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Abstract. In this paper, we have proposed a numerical method for Singularly Per-
turbed Boundary Value Problems (SPBVPs) of convection-diffusion type of third or-

der Ordinary Differential Equations (ODEs) in which the SPBVP is reduced into a

weakly coupled system of two ODEs subject to suitable initial and boundary condi-
tions. The numerical method combines boundary value technique, asymptotic ex-

pansion approximation, shooting method and finite difference scheme. In order to
get a numerical solution for the derivative of the solution, the domain is divided into

two regions namely inner region and outer region. The shooting method is applied

to the inner region while standard finite difference scheme (FD) is applied for the
outer region. Necessary error estimates are derived for the method. Computational

efficiency and accuracy are verified through numerical examples. The method is

easy to implement and suitable for parallel computing.
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1. Introduction

Singular Perturbation Problems (SPPs) arise frequently in many fields like geophys-

ical dynamics, oceanic and atmospheric circulation, chemical reactions, etc. The pres-

ence of small parameter(s) in these problems prevent(s) us from obtaining satisfactory

numerical solutions using classical numerical methods. It is a well known fact that

the solutions of the SPPs have multi-scale character. That is there are thin transition

layers where the solution can jump abruptly, while away from the layers the solution
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behave regularly and varies slowly. Such problems have been investigated by many

researchers. The existence and uniqueness of such problems are discussed in [4, 20].

In recent years a variety of numerical methods are available in the literature to solve

SPBVPs for second order ODEs. For details,one may refer the survey article [8], but for

higher order equations only few results are reported in the literature.

Analytical treatment of SPBVPs for the higher order non-linear ODEs which have

important applications in fluid dynamics is discussed in [3,10,16,20,29]. Niederdrenk

and Yserentant [16] have considered convection-diffusion type problems and derived

conditions for the uniform stability of the discrete and continuous problems. Gartland

[3] has shown that the uniform stability of the discrete BVP follows from the uniform

stability of the discrete IVP and uniform consistency of the scheme. In [20], an iterative

method is described.

Feckan [10] has considered higher order problems and his works are based on

the non-linear analysis involving fixed point theory, Leray-Schauder theory, etc. In

fact, Howes [6] has considered the higher order problems and discussed the existence,

uniqueness and asymptotic estimates of the solution. In [20,29], a FEM for convection-

reaction type problems is described.

As far as author’s knowledge goes only few results are reported in the case of

third order differential equations. Zhao [27] has considered a more general class of

third order non-linear SPBVPs and discussed the existence, uniqueness of the solu-

tion and obtained asymptotic estimates using the theory of differential inequalities. In

fact Zhao [28] has derived results on third order non-linear SPPs using differential in-

equality theorems. Howes [5] has considered class of third order SPBVP and discussed

the existence, uniqueness and asymptotic behaviour of the solution. Roberts [18] has

suggested a method of finding approximate solutions for third order SPODEs. Valar-

mathi [21–24] have suggested methods of finding approximate solutions for third order

SPBVPs.

Following the Boundary Value Technique (BVT) of Roberts [18], Vigo-Aguiar [26],

Valarmathi [21] and using the basic idea underlying the method suggested in Jayaku-

mar [7] and Natesan [12] we in the present paper, suggest a new computational

method which makes use of the zero order asymptotic expansion approximation, BVT

and shooting method to obtain a numerical solution for the derivative of SPBVPs for

third order ODEs of convection-diffusion type of the form:

εy′′′(x) + a(x)y′′(x)− b(x)y′(x)− c(x)y(x) = f(x), x ∈ Ω, (1.1)

y(0) = p, −y′′(0) = q, y′(1)− y′′(1) = r, (1.2)

where 0 < ε ≪ 1, a(x), b(x), c(x) are sufficiently smooth functions satisfying the

following conditions:

a(x) ≥ α, α > 0, (1.3)

b(x) > 0, (1.4)

0 ≥ c(x) ≥ −γ, γ > 0, (1.5)

α > γ, (1.6)
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with Ω = (0, 1), Ω0 = (0, 1], Ω̄ = [0, 1] and y ∈ C(3)(Ω) ∩C(2)(Ω̄).

In order to get a numerical solution for the derivative of the solution of SPBVP (1.1)-

(1.2), we divide the interval [0, 1] into two subintervals [0, τ ] and [τ, 1] called inner and

outer region respectively.

An Initial Value Problem (IVP) associated with inner region is solved by shooting

method and Boundary Value Problem (BVP) corresponding to the outer region is solved

based on the standard finite difference scheme. The problems defined in the intervals

[0, τ ] and [τ, 1] are independent of each other. Therefore, these problems can be solved

simultaneously, that is, more suitable for parallel architectures. By this the computation

time is very much reduced in comparison with the existing sequential algorithms which

are often used to solve SPBVPs.

Through out the paper we use C, with or without subscript to denote a generic

positive constant which is independent of N and ε. We use h1 for mesh size for inner

region problem and h2 for mesh size for outer region problem. Error estimates are

derived. Numerical examples are presented to illustrate the method. We define || · || of

w̄ = (w1, w2)
T ∈ R

2 as ||w̄|| = max{|w1|, |w2|}.

2. Preliminaries

The SPBVP (1.1)-(1.2) can be transformed into an equivalent weakly coupled sys-

tem of the form:
{

P1ȳ(x) ≡ −y′1(x) + y2(x) = 0, x ∈ Ω0,

P2ȳ(x) ≡ εy′′2 (x) + a(x)y′2(x)− b(x)y2(x)− c(x)y1(x) = f(x), x ∈ Ω,
(2.1)











R1ȳ ≡ y1(0) = p,

R2ȳ ≡ −y′2(0) = q,

R3ȳ ≡ y2(1)− y′2(1) = r,

(2.2)

where ȳ = (y1, y2)
T , the functions a(x), b(x), c(x) and f(x) are sufficiently smooth

functions satisfying the following conditions:

a(x) ≥ α, α > 0, (2.3)

b(x) > 0, (2.4)

0 ≥ c(x) ≥ −γ, γ > 0, (2.5)

α > γ. (2.6)

In this section, we present a maximum principle for the above problem. Using this

principle, a stability result is derived. Further, an asymptotic expansion approximation

is constructed for the solution and a theorem is presented to establish its accuracy.

Remark 2.1. The solution of the problem (2.1)-(2.2) exhibits a boundary layer at x = 0
which is less severe because the boundary conditions are prescribed for the derivative



268 J. C. Roja and A. Tamilselvan

of the solution [20]. The condition (2.3) says that (2.1)-(2.2) is a non turning point

problem. The condition (2.5) is known as the quasi monotonicity condition [20]. The

maximum principle for the above system (2.1)-(2.2) and for the corresponding discrete

problem are established using the conditions (2.3)-(2.6) and using this principle, we

can establish a stability result.

