

m∑
j=1

∂gk

∂uj

∂uj

∂t
(k = m + 1, ..., n),

then, using the system (1.1) we get

x = 0 : −λk(u)vk =
∂gk

∂t
−

m∑
j=1

λj(u)
∂gk

∂uj
vj (k = m + 1, ..., n).
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Therefore, the boundary conditions of v = (v1, ..., vn) on x = 0 can be expressed as

x = 0 : vk =
1

λk(u)

 m∑
j=1

λj(u)
∂gk

∂uj
vj −

∂gk

∂t

 (k = m + 1, ..., n). (2.9)

Similarly, we have

x = 1 : vj =
1

λj(u)

 n∑
k=m+1

λk(u)
∂gj

∂uk
vk −

∂gj

∂t

 (j = 1, ...,m). (2.10)

Noting that for given u, (2.9)-(2.10) are linear boundary conditions for v, (2.9)-(2.10)
can be rewritten as

x = 0 : vk =
m∑

j=1

bkj(t)vj + ck(t) (k = m + 1, ..., n), (2.11)

x = 1 : vj =
n∑

k=m+1

bjk(t)vk + cj(t) (j = 1, ...,m), (2.12)

where bjk, bkj , cj and ck are continuous functions of t ≥ 0. Since j 6= k, there is no
ambiguity in the above notations. Finally, the initial condition of v is given by

t = 0 : vi = ϕ′
i(x) (i = 1, ..., n) (2.13)

for x ∈ [0, 1].
Let (t, x) ∈ D(T1). For i = 1, ..., n, the i-th characteristic x = xi(s) passing through

(t, x) is defined by
x′i(s) = λi(u(s, xi(s))), xi(t) = x.

From the definition (2.3) of T1, for j = 1, ...,m, it is easy to see that there are only two
possibilities :

(i) The j-th characteristic x = xj(s) passing through (t, x) intersects the x-axis at
a point (0, αj). Then it follows from (2.7) and (2.13) that

dvj(s, xj(s))
ds

= −aj(s, xj(s))vj

and
t = 0 : vj = ϕ′

j(αj),

in which
ai(s, xi(s)) = ai(u(s, xi(s)), vi(s, xi(s))) (i = 1, ..., n). (2.14)

Hence, we have

vj(t, x) = vj(t, xj(t)) = ϕ′
j(αj) exp

{
−
∫ t

0
aj(s, xj(s)) ds

}
. (2.15)
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(ii) The j-th characteristic x = xj(s) passing through (t, x) intersects the line x = 1
at a point (tj , 1) and the k-th (k > m) characteristic x = xk(s) passing through (tj , 1)
intersects the x-axis at a point (0, βjk). Similarly to (2.15), we have

vj(t, x) = vj(t, xj(t)) = vj(tj , 1) exp

{
−
∫ t

tj

aj(s, xj(s)) ds

}
, (2.16)

where, noting (2.12),

vj(tj , 1) =
n∑

k=m+1

bjk(tj)vk(tj , 1) + cj(tj), (2.17)

and similarly to (2.15) and noting (2.13), we have

vk(tj , 1) = ϕ′
k(βjk) exp

{
−
∫ tj

0
ak(s, xk(s)) ds

}
(k = m + 1, ..., n). (2.18)

Similarly, for k = m + 1, ..., n, there are only two possibilities :

(iii) The k-th characteristic x = xk(s) passing through (t, x) intersects the x-axis
at a point (0, αk). In this case

vk(t, x) = vk(t, xk(t)) = ϕ′
k(αk) exp

{
−
∫ t

0
ak(s, xk(s)) ds

}
. (2.19)

(iv) The k-th characteristic x = xk(s) passing through (t, x) intersects the t-axis
at a point (tk, 0) and the j-th (j ≤ m) characteristic x = xj(s) passing through (tk, 0)
intersects the x-axis at a point (0, βkj). Similarly, we have

vk(t, x) = vk(t, xk(t)) = vk(tk, 0) exp
{
−
∫ t

tk

ak(s, xk(s)) ds

}
, (2.20)

where

vk(tk, 0) =
m∑

j=1

bkj(tk)vj(tk, 0) + ck(tk) (2.21)

and
vj(tk, 0) = ϕ′

j(βkj) exp
{
−
∫ tk

0
aj(s, xj(s)) ds

}
(j = 1, ...,m). (2.22)

