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Abstract. This paper deals with the solvability and the convergence of a class of un-
symmetric Meshless Local Petrov-Galerkin (MLPG) method with radial basis function
(RBF) kernels generated trial spaces. Local weak-form testings are done with step-
functions. It is proved that subject to sufficiently many appropriate testings, solvabil-
ity of the unsymmetric RBF-MLPG resultant systems can be guaranteed. Moreover, an
error analysis shows that this numerical approximation converges at the same rate as
found in RBF interpolation. Numerical results (in double precision) give good agree-
ment with the provided theory.
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1 Introduction

In recent years, there is a rapid growth in research of different variants of meshless
methods. Generally speaking, meshless methods for solving partial differential equa-
tions (PDEs) can be classified into two groups: one uses the strong-form collocation
while another group uses the weak formulation for testing the PDEs. The meshless lo-
cal Petrov-Galerkin method (MLPG), which was first proposed by Atluri and colleagues
in 1998 [1, 2], belongs to the latter group. Since then, the MLPG method has been suc-
cessfully applied to solve a wide range of problems in engineering and science; see also
references [3–6] therein. To see some general properties of the unsymmetric meshless
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kernel based methods see [7]. For a brief introduction to the original MLPG method, let
us consider a PDE in the form of:

Lu= f in Ω, and u= g on ∂Ω, (1.1)

where ∂Ω denotes the boundary of the bounded domain Ω in R
d. Both given functions

f and g : R
d →R are sufficiently smooth. For any set of N scattered nodal points in the

domain and on the boundary represented by Ξ = {ξk}N
k=1. The unknown solution u is

approximated via
u(x)≈uN(x)= ∑

ξ i∈Ξ

λiΦi(x), (1.2)

where Φi(x), i=1,2,··· ,N are called shape functions constructed on the set of nodal points
Ξ and λi is the unknown coefficient at node i to be determined. For certain shape func-
tions, e.g., the moving least-squares basis [8–10], we have weights λi ≈ u(xi) approxi-
mating the solution values. To solve for the N unknowns λ1,··· ,λN , the ”local” weak
equations constructed on subdomains surrounding each node are as follows:

∫

Ω
si

(Lu)vdx=
∫

Ω
si

f vdx⇒
N

∑
j=1

(

∫

Ω
si

LΦj(x)vdx
)

λj =
∫

Ω
si

f vdx. (1.3)

This yields N equations for the N unknown coefficients. In (1.3), Ωsi denotes a (relatively
small) subdomain in Ω surrounding the node xi and v is a locally supported test function.
Employing different test functions v results in different kinds of MLPG methods; see [1,
2]. One possible class of the test functions, that is of our interest in this work, is the
step functions. In this paper, we study the solvability and convergence of an MLPG
method using radial basis functions (RBF) as shape functions [11–13] and step functions
as test functions. Some numerical demonstrations are given to show the exponential
convergence (under double-precision computations) of the RBF-MLPG method.

2 Sufficient condition for solvability

In the original MLPG method, the sets of test and trial nodes are identical. Such linkage
between these two sets of nodes will be decoupled in the RBF-MLPG method due to the
requirement for solvability given in this section. Moreover, we use more test equations
(denoted by M) than the number of basis in expansion (denoted by N) to yield overde-
termined MLPG systems.

We assume that the differential equation (1.1) has an exact solution u∗ lying in some
infinite dimensional trial spaces U . To obtain a numerical procedure, we first discretize
the trial space U by some finite dimensional subspaces UN generated by a set RBF kernel
Φ centered at a set of N scattered nodes (or RBF centers) ΞN := {ξ i}N

1 . Any numerical
approximations are of the form

uN(x)= ∑
ξi∈Ξ

λiΦ(x,ξi)∈UN :=
{

v : v(x)= ∑
ξ i∈Ξ

λiΦ(x,ξ i), λ∈R
N
}

,
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where λ :=(λ1,··· ,λN)
T are the unknown coefficients to be determined.