2.1. Maximum principle and stability result

Theorem 2.1 (Maximum Principle). Consider the BVP (2.1)-(2.2). Let y1(0) ≥ 0, y′2(0) ≤
0 and y2(1)− y′2(1) ≥ 0. Then P1ȳ(x) ≤ 0, for x ∈ Ω0 and P2ȳ(x) ≤ 0, for x ∈ Ω, implies

that ȳ(x) ≥ 0, ∀x ∈ Ω̄.

Proof. Define the test functions s̄(x) = (s1(x), s2(x))
T by

s1(x) = 1 + x+ η, s2(x) = 1− x, x ∈ Ω̄ and 0 < η ≪ 1/2.

Clearly, s1(0) = 1 + η > 0, s′2(0) = −1 < 0, s2(1)− s′2(1) = 1 > 0.

We can easily prove that P1s̄ < 0 in Ω0 and P2s̄ < 0 in Ω.

Assume that theorem is not true. We define

ξ = max

{

max
x∈Ω̄

(

−
y1
s1

)

(x), max
x∈Ω̄

(

−
y2
s2

)

(x)

}

.

Then, ξ > 0. Also (y1 + ξs1)(x) ≥ 0 and (y2 + ξs2)(x) ≥ 0, ∀x ∈ Ω̄. Furthermore, there

exists a point x0 ∈ Ω̄ such that

(y1 + ξs1)(x0) = 0 for x0 ∈ Ω0 or (y2 + ξs2)(x0) = 0 for x0 ∈ Ω.

Case 1: (y1 + ξs1)(x0) = 0, for x0 ∈ Ω0.

This implies that y1 + ξs1 attains its minimum at x = x0. Therefore,

0 > P1(ȳ + ξs̄)(x0) = −(y1 + ξs1)
′(x0) + (y2 + ξs2)(x0) ≥ 0,

which is a contradiction.

Case 2: (y2 + ξs2)(x0) = 0, for x0 ∈ Ω.

This implies that y2 + ξs2 attains its minimum at x = x0. Therefore,

0 > P2(ȳ + ξs̄)(x0)

= ε(y2 + ξs2)
′′(x0) + a(x)(y2 + ξs2)

′(x0)− b(x)(y2 + ξs2)(x0)− c(x)(y1 + ξs1)(x0)

≥ 0,

which is a contradiction. Hence it can be concluded that ȳ(x) ≥ 0, ∀x ∈ Ω̄. �

Lemma 2.1 (Stability Result). If ȳ(x) is the solution of the BVP (2.1)-(2.2) then

||ȳ(x)|| ≤ Cmax
{

|y1(0)|, |y
′
2(0)|, |y2(1)−y′2(1)|, max

x∈Ω̄
|P1ȳ(x)|, max

x∈Ω̄
|P2ȳ(x)|

}

, ∀x ∈ Ω̄.
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Proof. Set

M = Cmax
{

|y1(0)|, |y
′
2(0)|, |y2(1)− y′2(1)|, max

x∈Ω̄
|P1ȳ(x)|, max

x∈Ω̄
|P2ȳ(x)|

}

.

Define two barrier functions w̄±(x) = (w±
1 (x), w

±
2 (x))

T by

w±
1 (x) = M{1 + x+ η} ± y1(x) and w±

2 (x) = M(1− x)± y2(x).

We have

P1w̄
±(x) = −w±

1
′(x) + w±

2 (x) < −Mx± P1ȳ(x) ≤ 0,

P2w̄
±(x) = εw±

2
′′(x) + a(x)w±

2
′(x)− b(x)w±

2 (x)− c(x)w±
1 (x)

< M(γ − α)± P2ȳ(x) ≤ 0,

by a proper choice of C. Furthermore, we have

w±
1 (0) = M(1 + η)± y1(0) ≥ 0, w±′

2 (0) = −M ± y′2(0) ≤ 0,

w±
2 (1) − w±

2
′(1) = M ± (y2(1)− y′2(1)) ≥ 0,

by a proper choice of C.

Applying Theorem 2.1 to the barrier functions w̄±(x), we get the desired result. �

2.2. Asymptotic expansion approximation

We look for an asymptotic expansion solution of the BVP (2.1)-(2.2) in the form

ȳ(x, ε) = (ū0(x) + v̄0(x)) + ε(ū1(x) + v̄1(x)) +O(ε2).

By the method of stretching variable [11] one can obtain a zero order asymptotic ap-

proximation as ȳas(x) = ū0(x) + v̄0(x), where ū0(x) is the solution of the reduced

problem of the BVP (2.1)-(2.2) given by











−u′01(x) + u02(x) = 0,

a(x)u′02(x)− b(x)u02(x)− c(x)u01(x) = f(x),

u01(0) = p, u02(1)− u′02(1) = r,

(2.7)

and v̄0(x) = (v01(x), v02(x))
T is a layer correction term satisfies























−v′01(x) + v02(x) = 0,

εv′′02(x) + a(0)v′02(x) = 0,

v01(0) = −(ε/a(0))v02 (0), v02(0) = (q + u′02(0)),

v02(1) = exp(−(a(0)/ε))v02 (0),

(2.8)
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and this v̄0(x) given by

{

v01(x) = −(ε/a(0))(q + u′02(0)) exp(−(a(0)/ε))(x),

v02(x) = (q + u′02(0)) exp(−(a(0)/ε))(x).
(2.9)

The following theorem gives the bound for the difference between the solution of the

BVP (2.1)-(2.2) and its zero order asymptotic expansion approximation.

Theorem 2.2. The zero order asymptotic approximation ȳas = ū0(x) + v̄0(x) of the

solution ȳ(x) of the BVP (2.1)-(2.2) defined by (2.7)-(2.9) satisfies the inequality

||ȳ(x)− ȳas(x)|| ≤ Cε, ∀x ∈ Ω̄.

Proof. It is easy to prove that

|(y1− y1as)(0)| ≤ Cε, |(y2− y2as)
′(0)| = 0, |(y2− y′2)(1)− (y2as − y′2as)(1)| ≤ Ce−α/ε.

Applying the differential operator on ȳ − ȳas and using the fact that

te−t ≤ e−t/2, ∀t ≥ 0,

we have

|P1(ȳ − ȳas)(x)| = 0 and |P2(ȳ − ȳas)(x)| ≤ Cε+ Ce−αx/2ε.

Define the barrier functions φ̄±(x) = (φ±
1 (x), φ

±
2 (x))

T for x ∈ Ω̄ by

φ±
1 (x) = C1(1 + x+ η)ε+ C2ε(x+ 1)± (y1 − y1as)(x)

where 0 < η ≪ 1/2 and

φ±
2 (x) = C1(1− x)ε+ C2ε± (y2 − y2as)(x),

where C1 and C2 are positive constants to be chosen suitably, so that the following

expressions are satisfied:

φ±
1 (0) ≥ 0, φ2

±′(0) < 0, φ±
2 (1) − φ±

2
′(1) ≥ 0,

P1φ̄
±(x) = −φ±

1
′(x) + φ±

2 (x) < 0 for x ∈ Ω0,

P2φ̄
±(x) = εφ±

2
′′(x) + a(x)φ±

2
′(x)− b(x)φ±

2 (x)− c(x)φ±
1 (x) ≤ 0 for x ∈ Ω.