Since both the C0 norm of u = u(t, x) and the C1 norm of ϕi (i = 1, ..., n) are
bounded, it is easy to see from (2.8) and (2.15)-(2.22) that in order to prove (2.4), it
suffices to estimate the term∫ t

t1
|vl(s, xi(s))| ds (l 6= i; i, l = 1, ..., n), (2.23)

for any given t1, t ∈ [0, T1] such that (s, xi(s)) ∈ D(T1) as s ∈ [t1, t], where ai(s, xi(s))
is defined by (2.8) and (2.14). This is the task of the next section.
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3. Estimate of (2.23)

Lemma 1 Under the assumption of Theorem 1, for all i = 1, ..., n and for any
given t1, t ∈ [0, T1] such that (s, xi(s)) ∈ D(T1) as s ∈ [t1, t], we have∫ t

t1
|vl(s, xi(s))| ds ≤ D2 (l 6= i). (3.1)

Proof For any given i = 1, ..., n, let x = xi(s) be the i-th characteristic passing
through any given point (t, x) ∈ D(T1). For any given l 6= i, by the definition (2.3)
of T1, there are only three possibilities for the l-th characteristic passing through the
same point (t, x).

Case 1 : This l-th characteristic intersects the x-axis at a point (0, yil(t)). We denote
by x = xl(s, yil(t)) this l-th characteristic. Since these two characteristics coincide at
the point (t, x) = (t, xi(t)), we have

xi(t) = xl(t, yil(t)) (l 6= i). (3.2)

Differentiating (3.2) with respect to t and using the definition of characteristics, we
obtain

λi(u(t, xi(t))) = λl(u(t, xi(t))) +
∂xl(t, yil(t))

∂y
y′il(t).

Then it follows from the strict hyperbolicity (1.2) that y′il(t) (l 6= i) never vanishes,
hence, t → yil(t) is a strictly monotone function. From the l-th equation in (1.1), ul is
constant along any l-th characteristic, then

ul(t, xi(t)) = ul(t, xl(t, yil(t))) = ϕl(yil(t)),

which yields
dul(t, xi(t))

dt
= ϕ′

l(yil(t)) y′il(t). (3.3)

On the other hand, note the system (1.1), a direct computation gives

dul(t, xi(t))
dt

=
(

∂ul

∂t
+ λi(u)

∂ul

∂x

)
(t, xi(t)) =

(
(λi(u)− λl(u))

∂ul

∂x

)
(t, xi(t)). (3.4)

Therefore,

vl(t, xi(t)) =
ϕ′

l(yil(t)) y′il(t)
(λi(u)− λl(u))(t, xi(t))

. (3.5)

This allows to obtain the following estimate for any given t1 ∈ [0, T1] such that
(s, xi(s)) ∈ D(T1) as s ∈ [t1, t] and the l-th characteristics passing through (s, xi(s)) as
s ∈ [t1, t] intersect the x-axis :∫ t

t1
| vl(s, xi(s)) | ds =

∫ t

t1

∣∣∣ 1
(λi(u)− λl(u))(s, xi(s))

ϕ′
l(yil(s)) y′il(s)

∣∣∣ ds
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≤ D3

∣∣∣ ∫ t

t1
y′il(s) ds

∣∣∣
= D3 | yil(t)− yil(t1) |
≤ D3. (3.6)

Here, we have used the fact that 0 ≤ yil(t) ≤ 1 and t → yil(t) is a strictly monotone
function.

Case 2 : This l-th characteristic intersects the line x = 1 at a point (τil(t), 1). We
denote by x = xl(s, τil(t)) this l-th characteristic. Obviously, we have l ≤ m and

xi(t) = xl(t, τil(t)) (l 6= i, l ≤ m). (3.7)

Differentiating (3.7) with respect to t and using the definition of characteristics, we
obtain

λi(u(t, xi(t))) = λl(u(t, xi(t))) +
∂xl(t, τil(t))

∂y
τ ′il(t).