Next, we consider an infinite set of test functions as follows:

V :={v∈L1(Ω) :‖v‖1 =1}. (2.1)

We test the boundary condition in strong-form and so it holds:
∫

Ω
vLu=

∫

Ω
f v, v∈V , and u(xi)= g(xi), xi∈∂Ω.

To make the problem numerically accessible, the test space has to be discretized. Con-
sider a large set of M1 linearly independent test functions vi ∈V for i= 1,2,··· ,M1. Also
consider a large set of M2 nodal points on the boundaries xi for i=1,2,··· ,M2. We get the
following discretized equation:

∫

Ω
viLudx=

∫

Ω
f vidx, vi ∈V , i=1,2,··· ,M1,

u(xi)= g(xi), i=1,2,··· ,M2.

Setting M=M1+M2 with (M≫N), the M×N overdetermined MLPG system, denoted
as Aλ=b, can be solved by appropriate means.

2.1 Example: MLPG for the Poisson equation

Consider the Poisson equation ∆u= f in Ω⊂R
2 with Dirichlet boundary condition u= g

on ∂Ω. We use the multiquadrics (MQ) kernel Φc(r)=
√

c2+r2, where r∈R and c> 0 is
a positive constant, to generate the trial space. The unknown solution u is approximated
by a linear combination in the form of

u(x)≈uN(x)=
N

∑
j=1

λj

√

c2+‖x−ξ j‖2,

where ΞN ={ξ j}N
j=1 is an indexed set of the N RBF centers. For discretization on the test

side, we consider M=M1+M2 test nodes (M≥N), M1 of them located on the boundary
and M2 on the domain of the problem. Note that these test nodes and trial centers in
Ξ may or may not share common points. For test nodes located on the boundaries, xi ∈
∂Ω, the Dirichlet boundary condition is tested by the Dirac-delta function to give the
following:

N

∑
j=1

λj

√

c2+‖xi−ξ j‖2= g(xi), i=1,2,··· ,M1. (2.2)

For each node located in the interior, xi ∈ Ω, we define a circular subdomain Ωsi ⊂ Ω

centered at xi with radius ri. Testing is done by the step function defined as

vi(x)=







1

vol(Ωsi )
, x∈Ωsi ,

0, x /∈Ωsi ,

(2.3)
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and we can obtain a set of M2 test equations

1

vol(Ωsi)

N

∑
j=1

(

∫

∂Ω
si

∂Φc,j

∂n
ds
)

=
1

vol(Ωsi)

∫

Ω
si

f dx, i=1,2,··· ,M2. (2.4)

Appropriate numerical integration scheme is necessary for the evaluation of (2.4). Putting
the equations in (2.2) and (2.4) together, a matrix system is yielded for [λ1,··· ,λN ]

T.

In most applications, researchers find the original MLPG formulation results in solv-
able exactly-determined systems. For example, in [14,15], the trial space is formed by the
MQ kernel and the testings are performed exactly at the RBF centers. From the following
illustration, we can see the importance of choosing suitable test functions in applying the
solvability theory of the MLPG methods.

2.2 Example: unsymmetric MLPG may yield singular systems

Let us consider a simple differential equation du/dx= f (x) for x∈[0,4] subject to u(0)=u0.
Suppose we use the fourier basis to form the trial space

{1,sinπx,cosπx,sin2πx,cos2πx,···}={g1,g2,···},

to give approximation in the form of uh =∑
N
j=1 λjgj. The local weak-form of equation is

given as
∫

Ω
si

du

dx
dx=

∫

Ω
si

f (x)dx,

and the MLPG matrix A now contains entries in the form of

ai,j =
∫

Ω
si

dgj

dx
dx.

For any test node xi that lies in the interval (1,3), if we choose the subdomain Ωsi for (2.3)
with radius 1, the corresponding entries ai,j will be zero for j= 1,2,··· ,n and the MLPG
matrix therefore contains zero rows.