Applying Theorem 2.1 to the functions φ̄±(x), it follows that

φ̄±(x) ≥ 0, ∀x ∈ Ω̄,

and consequently,

||ȳ(x)− ȳas(x)|| ≤ Cε, ∀x ∈ Ω̄.

This completes the proof. �
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Corollary 2.1. If y1(x) is the solution of the BVP (2.1)-(2.2) and u01(x) is the solution of

the problem (2.7) then |y1(x)− u01(x)| ≤ Cε, ∀x ∈ Ω̄.

Proof. From the above theorem, |y1(x)− (u01(x) + v01(x))| ≤ C1ε. Consider

|y1(x)− u01(x)| = |y1(x)− u01(x) + v01(x)− v01(x)|,

≤ |y1(x)− (u01(x) + v01(x))| + |v01(x)|,

≤ C1ε+ C2ε,

≤ Cε.

This completes the proof. �

3. Estimates of derivatives

Theorem 3.1. Let ȳ(x) be the solution of the BVP (2.1)-(2.2). Then y2(x) satisfy

|y
(k)
2 (x)| ≤ C(1 + ε−(k−1) exp(−αx/ε)), (3.1)

for 0 ≤ k ≤ 3, x ∈ Ω̄.

Proof. Consider the BVP

εy′′2 (x) + a(x)y′2(x)− b(x)y2(x)− c(x)y1(x) = f(x),

y′2(0) = −q, y′2(1)− y2(1) = r.

Rewrite this BVP as

εy′′2 (x) + a(x)y′2(x)− b(x)y2(x) = f(x) + c(x)y1(x),

y′2(0) = −q, y′2(1)− y2(1) = r.

Then, y1 ∈ C(2)(Ω̄) and using the procedure adopted in [13] we have

|y
(k)
2 (x)| ≤ C(1 + ε−(k−1) exp(−αx/ε)),

as required. �

4. Some analytical and numerical results

We state some results for the following SPBVP which are needed for the rest of the

paper. Consider the auxiliary second order SPBVP

Ly⋆2(x) ≡ εy⋆
′′

2 (x) + a(x)y⋆
′

2 (x)− b(x)y⋆2(x) = f(x) + c(x)u01(x), x ∈ Ω, (4.1)

B0y
⋆
2(0) ≡ −y⋆

′

2 (0) = q, B1y
⋆
2(1) ≡ y⋆2(1) − y⋆

′

2 (1) = r, (4.2)

where u01(x) is defined as in (2.7), a(x), b(x) and f(x) are sufficiently smooth and

a(x) ≥ α and b(x) > 0, 0 ≥ c(x) ≥ −γ, γ > 0.
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4.1. Analytical results

Theorem 4.1 (Maximum Principle). Consider the BVP (4.1)-(4.2). Let y⋆2(x) be a smooth

function satisfying B0y
⋆
2(0) ≥ 0, B1y

⋆
2(1) ≥ 0 and Ly⋆2(x) ≤ 0 for x ∈ Ω. Then, y⋆2(x) ≥ 0,

∀x ∈ Ω̄.

Proof. Please refer to Ref. [1].

Lemma 4.1 (Stability Result). If y⋆2(x) is the solution of the BVP (4.1)-(4.2) then

|y⋆2(x)| ≤ Cmax
{

|B0y
⋆
2(0)|, |B1y

⋆
2(1)|, max

x∈Ω̄
|Ly⋆2(x)|

}

, ∀x ∈ Ω̄.

Proof. Define a barrier function Ψ±(x) to be Ψ±(x) = A′(1 − η′x) ± y⋆2(x), x ∈ Ω̄,

where

A′ = Cmax
{

|B0y
⋆
2(0)|, |B1y

⋆
2(1)|, max

x∈Ω̄
|Ly⋆2(x)|

}

and 0 < η′ < 1.

It is easy to check that B0Ψ
±(0) ≥ 0, B1Ψ

±(1) ≥ 0 and LΨ±(x) ≤ 0, for a proper

choice of the constant C. Then applying Theorem 4.1 to Ψ±(x), the required stability

bound is obtained. �

Theorem 4.2. If ȳ(x) and y⋆2(x) are solutions of the BVPs (2.1)-(2.2) and (4.1)-(4.2)
respectively, then

|y2(x)− y⋆2(x)| ≤ Cε, ∀x ∈ Ω̄.

Proof. The second component y2 of the solution ȳ(x) of the BVP (2.1)-(2.2) satisfies

the BVP

εy′′2 (x) + a(x)y′2(x)− b(x)y2(x) = f(x) + c(x)y1(x), x ∈ Ω,

− y
′

2(0) = q, y2(1)− y′2(1) = r.

Further, the function w(x) = y2(x)− y⋆2(x) satisfies the BVP

εw′′(x) + a(x)w′(x)− b(x)w(x) = c(x)[y1(x)− u01(x)], x ∈ Ω,

w′(0) = 0, w(1) − w′(1) = 0.

From the stability result given in [1], we have

|w(x)| ≤ C|y1(x)− u01(x)|.

From Theorem 2.2,

|y1(x)− y1as(x)| ≤ Cε or |y1(x)− u01(x)− v01(x)| ≤ Cε.

Then

|y1(x)− u01(x)| − |v01(x)| ≤ |y1(x)− u01(x)− v01(x)|
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implies that

|y1(x)− u01(x)| ≤ |v01(x)|+ Cε ≤ Cε.

Therefore |w(x)| ≤ Cε. Hence,

|y2(x)− y⋆2(x)| ≤ Cε.

This completes the proof. �

4.2. Description of the method

Step 1: An asymptotic approximation is derived for the solution of (2.1)-(2.2) which

is given by (2.7)-(2.8).

Step 2: The first component of the solution ȳ(x) of the BVP (2.1)-(2.2), namely y1 is

approximated by the first component of the solution of the reduced problem namely

u01 given by (2.7). Then replacing y1 appearing in the second equation of (2.1) by

u01 and taking the same boundary values, one gets the auxiliary SPBVP (4.1)-(4.2).

The solution of this problem is taken as an approximation to y2 which is the second

equation of (2.1) which has to be solved.

Step 3: In order to solve the auxiliary second order problem (4.1)-(4.2) numerically,

we divide the interval [0, 1] into two subintervals [0, τ ] and [τ, 1] called inner and outer

region respectively, where τ = min
{

1
2 ,

2ε
α lnN

}

.

