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Abstract. For the approximation in Lp-norm, we determine the weakly asymptotic

orders for the simultaneous approximation errors of Sobolev classes by piecewise cu-
bic Hermite interpolation with equidistant knots. For p = 1,∞, we obtain its values.

By these results we know that for the Sobolev classes, the approximation errors by

piecewise cubic Hermite interpolation are weakly equivalent to the corresponding
infinite-dimensional Kolmogorov widths. At the same time, the approximation er-

rors of derivatives are weakly equivalent to the corresponding infinite-dimensional
Kolmogorov widths.
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1. Introduction

Let N, Z and R be the set of all positive integers, all integers and all real numbers,

respectively. For 1 ≤ p ≤ ∞, let Lp be the spaces of functions f : R → R with the

corresponding norms ‖ · ‖p. Denote by W r
p (R), r ∈ N, the class of functions f such that

f (r−1)(f (0) := f) is locally absolutely continuous and ‖f (r)‖p ≤ 1.

The approximation of periodic Sobolev classes by periodic polynomial splines with

restrictions on its derivatives has been studied for a long time (see [1–4,7–9]). In these

researches, the approximation polynomial splines are assumed with equidistant knots

and with defect 1. Recently, [14] and [15] consider the approximation of non-periodic

Sobolev classes by polynomial splines with restrictions, where the approximation poly-

nomial splines are also assumed with equidistant knots and with defect 1.

The simultaneous approximation problems for smooth functions are an important

research topic in approximation theory and application. For polynomial simultaneous
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approximation problem, the main results can be found in [6] and [12]. As to the con-

crete interpolation polynomial operators, the main results can be looked up in [11]

and [13]. As far as we know, all relevant results are only connected to a single func-

tion approximation and not for function classes approximation. In [1–4, 7–9, 14, 15],

all results are connected to function approximation only, however the simultaneous

approximation problems can also be discussed since both the functions and approxi-

mation splines have derivatives up to r-order. Hence, we want to consider the simulta-

neous approximation of Sobolev classes by piecewise cubic Hermite interpolation with

equidistant knots. It is well known that the defect of piecewise cubic Hermite interpo-

lation is 2.

Now we give the definition of piecewise cubic Hermite interpolation on knots xk =
k/n, k ∈ Z. For f ∈ C(1)(R), there is an unique piecewise cubic polynomial Hn(f, x)
with knots xk = k/n, k ∈ Z and satisfies the following conditions:

(1). Hn(f, x) ∈ C(1)(R);

(2). Hn(f, xk) = f(xk), H
′
n(f, xk) = f ′(xk), k ∈ Z;

(3). Hn(f, x) is a cubic polynomial about x on each subinterval [xk−1, xk], k ∈ Z.

It is well known that for x ∈ [xk, xk+1],

Hn(f, x) =f(xk)

(
x− xk+1

xk − xk+1

)2(
1 +

2(x− xk)

xk+1 − xk

)

+ f ′(xk)(x− xk)

(
x− xk+1

xk − xk+1

)2

+ f(xk+1)

(
x− xk

xk+1 − xk

)2(
1 +

2(x− xk+1)

xk − xk+1

)

+ f ′(xk+1)(x− xk+1)

(
x− xk

xk+1 − xk

)2

. (1.1)

On the one hand, we will consider the second derivative approximation of piecewise

cubic Hermite interpolation on Sobolev classes W 3
p (R). We obtain the following results.

Theorem 1.1. Let Hn(f, x) be defined as (1.1). Then we have

sup
f∈W 3

∞
(R)

‖H ′′
nf − f ′′‖∞ =

8

27n
, (1.2)

sup
f∈W 3

1 (R)

‖H ′′
nf − f ′′‖1 =

C1

n
, (1.3)

and for 1 < p < ∞,

sup
f∈W 3

p (R)

‖H ′′
nf − f ′′‖p ≤

(
8

27

)1− 1
p

C
1
p

1

1

n
. (1.4)

Where C1 is defined in (3.30).
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On the other hand, we will consider the first derivative approximation of piecewise

cubic Hermite interpolation on Sobolev classes W 3
p (R). Our results are as follows.

Theorem 1.2. Let Hn(f, x) be defined as (1.1). Then we have

sup
f∈W 3

∞
(R)

‖H ′
nf − f ′‖∞ =

13
√
13− 46

27n2
, (1.5)

sup
f∈W 3

1 (R)

‖H ′
nf − f ′‖1 =

13
√
13− 46

27n2
, (1.6)

and for 1 < p < ∞,

sup
f∈W 3

p (R)

‖H ′
nf − f ′‖p ≤ 13

√
13− 46

27n2
. (1.7)

At last, we will consider the function approximation of piecewise cubic Hermite

interpolation on Sobolev classes W 3
p (R). We get the following results.

Theorem 1.3. Let Hn(f, x) be defined as (1.1). Then we have

sup
f∈W 3

∞
(R)

‖Hnf − f‖∞ =
1

96n3
, (1.8)

sup
f∈W 3

1 (R)

‖Hnf − f‖1 =
√
3

216n3
, (1.9)

and for 1 < p < ∞,

sup
f∈W 3

p (R)

‖Hnf − f‖p ≤
(

1

96

)1− 1
p

(√
3

216

) 1
p 1

n3
. (1.10)

Remark 1.1. Suppose S is a space of functions defined on R. The space S is called an

infinite-σ-dimensional space if there is a real number σ ∈ R+ such that

d̃im(S) := lim
α→∞

inf
dimS|[−a,a]

2α
= σ,

where S|[−a,a] is the space consisting of functions in S restricted on [−a, a] and dimS|[−a,a]

is the dimension of S|[−a,a]. The quality

d̃σ(W
r
p (R))p := inf

d̃im(S)≤σ

sup
f∈W r

p (R)
inf
g∈S

‖f − g‖p

is called the infinite-σ-dimensional Kolmogorov width of W r
p (R) in Lp(R).
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It is easy to know that the space of spline functions S = {Hn(f, x)|f ∈ C(1)(R)}
satisfies

d̃im(S) = 2n.