To investigate the sufficient conditions on test functions in order to guarantee MLPG
solvability, we can modify the proof for strong-form RBF collocation method, i.e., the
Kansa method, see [16]. We consider Ω⊂Rd to be a bounded domain and G={g1,g2,··· ,gn}
to be a linearly independent set of n continuous functions defined on Ω. We take a dense
sequence X from V in (2.1) to test the problem. Suppose the MLPG matrix is not of full-
rank. There exists α 6= 0 such that ∑

n
j=1αjaj = 0, where aj is the j-th column of A. Define

another function using these weights aj by

f (x)=
n

∑
j=1

αjgj(x).
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If we test f by the same sequence, we will find that
∫

Ω
f (x)vi(x)dx=0

for all vi ∈X. Due to the denseness of X in L1(Ω) and continuity of f , we can conclude
that f (x)=0 for all x∈Ω. This implies the dependency of the set G that is a contradiction.
By the axiom of choice, there must exist N suitable unit-L1(Ω) functions in X so that the
resulting MLPG matrix is nonsingular. In practice, we cannot determine these suitable
test functions a priori . Hence, we are motivated to perform a large number of testings
(e.g., M ≫ N) and solve overdetermined MLPG systems instead of exactly-determined
(with M=N) ones.

3 Convergent RBF-MLPG scheme

For the convergence analysis of the overdetermined RBF-MLPG method, we focus on the
symmetric positive definite kernels Φ : R

d×R
d →R. If we take the reproducing kernel

Hilbert space associated with Φ (native space) as the trial space U=NΦ, the standard hβ-
type error bound for the RBF approximation [17,18] can be used; here, h is the fill distance
of nodes and β is the smoothness of the kernel Φ. Also to our interest, the exponential
error bounds for the Gaussian and the MQ kernels, see [19], will become handful too.

Let us consider second order elliptic differential equations of the form

Lu= aij(x)Diju+bi(x)Diu+c(x)u, aij = aji, (3.1)

where x= (x1,x2,··· ,xn)∈ Ω⊂ Rn, n ≥ 2. Suppose that λ > 0 (so that L is elliptic) is the
smallest eigenvalue of the coefficient matrix [aij ].

Theorem 3.1 (see [20]). Let Lu= f in a bounded domain Ω, where L is elliptic and u∈C0(Ω)∩
C2(Ω). Suppose that Ω lies between two parallel planes a distant d apart. Put β= sup{|b|/λ},
C= e(β+1)d−1 and c+=max(c,0). Suppose that

C1=1−Csup
Ω

c+

λ
>0,

then

sup
Ω

|u|≤ 1

C1

(

sup
∂Ω

|u|+Csup
Ω

| f |
λ

)

. (3.2)

If we further assume that L is strictly elliptic, then there exists a constant λ0>0 so that
λ≥λ0. Putting

C2=max
{ 1

C1
,

C

λ0

}

,

we have
sup

Ω

|u|≤C2

(

sup
∂Ω

|u|+sup
Ω

| f |
)

. (3.3)



A. Shirzadi and L. Ling / Adv. Appl. Math. Mech., 5 (2013), pp. 78-89 83

To make use of (3.2) and (3.3) in the setting of the MLPG with test function (2.4), we
define a norm on C(Ω) by

‖ f‖V :=sup
v∈V

∣

∣

∣

∫

Ω
v(x) f (x)dx

∣

∣

∣
, (3.4)

where V is defined as in (2.1). Since the test space V contains the dirac-delta functions,
we must have ‖ f‖V ≥‖ f‖L∞(Ω) (which is true even if the test space V does not contain
the dirac-delta functions). In fact, using the mean value theorem and continuity of f , it is
easy to show that the norms ‖ f‖V and ‖ f‖L∞(Ω) are indeed equivalent.