Step 4: In the inner region, the auxiliary problem (4.1)-(4.2) is solved by the shooting

method using the initial conditions ỹ2(0) = u02(0) + v02(0), −ỹ′2(0) = q.

Step 5: In the outer region, the DE (4.1) subject to boundary conditions y2(τ) =
u02(τ) + v02(τ), y2(1) − y′2(1) = r is solved by the standard FD scheme.

Step 6: After solving both the inner region and outer region problems, we combine

their solutions to obtain an approximate solution for the derivative of y2 of the original

problem (1.1)-(1.2) over the interval Ω̄.

4.3. Numerical schemes

4.3.1. Inner Region Problem

Consider the following IVP:
{

εỹ′′2 (x) + a(x)ỹ2
′(x)− b(x)ỹ2(x) = f(x) + c(x)u01(x), x ∈ (0, τ ],

ỹ2(0) = q̄ = u02(0) + v02(0), −ỹ′2(0) = q.
(4.3)

This IVP is equivalent to the system

P ∗ȳ∗ =











P ∗
1 ȳ

∗ = −y∗1
′(x) + y∗2(x) = 0,

P ∗
2 ȳ

∗ = εy∗2
′(x) + a(x)y∗2(x)− b(x)y∗1(x) = f∗(x), x ∈ (0, τ ],

y∗1(0) = q̄, −y∗2(0) = q,

(4.4)
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where f∗(x) = f(x) + c(x)u01(x), ȳ
∗ = (y∗1 , y

∗
2)

T , a(x) ≥ α, α > 0, b(x) > 0, 0 ≥ c(x) ≥
−γ, γ > 0.

Theorem 4.3 (Maximum Principle). Consider the IVP (4.4). Let y∗1(0) ≥ 0, y∗2(0) ≤ 0
and P ∗

1 ȳ
∗(x) ≤ 0, P ∗

2 ȳ
∗(x) ≤ 0, for x ∈ (0, τ ]. Then, ȳ∗(x) ≥ 0, ∀x ∈ [0, τ ].

Proof. Please refer to Ref. [30].

Lemma 4.2 (Stability Result). If ȳ∗(x) is the solution of the IVP (4.4). Then

||ȳ∗(x)|| ≤ Cmax
{

|y∗1(0)|, |y
∗
2(0)|, max

x∈[0,τ ]
|P ∗

1 ȳ
∗(x)|, max

x∈[0,τ ]
|P ∗

2 ȳ
∗(x)|

}

, ∀x ∈ Ω̄.

Proof. Defining two barrier functions χ̄±(x) = (χ±
1 (x), χ

±
2 (x))

T by

χ±
1 (x) = M ′(1 + x)± y∗1(x) and χ±

2 (x) = M ′(−1)± y∗2(x),

where

M ′ = Cmax
{

|y∗1(0)|, |y
∗
2(0)|, max

x∈[0,τ ]
|P ∗

1 ȳ
∗(x)|, max

x∈[0,τ ]
|P ∗

2 ȳ
∗(x)|

}

.

We have

P ∗
1 χ̄

±(x) = −χ±
1
′(x) + χ±

2 (x) < −2M ′ ± P ∗
1 ȳ

∗(x) ≤ 0,

P ∗
2 χ̄

±(x) = εχ±
2
′(x) + a(x)χ±

2 (x)− b(x)χ±
1 (x)± P ∗

2 ȳ
∗(x)

< −M ′α± P ∗
2 ȳ

∗(x) ≤ 0,

by a proper choice of C. Furthermore, we have

χ±
1 (0) = M ′ ± y∗1(0) ≥ 0, χ±

2 (0) = −M ′ ± y∗2(0) ≤ 0,

by a proper choice of C.

Applying Theorem 4.3 to the barrier functions χ̄±(x), we get the desired result. �

Theorem 4.4. Let ȳ∗(x) be the solution of the IVP (4.4). Then y∗1(x) and y∗2(x) satisfy

|y
∗(k)
1 (x)| ≤ Cε−(k−1), |y

∗(k)
2 (x)| ≤ Cε−(k), for 0 ≤ k ≤ 2, x ∈ (0, τ ].

Proof. For k = 0, the result follows from Lemma 4.2. From (4.4), it is evident

that |y∗
′

1 (x)| ≤ C and |y∗
′

2 (x)| ≤ Cε−1. Differentiating the equations in (4.4) once and

using the above estimates of |y∗
′

1 (x)| and |y∗
′

2 (x)|, it is found that |y∗
′′

1 (x)| ≤ Cε−1 and

|y∗
′′

2 (x)| ≤ Cε−2. �

Applying Shooting method for (4.4), we get

P ∗N/2ȳ∗i

=











P
∗N/2
1 ȳ∗i = −D−y∗1,i + y∗2,i = 0,

P
∗N/2
2 ȳ∗i = εD−y∗2,i + a(xi)y

∗
2,i − b(xi)y

∗
1,i = f∗(xi), i = 1 : N,

y∗1,0 = q̄, −y∗2,0 = q,

(4.5)
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where

D−y∗j,i = (y∗j,i − y∗j,i−1)/h1, h1 =
2τ

N
, xi = xi−1 + ih1, j = 1, 2, i = 1(1)N.

Here, τ is the transition parameter given by τ = min
{

1
2 ,

2ε
α lnN

}

. This fitted mesh is

denoted by Ω̄
N/2
τ .

Theorem 4.5 (Discrete Maximum Principle). Consider the discrete IVP (4.5). Let y∗1,0 ≥

0, y∗2,0 ≤ 0. Then P
∗N/2
1 ȳi

∗ ≤ 0, P
∗N/2
2 ȳi

∗ ≤ 0, for i = 1 : N, implies that ȳi
∗ ≥ 0,

∀i = 0(1)N .

Proof. Please refer to Ref. [30].

Lemma 4.3 (Discrete Stability Result). If ȳ∗i is any mesh function, then

||ȳ∗i || ≤ Cmax
{

|y∗1,0|, |y
∗
2,0|, max

1≤i≤N
|P

∗N/2
1 ȳ∗i |, max

1≤i≤N
|P

∗N/2
2 ȳ∗i |

}

, i = 0(1)N.

Proof. Set

M ′ = Cmax
{

|y∗1,0|, |y
∗
2,0|, max

1≤i≤N
|P

∗N/2
1 ȳ∗i |, max

1≤i≤N
|P

∗N/2
2 ȳ∗i |

}

.

Define the barrier functions

χ̄±
i = (χ±

1,i, χ
±
2,i)

T

by

χ±
1,i = M ′{1 + xi} ± y∗1,i and χ±

2,i(x) = M ′(−1)± y∗2,i, i = 0(1)N.