It follows again from the strict hyperbolicity (1.2) that t → τil(t) is a strictly monotone
function.

Let us look at the k-th (k > m) characteristic passing through the point (τil(t), 1).
By the definition of T1, this k-th characteristic must intersect the x-axis at a point
(0, yilk(t)) and can be denoted by x = xk(s, yilk(t)). Now, we show that t → yilk(t) is
still a strictly monotone function. Indeed, from the definition of yilk(t), we may write

yilk(t) = y(k)(ξ)

with ξ = τil(t). Since t → τil(t) is a strictly monotone function, it remains to show that
ξ → y(k)(ξ) is also a strictly monotone function. Noting that the k-th characteristic
x = xk(s, yilk(t)) passes through the point (τil(t), 1), we have

1 = xk(τil(t), yilk(t)) = xk(ξ, y(k)(ξ)).

Differentiating the above relation with respect to ξ gives

0 =
∂xk(ξ, y(k)(ξ))

∂ξ
+

∂xk(ξ, y(k)(ξ))
∂y

(y(k)(ξ))′

= λk(u(ξ, xk(ξ, y(k)(ξ)))) +
∂xk(ξ, y(k)(ξ))

∂y
(y(k)(ξ))′.

Since λk(u) > 0, we obtain (y(k)(ξ))′ 6= 0, which yields the strict monotonicity of
ξ → y(k)(ξ). This shows that t → yilk(t) is a strictly monotone function.

From xi(t) = xl(t, τil(t)) and the fact that up is constant along any p-th character-
istic (p = 1, ..., n), we have

ul(t, xi(t)) = ul(t, xl(t, τil(t))) = ul(τil(t), 1).
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Then, it follows from the boundary condition (1.6) that

ul(t, xi(t)) = gl(τil(t), um+1(τil(t), 1), ..., un(τil(t), 1))

= gl(τil(t), um+1(0, yil,m+1(t)), ..., un(0, yiln(t)))

= gl(τil(t), ϕm+1(yil,m+1(t)), ..., ϕn(yiln(t))).

Therefore,
dul(t, xi(t))

dt
=

∂gl

∂τ
τ ′il(t) +

n∑
m+1

∂gl

∂uk
ϕ′

k(yilk(t)) y′ilk(t).

This together with (3.4) gives

vl(t, xi(t)) =
1

(λi(u)− λl(u))(t, xi(t))

∂gl

∂τ
τ ′il(t) +

n∑
m+1

∂gl

∂uk
ϕ′

k(yilk(t)) y′ilk(t)

 .

Thus, for any given t1 ∈ [0, T1] such that (s, ti(s)) ∈ D(T1) as s ∈ [t1, t] and the l-th
characteristics passing through (s, xi(s)) as s ∈ [t1, t] intersect the line x = 1, we have∫ t

t1
| vl(s, xi(s)) | ds

=
∫ t

t1

∣∣∣ 1
(λi(u)− λl(u))(s, xi(s))

∂gl

∂τ
τ ′il(s) +

n∑
m+1

∂gl

∂uk
ϕ′

k(yilk(s)) y′ilk(s)

 ∣∣∣ ds

≤ D4

∣∣∣ ∫ t

t1
τ ′il(s) ds

∣∣∣+ n∑
k=m+1

∣∣∣ ∫ t

t1
y′ilk(s) ds

∣∣∣


= D4

| τil(t)− τil(t1) |+
n∑

k=m+1

| yilk(t)− yilk(t1) |


≤ D4(T1 + n−m).

Here, we have used the monotonicity of τil(t) and yilk(t) and the properties 0 ≤ τil(t) ≤
t ≤ T1 and 0 ≤ yilk(t) ≤ 1.

Case 3 : The l-th characteristic intersects the line x = 0 at a point. Obviously, we
have l > m. Similar results can be obtained as in Case 2.

Thus, the proof of Lemma 1 is complete.
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