Using (3.4), we define a (continuous) PDE residual norm or Λ-norm on U as

‖u‖Λ :=max(‖Lu‖V ,‖u‖L∞(∂Ω)). (3.5)

For the sake of numerical computations, the test space V must be discretized by a finite
dimensional test space VM. Such discretized space must be dense enough in the sense
that

‖·‖Λ ≤C0‖·‖ΛM
,

where ‖·‖Λm is defined similarly by ‖u‖ΛM
:=max(‖Lu‖VM

,‖u‖L∞(∂Ω)). In order words,
the discrete set of test functions, in the form of (2.4) is fine enough to capture the L∞(Ω)-
norm of any C(Ω) function. We are now ready to formally define our RBF-MLPG ap-
proximation to the exact solution u∗ to (3.1) as

UM,ǫ(N) :=arg min
w∈UN

‖w−u∗‖ΛM
.

We use the notation ǫ(N) to emphasize the fact that the approximation power of UN

depends on the nodes distribution of ΞN (i.e., fill-distance of these points) instead of N
alone. In this setting, let C be a generic constant, we can show

‖u∗−UM,ǫ(N)‖L∞(Ω)≤C‖u∗−UM,ǫ(N)‖Λ ≤C‖u∗−UM,ǫ(N)‖ΛM

≤C‖u∗−su∗ ,ǫ‖ΛM
≤C‖u∗−su∗,ǫ‖Λ ≤Cǫ‖u∗‖U .

Note that the numerical solution UM,ǫ(N) is replaced by the interpolant su∗ ,ǫ of u∗ in U .
This is valid due to the minimization property of UM,ǫ(N) and, most importantly, this trick
allows us to make use of the approximation power of the trial space UN . Hence, we can
conclude that the RBF-MLPG procedure will have a convergence rate as fast as that in
the RBF interpolation problem.

4 Numerical demonstration

In all examples of this section, we employ the MQ kernel with shape parameter c= 1 to
form the trial space. To obtain the entries (1.3) in MLPG matrices numerically, some inte-
gration schemes are necessary. Here, all local boundary integrals (1.3) are approximated



84 A. Shirzadi and L. Ling / Adv. Appl. Math. Mech., 5 (2013), pp. 78-89

by the q-point Gauss-Legendre quadrature rule as below:

∫

∂Ω
si

φj(x)ds=
∫ 2π

0
φj(xi+r0cos(θ),yi+r0sin(θ))r0dθ

=πr0

∫ 1

−1
φj(xi+r0cos(πθ+π),yi+r0 sin(πθ+π))dθ

=πr0

q

∑
p=1

wpφj(xi+r0cos(πθp+π),yi+r0sin(πθp+π)),

where wp and θp are the Gauss quadrature weights and points in [−1,1], respectively.
Although our theories suggest that the overdetermined MLPG systems should be solved
by the linear optimization (an effective solution method can be found in [21]), it is nu-
merically shown in [22] that, for strong-form RBF collocation, the least-squares solution
obtained by arbitrary precision computations has the same convergent rate as that for the
linear optimization and the least-squares ones have higher accuracy. In this section, all
RBF-MLPG approximations are obtained by the more efficient and practical least-squares
approach.

Other factors, like the support size, distributions, or numbers of test functions in (2.3),
will affect the final accuracy of the RBF-MLPG scheme. Before we demonstrate the expo-
nential convergence suggested in Section 3, we shall perform a few sensitivity analysis
to obtain a (rough) idea on suitable parameters-the first example seeks for a sufficiently
large value for q used in the Gauss-Legendre quadrature rule, the support size of the
test function and lastly for the appropriate numbers of test functions. All of the above is
done based on a single Poisson problem in Ω= [−1,1]×[−1,1] with Dirichlet boundary
condition and the Matlab’s peaks function as the exact solution

u∗(x,y)=3e−x2−(y+1)2
(1−x)2− 1

3
e−(x+1)2−y2−10e−x2−y2

(

−y5−x3+
x

5

)

.