Then for a proper selection of the constant C, applying Theorem 4.5 to the barrier

functions χ̄±
i , we can obtain the desired bounds for ȳ∗i . �

4.3.2. Outer region problem

The outer region problem for (4.1)-(4.2) is given by

{

Ly2(x) := εy2
′′(x) + a(x)y2

′(x)− b(x)y2(x) = f(x) + c(x)u01(x), x ∈ (τ, 1),

B0y2(0) = y2(τ) = u02(τ) + v02(τ) = r̄, B1y2(1) = y2(1)− y′2(1) = r,
(4.6)

where u01(x) is defined as in (2.7), a(x), b(x) and f(x) are sufficiently smooth and

a(x) ≥ α and b(x) > 0, 0 ≥ c(x) ≥ −γ, γ > 0.

Theorem 4.6 (Maximum Principle). Consider the BVP (4.6). Let y2(x) be a smooth

function satisfying B0y2(0) ≥ 0, B1y2(1) ≥ 0 and Ly2(x) ≥ 0 for x ∈ (τ, 1). Then,

y2(x) ≥ 0, ∀x ∈ [τ, 1].

Proof. Please refer to Ref. [1].
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Lemma 4.4 (Stability Result). If y2(x) is the solution of the BVP (4.6) then

|y2(x)| ≤ Cmax
{

|B0y2(0)| + |B1y2(1)| + max
x∈[τ,1]

|Ly2(x)|
}

, ∀x ∈ [τ, 1].

Proof. Please refer to Ref. [1].

To solve this BVP (4.6), we apply the CFD scheme defined by











LN/2y2,i := εδ2y2,i + a(xi)D
+y2,i − b(xi)y2,i

= f(xi) + c(xi)u01(xi), i = 1(1)N − 1,

B
N/2
0 y2,0 = r̄, B

N/2
1 y2,N = y2,N − (y2,N − y2,N−1)/h2 = r,

(4.7)

where D+y2,i = (y2,i+1 − y2,i)/h2, δ2y2,i = (y2,i+1 − 2y2,i + y2,i−1)/h
2
2,

xi = xi−1 + ih2, and h2 =
2(1− τ)

N
, i = 1(1)N.

Here, τ is defined as before in Section 4.3.1. This fitted mesh is denoted by Ω̄
N/2
τ .

Theorem 4.7 (Discrete Maximum Principle). Consider the discrete BVP (4.7). If

B
N/2
0 y2,0 ≥ 0, B

N/2
1 y2,N ≥ 0 and LN/2y2,i ≥ 0, ∀i = 1(1)N − 1. Then y2,i ≥ 0,

∀i = 0(1)N .

Proof. Please refer to Ref. [1].

Lemma 4.5 (Discrete Stability Result). If y2,i is the solution of the BVP (4.7) then

|y2,i| ≤ Cmax
{

|B
N/2
0 y2,0|+ |B

N/2
1 y2,N |+ max

1≤i≤N
|LN/2y2,i|

}

, for 0 ≤ i ≤ N.

Proof. Please refer to Ref. [1].

5. Error estimates

In this section, we derive an error estimates for the solution of (4.1)-(4.2).

5.1. Inner region problem

If we adopt exactly the same analysis presented as in [9] we can derive the following

error estimate. In order to derive an error estimate for the solution of the inner region

problem we prove the following theorems.

Theorem 5.1. Let ȳ∗ = (y∗1 , y
∗
2)

T and ȳ∗i = (y∗1,i, y
∗
2,i)

T be respectively, the solutions of

(4.4) and (4.5). Then

||ȳ∗(xi)− ȳ∗i || ≤ CN−1 lnN, for i = 0(1)N, xi ∈ Ω̄N/2
τ .

.
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Proof. From Lemma 4.1 in [9] and Theorem 4.4 it is clear that for each i, the

consistency errors due to ȳ∗(x) with P
∗N/2
1 and P

∗N/2
2 are bounded as given below:

|P
∗N/2
1 (ȳ∗(xi)− ȳ∗i )| = |(D− −D)y∗1(xi)|

=
h1
2
|y∗

′′

1 (t)|

=
h1
2ε

, (5.1)

and

|P
∗N/2
2 (ȳ∗(xi)− ȳ∗i )| = ε|(D− −D)y∗2(xi)|

=
εh1
2

|y∗
′′

2 (t)|

=
h1
2ε

, (5.2)

for some point t satisfying xi−1 ≤ t ≤ xi.

Since τ = min{1
2 ,

2ε
α lnN}, the argument is considered for two cases τ = 1

2 and

τ = 2ε
α lnN separately.

Case 1: τ = 1
2 . Note that 1

2 ≤ 2ε
α lnN implies ε−1 ≤ C lnN.

From (5.1) and (5.2) and using h1 ≤ CN−1, we have

{

|P
∗N/2
1 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN,

|P
∗N/2
2 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN.

(5.3)

Case 2: τ = 2ε
α lnN .

From (5.1) and (5.2), we have

{

|P
∗N/2
1 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN,

|P
∗N/2
2 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN.

(5.4)

Hence

|P
∗N/2
1 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN,

|P
∗N/2
2 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN.

Since y∗1(0) = y∗1,0, y
∗
2(0) = y∗2,0 by the discrete stability result given by Lemma 4.3 it

follows that

||ȳ∗(xi)− ȳ∗i || ≤ CN−1 lnN.

This completes the proof. �
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Theorem 5.2. Let ȳ∗ = (y∗1 , y
∗
2)

T and ȳ∗1 = (y∗11 , y∗12 )T be respectively, the solutions of

the IVPs










y∗
′

1 − y∗2 = 0,

εy∗
′

2 + a(x)y∗2 − b(x)y∗1 = f(x) + c(x)u01 , x ∈ Ω,

y∗1(0) = α, y∗2(0) = β,

(5.5)

and










y∗
′

1 − y∗2 = 0,

εy∗
′

2 + a(x)y∗2 − b(x)y∗1 = f(x) + c(x)u01 , x ∈ Ω,

y∗1(0) = α+O(ε), y∗2(0) = β.

(5.6)

Then, ||ȳ∗(x)− ȳ∗1(x)|| ≤ Cε.

Proof. Let w̄ = ȳ∗ − ȳ∗1. Then w̄ satisfies











w′
1 − w2 = 0,

εw′
2 + a(x)w2 − b(x)w1 = 0, x ∈ Ω,

w1(0) = O(ε), w2(0) = 0.

(5.7)

Using the maximum principle for the system (5.7)as in [1], we have

||ȳ∗(x)− ȳ∗1(x)|| ≤ Cε, x ∈ Ω.

This completes the proof. �

Theorem 5.3. Let ȳ∗ = (y∗1 , y
∗
2)

T be the solution of the IVP (5.5). Further, let ȳ∗i =
(y∗1,i, y

∗
2,i)

T be the numerical solution of the IVP (5.6) after applying the shooting method

as given in (4.5). Then,

||ȳ∗(xi)− ȳ∗i || ≤ Cε+ CN−1 lnN, for i = 0(1)N and xi ∈ Ω̄N/2
τ .

Proof. From Theorem 5.2, ||ȳ∗(xi)−ȳ∗1(xi)|| ≤ Cε. And from Theorem 5.1, ||ȳ∗1(xi)−
ȳ∗i || ≤ CN−1 lnN.

Using these estimates in the inequality,

||ȳ∗(xi)− ȳ∗i || ≤ ||ȳ∗(xi)− ȳ∗1(xi)||+ ||ȳ∗1(xi)− ȳ∗i ||,

where ȳ∗1(x) is the solution of the system (5.6), this theorem gets proved. �

The BVP (4.1)-(4.2) is equivalent to the following IVP
{

εy′′2 (x) + a(x)y′2(x)− b(x)y2(x) = f∗(x), x ∈ Ω,

y2(0) = q∗, y′2(0) = −q,
(5.8)

where q∗ is the exact value of the solution of the BVP (4.1)-(4.2) at x = 0. Because

of uniqueness of the solutions of the IVP (5.8) and the BVP (4.1)-(4.2), we have the

following result on the error estimate for the inner region problem.
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Theorem 5.4. Let y⋆2(xi) be the solution of the BVP (4.1)-(4.2). Further, let ȳ∗i = (y∗1,i, y
∗
2,i)

T

be the numerical solution of the IVP (4.5). Then,

|y⋆2(xi)− y∗1,i| ≤ Cε+ CN−1 lnN, for i = 0(1)N, xi ∈ Ω̄N/2
τ .

Proof. Consider the inequality,

|y⋆2(xi)− y∗1,i| ≤ |y⋆2(xi)− y∗11 (xi)|+ |y∗11 (xi)− y∗1,i|,

where y∗11 (x) is the solution of the system (5.6). The proof follows from Theorems 5.2

and 5.3. �

Theorem 5.5. Let ȳ(x) be the solution of the BVP (2.1)-(2.2) and let ȳ∗i = (y∗1,i, y
∗
2,i)

T be

the numerical solution of the IVP (4.5). Then,

|y2(xi)− y∗1,i| ≤ Cε+ CN−1 lnN, for i = 0(1)N, xi ∈ Ω̄N/2
τ .

Proof. Consider the inequality,

|y2(xi)− y∗1,i| ≤ |y2(xi)− y⋆2(xi)|+ |y⋆2(xi)− y∗1,i|,

where y⋆2(x) is the solution of the BVP (4.1)-(4.2). The proof follows from Theorems

3.1 and 5.4. �

5.2. Outer region problem

In order to derive an error estimate for the solution of the outer region problem we

prove the following theorems.

Theorem 5.6. Let y2(xi) be the solution of the BVP (4.6) and y2,i be its numerical solution

given by (4.7). Then,

|y2(xi))− y2,i| ≤ CN−1 lnN, for i = 0(1)N, xi ∈ Ω̄N/2
τ .

Proof. From Lemma 4.1 in [9] and Theorem 3.1 it is clear that for each i, the

consistency errors due to y2(xi) with LN/2 is bounded as given below.

|LN/2(y2(xi)− y2,i)| = |(LN/2 − L)y2(xi)|

≤ Cεh2|y
(3)
2 (xi)|+ Ch2|y

(2)
2 (xi)|

≤ Ch2ε(1 + ε−2e−ατ/ε) + Ch2(1 + ε−1e−ατ/ε)

≤ Ch2 + Ch2ε
−1e−ατ/ε. (5.9)

Since τ = min{1
2 ,

2ε
α lnN}, the argument is considered for two cases τ = 1

2 and τ =
2ε
α lnN separately.

Case 1: τ = 1
2 . Note that ε−1 ≤ C lnN and h2 ≤ CN−1.
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From (5.9), we have

|LN/2(y2(xi)− y2,i)| ≤ CN−1 + CN−1 lnN

≤ CN−1 lnN,

|B
N/2
0 (y2(0) − y2,0)| = |(B

N/2
0 −B0)y2(0)| = 0,

|B
N/2
1 (y2(1) − y2,N)| = |(B

N/2
1 −B1)y2(1)|

≤ |(D+ −D)y2(1)|

≤ Ch2|y
(2)(1)|

≤ Ch2(1 + ε−1e−α/ε)

≤ CN−1 lnN.

Then by the discrete stability result given by Lemma 4.5, we have

|y2(xi)− y2,i| ≤ CN−1 lnN, for i = 0(1)N.

Case 2: τ = 2ε
α lnN .

From (5.9) and using h ≤ CN−1, we have

|LN/2(y2(xi)− y2,i)| ≤ CN−1 + CN−1

≤ CN−1,

since εe−ατ/ε ≤ C, when xi ≥ τ . Also,

|B
N/2
0 (y2(0) − y2,0)| = |(B

N/2
0 −B0)y2(0)| = 0,

|B
N/2
1 (y2(1) − y2,N)| = |(B

N/2
1 −B1)y2(1)|

≤ |(D+ −D)y2(1)|

≤ Ch2|y
(2)
2 (1)|

≤ Ch2(1 + ε−1e−α/ε)

≤ CN−1.

Then by the discrete stability result given by Lemma 4.5, we have

|y2(xi)− y2,i| ≤ CN−1 lnN, for i = 0(1)N.

Hence in both the cases,

|y2(xi)− y2,i| ≤ CN−1 lnN, for i = 0(1)N.

This completes the proof. �
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Theorem 5.7. Let y⋆2(xi) be the solution of the BVP (4.1)-(4.2) and y2,i be the numerical

solution of the BVP (4.6) after applying the FD scheme as given in (4.7). Then,

|y⋆2(xi)− y2,i| ≤ Cε+ CN−1 lnN, for i = 0(1)N, xi ∈ Ω̄N/2
τ .

Proof. From Theorem 3.1, |y⋆2(xi)− y2(xi)| ≤ Cε. And from Theorem 5.6, |y2(xi)−
y2,i| ≤ CN−1 lnN.

Using these estimates in the inequality,

|y⋆2(xi)− y2,i| ≤ |y⋆2(xi)− y2(xi)|+ |y2(xi)− y2,i|,

where y2(xi) is the solution of the BVP (4.6), this theorem gets proved. �

Theorem 5.8. Let ȳ(x) be the solution of the BVP (2.1)-(2.2) and y2,i be the numerical

approximation obtained for y2(xi) for the BVP (4.6) after applying the FD scheme as given

in (4.7). Then,

|y2(xi)− y2,i| ≤ Cε+ CN−1 lnN, for i = 0(1)N, xi ∈ Ω̄N/2
τ .

Proof. From Theorem 3.1, |y2(xi)− y⋆2(xi)| ≤ Cε. And from Theorem 5.7, |y⋆2(xi)−
y2,i| ≤ CN−1 lnN.