All numerical accuracies are measured by the maximum error

Max error = Max
{

|uN(zi)−u∗(zi)|, zi ∈Z
}

,

and/or the root mean square (RMS) error

RMS=
(

∑
zi∈Z

(uN(zi)−u∗(zi))
2

|Z|
)

1
2
,

where uN is the numerical solution and Z is a set of 812 regularly placed evaluation
points. Using the obtained parameters, the exponential convergence of the RBF-MLPG
scheme is demonstrated under double precision computations for different types of elliptic
PDEs including a problem with variable coefficient.
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4.1 Appropriate test functions

To study the effect of the accuracy of test equations, we consider N=M=212 nodes which
are regularly spaced in with separating distance h=0.1 in the domain [−1,1]×[−1,1]. In
this example, the support size of test functions is fixed ri = 0.05. Table 1 lists all the
numerical errors for different number of gaussian points, q, which is used to evaluate
boundary integrals (1.3).

By going through each column in Table 1, it is obvious that the numerical error varies
with q. When the number of gaussian points is small, the error in the numerical integra-
tions is large and this affects the MLPG accuracy. With too many gaussian points, the
cancelation error becomes dominant and starts affecting the accuracy.

Next in Table 2, we present the suitable numbers of Gauss points q with N = 212

nodes and different support sizes r. For example, from Table 1, the optimal value of q
is 11, when N = M = 212 and r = 0.05. We observe that the optimal values of q should
increase with the support sizes r in order to obtain the best accuracy of the RBF-MLPG
scheme. Among all the exactly-determined test cases, r = 0.09 yields the best accuracy;
accuracy drops with larger support sizes.

Table 1: Number of gaussian points q and the accuracy of the RBF-MLPG scheme.

q RMS Max error

6 3.971506−3 9.534818−3

7 5.571586×10−4 1.375229−3

8 6.651908−5 1.851960×10−4

9 2.105612−5 4.902434−5

10 1.815665−5 4.320609−5

11 1.785648−5 4.154598−5

12 1.827903−5 4.242716−5

13 1.816742−5 4.2997352−5

Table 2: Numerical errors with different numbers of test equations and trial centers.

N=M=212 N=212, M=412

r q RMS error Max error RMS error Max error

0.01 9 3.1793−5 7.5100−5 4.3199−6 1.0742−5

0.02 9 3.0009−5 7.1861−5 3.0628−6 7.7119−6

0.03 10 2.6874−5 8.5981−5 1.1662−6 3.4846−6

0.04 10 2.3065−5 5.4171−5 8.5172−7 2.7517−6

0.05 11 3.4660−5 2.1272−4 9.9328−7 2.5706−6

0.06 11 1.2849−5 3.1260−5 1.6961−6 4.5509−6

0.07 11 1.2467−5 6.3504−5 2.2156−6 6.6261−6

0.08 12 1.6302−6 3.7977−6 2.3728−6 7.5502−6

0.09 14 3.1679−6 8.3291−6 2.1251−6 7.5384−6

0.10 14 7.3311−6 2.4515−5 1.6999−6 7.6608−6
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If we turn our setup to an overdetermined one as the theories suggest, using M=412

testings on N=212 nodes will yield a better accuracy in each tested r. Note that the op-
timal q seems to depend on r only but not on M. Moreover, with the overdetermined
setting, the best accuracy occurs earlier at around r=0.04 to 0.05. Although more bound-
ary integrals are needed for larger M, the cost of evaluating each integral drops, that is,
q=11 for r=0.05 versus q=14 for r=0.09.

4.2 Appropriate numbers of testings

We are interested in the effect of the number of test equations on the accuracy of the
MLPG solution. If a trial space with dimension N is used, there are N unknown coeffi-
cients to be determined. The solvability theory in Section 2 and the convergence theory
in Section 3 both suggest that we need to have M > N test equations. To estimate how
large M should be, we consider test cases with N=172 and N=212 regularly spaced MQ
centers. We use test functions with support r=0.05 and present the RMS errors obtained
with different numbers M=n2 of test functions in Fig. 1.