Using these estimates in the inequality,

|y2(xi)− y2,i| ≤ |y2(xi)− y⋆2(xi)|+ |y⋆2(xi)− y2,i|,

where y⋆2(xi) is the solution of the BVP (4.1)-(4.2), this theorem gets proved. �

6. Non-linear problem

Consider the quasi-linear BVP

εy′′′(x) = F (x, y, y′, y′′), x ∈ Ω, (6.1)

y(0) = p, −y′′(0) = q, y′(1)− y′′(1) = r, (6.2)

where F (x, y, y′, y′′) is a smooth function such that























Fy′′(x, y, y
′, y′′) ≥ α, α > 0,

Fy′(x, y, y
′, y′′) > 0,

0 ≥ Fy(x, y, y
′, y′′) ≥ −γ, γ > 0,

α > γ.

(6.3)

Assume that the reduced problem

F (x, y, y′, y′′) = 0, y(0) = p, y′(1)− y′′(1) = r
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has a solution y0 ∈ C(3)(Ω̄). Then the BVP (6.1)-(6.2) has a unique solution and has

a less severe boundary layer of width O(ε) near x = 0 [17, 28]. In order to obtain

a numerical solution of (6.1)-(6.2), Newton’s method of quasi-linearisation is applied

[1]. Consequently, we get a sequence {y[m]}∞0 of successive approximations with a

proper choice of initial guess y[0].
We define y[m+1] for each fixed non-negative integer m, to be the solution of the

following linear problem:
{

ε(y′′′)[m+1] + am(x)(y′′)[m+1] − bm(x)(y′)[m+1] − cm(x)y[m+1] = F [m](x),

y[m+1](0) = p, (y′′)[m+1](0) = −q, (y′)[m+1](1) − (y′′)[m+1](1) = r,
(6.4)

where






























am(x) = Fy′′(x, y
[m], (y′)[m], (y′′)[m]),

bm(x) = Fy′(x, y
[m], (y′)[m], (y′′)[m]),

cm(x) = Fy(x, y
[m], (y′)[m], (y′′)[m]),

F [m](x) = F (x, y[m], (y′)[m], (y′′)[m])− (y′′)[m]Fy′′(x, y
[m], (y′)[m], (y′′)[m])

+(y′)[m]Fy′(x, y
[m], (y′)[m], (y′′)[m]) + (y)[m]Fy(x, y

[m], (y′)[m], (y′′)[m]).

(6.5)

Remark 6.1. If the initial guess y[0] is sufficiently close to the solution y(x) of (6.1)-

(6.2), then, following the method of proof given in [1], one can prove that the sequence

{y[m]}∞0 converges to y(x). From (6.3),it follows that for each fixed m:

am(x) = Fy′′(x, y
[m], (y′)[m], (y′′)[m]) ≥ α, α > 0,

bm(x) = Fy′(x, y
[m], (y′)[m], (y′′)[m]) > 0,

0 ≥ cm(x) = Fy(x, y
[m], (y′)[m], (y′′)[m]) ≥ −γ, γ > 0,

α > γ.

Remark 6.2. Problem (6.4)-(6.5) for each fixed m is a linear BVP of third order and is

of the form (1.1)-(1.2).

Remark 6.3. The solution of the reduced problem of (6.1)-(6.2) or a suitable approxi-

mation will be taken as the initial guess y[0] to generate the successive approximations

{y[m]}∞0 .

Remark 6.4. For the above Newton’s quasi-linearisation process the following conver-

gence criterion is used.

|y[m+1](xj)− y[m](xj)| ≤ δ, xj ∈ Ω̄, m ≥ 0.

7. Illustrations

In this section, we present three examples to illustrate the method described in this

paper. Let Ȳ 2N
j be the piecewise linear interpolants of the numerical solution Y N

j on the
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mesh Ω2N , where N , 2N are the number of mesh points. The nodal errors and order of

convergence are estimated using the fitted mesh principle [2]. Define the fitted mesh

differences as EN
ε which denote, respectively, the numerical solutions obtained using

N and 2N mesh intervals

max
x∈Ω̄N

| Y N (xj)− Ȳ 2N (xj) | and EN = max
ε

EN
ε .

Then, the order of convergence is given by

p∗ = min
N

pN , where pN = log2

{

EN

E2N

}

.

The computed maximum pointwise errors EN
ε , EN and order of convergence p∗ are

tabulated in Tables 1, 2 and 3.

Example 7.1. Consider the BVP

εy′′′(x) + 2y′′(x)− 3y′(x) + y(x) = −(1 + 2x),

y(0) = 0, y′′(0) = −1, y′(1)− y′′(1) = 0.

The numerical results are presented in Table 1.

Table 1: Maximum pointwise errors EN

ε , EN and pN of Example 7.1.

Number of mesh points N

ε 128 256 512 1024 2048 4096

2
−13 1.8320e-006 1.1259e-006 6.6088e-007 3.7689e-007 2.1038e-007 1.1571e-007

2
−14 9.1601e-007 5.6294e-007 3.3044e-007 1.8844e-007 1.0519e-007 5.7854e-008

2
−15 4.5800e-007 2.8147e-007 1.6522e-007 9.4221e-008 5.2594e-008 2.8927e-008

2
−16 2.2900e-007 1.4073e-007 8.2609e-008 4.7110e-008 2.6297e-008 1.4464e-008

2
−17 1.1450e-007 7.0367e-008 4.1305e-008 2.3555e-008 1.3148e-008 7.2318e-009

2
−18 5.7250e-008 3.5183e-008 2.0652e-008 1.1778e-008 6.5742e-009 3.6159e-009

2
−19 2.8625e-008 1.7592e-008 1.0326e-008 5.8888e-009 3.2871e-009 1.8079e-009

2
−20 1.4313e-008 8.7959e-009 5.1631e-009 2.9444e-009 1.6436e-009 9.0397e-010

2
−13 1.2877e-001 6.6463e-002 3.3757e-002 1.7010e-002 8.5383e-003 4.2775e-003

2
−14 1.2877e-001 6.6463e-002 3.3757e-002 1.7010e-002 8.5383e-003 4.2774e-003

2
−15 1.2877e-001 6.6463e-002 3.3757e-002 1.7010e-002 8.5383e-003 4.2774e-003

2
−16 1.2877e-001 6.6463e-002 3.3757e-002 1.7010e-002 8.5383e-003 4.2774e-003

2
−17 1.2877e-001 6.6463e-002 3.3757e-002 1.7010e-002 8.5383e-003 4.2774e-003

2
−18 1.2877e-001 6.6463e-002 3.3757e-002 1.7010e-002 8.5383e-003 4.2774e-003

2
−19 1.2877e-001 6.6463e-002 3.3757e-002 1.7010e-002 8.5383e-003 4.2774e-003

2
−20 1.2877e-001 6.6463e-002 3.3757e-002 1.7010e-002 8.5383e-003 4.2774e-003

EN 1.2877e-001 6.6463e-002 3.3757e-002 1.7010e-002 8.5383e-003 4.2775e-003

pN p∗ 9.5417e-001 9.7736e-01 9.8880e-001 9.9436e-001 9.9718e-001

The order of convergence = 9.5417e-001
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Example 7.2. Consider the BVP

εy′′′(x) + (2x+ 3)2y′′(x)− 2(2x+ 3)y′(x) + y(x) = 6x,

y(0) = 0, y′′(0) = −1, y′(1)− y′′(1) = 1.