15 20 25 30 35 40 45
0
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0.6

0.8
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x 10
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n
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S
 e

rr
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172

212

Figure 1: RMS error versus number of equations, with 212 and 172 RBFs, r=0.05 and c=1.

Each of the two curves starts with the accuracy of an exactly determined system with
M=N. From both curves, we can see that using M=N does not provide enough infor-
mation to the MLPG system to make good use of the approximation power of the MQ
trial spaces. When M increases, the MLPG systems become overdetermined and the ex-
tra information drives the accuracy down. Note that there is no M-convergence as the
error profiles stagnate with large M. By Fig. 1, we make a very rough estimation of the
suitable number of test functions; M should range between (1.5k)2+1 and (2k)2+1 when
N= k2+1.

4.3 Seeing the exponential convergence of RBF-MLPG

The experience gained in the previous examples, we consider RBF-MLPG scheme with
N = k2 nodes and M = (1.5k)2+1 testings. Accuracy will be reported in terms of the
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Figure 2: Convergence profiles for different Poisson problems.
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Figure 3: Convergence profiles for various kinds of elliptic PDEs.

mesh norm h that is the minimum separating distance found in the N RBF nodes. Test
function (2.3) will have a fixed support size r=0.05 and the q=11-point Gauss-Legendre
quadrature rule will be used to evaluate the boundary integrals. Fig. 2 shows the error
profiles for four Poisson problems†. The right hand functions f and the Dirichlet data
g in (1.1) are generated from the exact solution. Even though the RBF-MLPG method
shares a lot of similarities with the strong-form Kansa method, the RBF-MLPG not only
yields higher accuracy but also shows (very clear) exponential convergence behavior un-
der double precision computations. Note that, in [22,23], the exponential convergence of
the MQ-Kansa method can be observed under arbitrary precision computations.

In Fig. 3, the exponential convergence of the RBF-MLPG methods on other types of
elliptic PDEs‡ are demonstrated. Test functions u5 and u6 that satisfy modified Helmholtz

†Exact solutions are u1(x,y) =
(
√

((x−2)2+(y−2)2)
)−1

, u2(x,y) = 1
2 log((x−2)2+(y−2)2), u3(x,y) =

cos(x/2)sin(y/2) and u4(x,y)=exp(−x2−y2).
‡Exact solutions are u5(x,y)=cos(x/2)sin(y/2), u6(x,y)=

(
√

((x−2)2+(y−2)2)
)−1

, u7(x,y)=cos(x)sin(y)

and u8(x,y)= x3−y3.
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equations (∆u−u/2= f ), u7 that satisfies a Helmholtz equation (∆u+2u= f ) and u8 that
satisfies a PDE with variable coefficients

(x2+y2+1)∆u+[0,y]T∇u−u= f , in Ω⊂R
2,

are used here. In terms of RMS errors, the numerical solution is not as accurate as in the
Poisson cases. Nonetheless, all tests support the theoretical convergence rate of the MQ
kernel.

5 Conclusions

Solvability and convergence analysis of the RBF-MLPG method are presented. Some
numerical demonstrations are given to verify the proven theories: the exponential con-
vergence rate found in multiquadrics interpolation can be carried to the RBF-MLPG ap-
proximation. For the strong-form Kansa method implemented in double precision, it
usually requires some additional techniques, e.g., adaptive greedy method [24], to obtain
obvious exponential convergent profiles. The RBF-MLPG, having an obtainable exponen-
tial convergence instead of a theoretical one only, is an attractive alternative towards its
strong-from siblings. Lastly, note that, in [25], the convergence of the least-squares strong-
form Kansa method is proven for the modified Helmholtz equations. It is very hopeful
that the same conclusion also holds true for the RBF-MLPG method.
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