The numerical results are presented in Table 2.

Table 2: Maximum pointwise errors EN

ε , EN and pN of Example 7.2.

Number of mesh points N

ε 128 256 512 1024 2048 4096

2
−13 7.8605e-011 5.3932e-011 3.5654e-011 2.1894e-011 1.2857e-011 7.2664e-012

2
−14 1.9651e-011 1.3483e-011 8.9138e-012 5.4738e-012 3.2148e-012 1.8165e-012

2
−15 4.9127e-012 3.3706e-012 2.2284e-012 1.3678e-012 8.0336e-013 4.5430e-013

2
−16 1.2284e-012 8.4244e-013 5.5689e-013 4.1722e-013 4.1722e-013 1.1369e-013

2
−17 3.0709e-013 2.1072e-013 1.3922e-013 1.0281e-013 4.9960e-014 4.2100e-013

2
−18 4.2100e-013 4.2100e-013 4.2100e-013 4.2100e-013 4.2100e-013 4.2477e-013

2
−19 4.2477e-013 4.2477e-013 4.2477e-013 4.2477e-013 4.2477e-013 1.5543e-015

2
−20 1.1768e-014 2.5535e-014 2.6645e-015 1.7764e-015 2.1427e-013 1.3323e-015

2
−13 1.9122e-003 8.9488e-004 4.3219e-004 2.1262e-004 1.0583e-004 5.3223e-005

2
−14 1.9111e-003 8.9401e-004 4.3148e-004 2.1200e-004 1.0525e-004 5.2634e-005

2
−15 1.9105e-003 8.9358e-004 4.3112e-004 2.1170e-004 1.0497e-004 5.2359e-005

2
−16 1.9102e-003 8.9336e-004 4.3095e-004 2.1154e-004 1.0483e-004 5.2225e-005

2
−17 1.9101e-003 8.9325e-004 4.3086e-004 2.1147e-004 1.0476e-004 5.2160e-005

2
−18 1.9100e-003 8.9320e-004 4.3082e-004 2.1143e-004 1.0473e-004 5.2127e-005

2
−19 1.9100e-003 8.9317e-004 4.3080e-004 2.1141e-004 1.0471e-004 5.2111e-005

2
−20 1.9100e-003 8.9316e-004 4.3078e-004 2.1140e-004 1.0470e-004 5.2103e-005

EN 1.9122e-003 8.9488e-004 4.3219e-004 2.1262e-004 1.0583e-004 5.3223e-005

pN 1.0955e+000 1.0500e+000 1.0234e+000 1.0065e+000 p∗9.9163e-001

The order of convergence = 9.9163e-001

Example 7.3. Consider the BVP

εy′′′(x) + 2y′′(x)− 2(y′)2(x) + y(x) = 1 + x2,

y(0) = 1, y′′(0) = 0, y′(1)− y′′(1) = 0.

The numerical results are presented in Table 3.

8. Conclusions

In this paper, we presented a numerical method to solve third-order SPBVPs for

ODEs subject to particular type of boundary conditions by adopting the techniques

of [7,19,21,26] and [12,14,15,25] who used to solve second and third order SPBVPs

for ODEs. The boundary conditions help us to reduce the given third order ordinary
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Table 3: Maximum pointwise errors EN

ε , EN and pN of Example 7.3.

Number of mesh points N

ε 128 256 512 1024 2048 4096

2
−13 4.6286e-006 2.6451e-006 1.4879e-006 8.2666e-007 4.5469e-007 2.4802e-007

2
−14 2.3140e-006 1.3223e-006 7.4381e-007 4.1324e-007 2.4802e-007 1.2398e-007

2
−15 1.1569e-006 6.6109e-007 3.7187e-007 2.0660e-007 1.2398e-007 6.1981e-008

2
−16 5.7843e-007 3.3053e-007 1.8593e-007 1.0329e-007 6.1981e-008 3.0988e-008

2
−17 2.8921e-007 1.6526e-007 9.2961e-008 5.1645e-008 3.0988e-008 1.5494e-008

2
−18 1.4460e-007 8.2630e-008 4.6480e-008 2.5822e-008 1.5494e-008 7.7467e-009

2
−19 7.2301e-008 4.1315e-008 2.3240e-008 1.2911e-008 7.7467e-009 3.8733e-009

2
−20 3.6151e-008 2.0657e-008 1.1620e-008 6.4555e-009 3.8733e-009 1.9366e-009

2
−13 7.9764e-002 4.0464e-002 2.0634e-002 1.0693e-002 5.7582e-003 3.4093e-003

2
−14 7.9634e-002 4.0241e-002 2.0352e-002 1.0363e-002 5.3668e-003 2.8892e-003

2
−15 7.9570e-002 4.0131e-002 2.0215e-002 1.0207e-002 5.1937e-003 2.6889e-003

2
−16 7.9538e-002 4.0077e-002 2.0148e-002 1.0132e-002 5.1121e-003 2.6001e-003

2
−17 7.9523e-002 4.0050e-002 2.0114e-002 1.0095e-002 5.0724e-003 2.5582e-003

2
−18 7.9515e-002 4.0037e-002 2.0098e-002 1.0077e-002 5.0529e-003 2.5379e-003

2
−19 7.9511e-002 4.0030e-002 2.0090e-002 1.0067e-002 5.0432e-003 2.5278e-003

2
−20 7.9509e-002 4.0027e-002 2.0085e-002 1.0063e-002 5.0384e-003 2.5228e-003

EN 7.9764e-002 4.0464e-002 2.0634e-002 1.0693e-002 5.7582e-003 3.4093e-003

pN 9.7910e-001 9.7162e-001 9.4836e-001 8.9298e-001 p∗7.5614e-001

The order of convergence = 7.5641e-001

differential equation into a system of one first order and one second order equation

subject to initial and boundary conditions, respectively. Error estimates derived in

Section 5 show first order convergence. Our numerical experiments show that this

method gives good approximate solutions especially with in the layer region. This can

be seen from the numerical results presented in Table 1, Table 2 and Table 3. In all

the three tables the numerical results appearing in the rows 1-8 correspond to the left

boundary layer region and the rest of the rows namely 9-16 correspond to the outer

region.
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