At the same time, from Theorem 1.3 and [10], we know that for 1 ≤ p ≤ ∞,

sup
f∈W 3

p (R)

‖Hnf − f‖p ≍ d̃2n(W
3
p (R))p ≍

1

n3
.

Here and in the following the notation an ≍ bn for sequences {an} and {bn} of posi-

tive numbers means the existence of a positive constant C independent of n such that

an/C ≤ bn ≤ Can, and constants C may be different in the different expressions.

Besides, from the definition of Sobolev classes, we know that for 1 ≤ p ≤ ∞,

{
f ′|f ∈ W 3

p (R)
}
= W 2

p (R),
{
f ′′|f ∈ W 3

p (R)
}
= W 1

p (R).

From Theorem 1.2, Theorem 1.1 and [10], we obtain that for 1 ≤ p ≤ ∞,

sup
f∈W 3

p (R)

‖H ′
nf − f ′‖p ≍ d̃2n(W

2
p (R))p ≍

1

n2
,

sup
f∈W 3

p (R)

‖H ′′
nf − f ′′‖p ≍ d̃2n(W

1
p (R))p ≍

1

n
.

Remark 1.2. Using the same method, we can obtain the corresponding simultaneous

approximation results of periodic Sobolev classes (or Sobolev classes on a closed inter-

val) by piecewise cubic Hermite interpolation with equidistant knots.

2. Some lemmas

Let T be a linear bounded mapping from Lp (R) to Lp (R). The norm of the mapping

T is defined as

‖T‖p = sup
f 6=0

‖Tf‖p
‖f‖p

. (2.1)

From the well-known Riesz-Thorin interpolation theorem (see [5]), we obtain the

following lemma.

Lemma 2.1. Let T be a linear bounded mapping from Lp (R) to Lp (R) for 1 ≤ p ≤ +∞.
Then for 1 < p < ∞,

‖T‖p ≤ ‖T‖
1
p

1 ‖T‖
1− 1

p
∞ . (2.2)

Let K(x, t) be a bounded measurable function on [0, h] × [0, h] and let

T (f, x) =

∫ h

0
f(t)K(x, t)dt. (2.3)

The following lemma is well known.
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Lemma 2.2. Let K(x, t) be a piecewise continuous function on [0, h] × [0, h] and let T
be defined by (2.3). Then T is a linear bounded mapping from Lp[0, h] to Lp[0, h] for

1 ≤ p ≤ ∞, and

‖T‖∞ = max
0≤x≤h

∫ h

0
|K(x, t)|dt, (2.4)

‖T‖1 = max
0≤t≤h

∫ h

0
|K(x, t)|dx. (2.5)

3. Proof of Theorem 1.1

Proof. Denote h = 1/n. From (1.1) we know: if x ∈ [xk−1, xk], k ∈ Z, then

Hn(f, x) =
f(xk−1)(x− xk)

2

h2

(
1 +

2(x− xk−1)

h

)
+

f ′(xk−1)(x− xk−1)(x− xk)
2

h2

+
f(xk)(x− xk−1)

2

h2

(
1− 2(x− xk)

h

)
+

f ′(xk)(x− xk−1)
2(x− xk)

h2
. (3.1)

For k = 1 and x ∈ [0, h], by (3.1), it follows that

Hn(f, x) =
f(0)(x− h)2

h2

(
1 +

2x

h

)
+

f ′(0)x(x − h)2

h2

+
f(h)x2

h2

(
3− 2x

h

)
+

f ′(h)x2(x− h)

h2
. (3.2)

Differentiating two times on both hands of (3.2) and applying the Newton-Leibniz

formula, we obtain

H ′′
n(f, x) =

f(0) (12x− 6h)

h3
+

f ′(0)(6x − 4h)

h2
+

f(h)(6h − 12x)

h3
+

f ′(h)(6x − 2h)

h2

=
6h− 12x

h3

∫ h

0
f ′(t)dt+

f ′(0)(6x − 4h)

h2
+

f ′(h)(6x − 2h)

h2

=
1

h3

∫ h

0

[
(6h− 12x)f ′(t) + f ′(0)(6x − 4h) + f ′(h)(6x − 2h)

]
dt

=
4h− 6x

h3

∫ h

0

[
f ′(t)− f ′(0)

]
dt+

6x− 2h

h3

∫ h

0

[
f ′(h) − f ′(t)

]
dt

=
4h− 6x

h3

∫ h

0
dt

∫ t

0
f ′′(s)ds +

6x− 2h

h3

∫ h

0
dt

∫ h

t

f ′′(s)ds. (3.3)

Exchanging the integral order, we obtain

∫ h

0
dt

∫ t

0
f ′′(s)ds =

∫ h

0
ds

∫ h

s

f ′′(s)dt =

∫ h

0
(h− s)f ′′(s)ds. (3.4)
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Similarly, one has ∫ h

0
dt

∫ h

t

f ′′(s)ds =

∫ h

0
sf ′′(s)ds. (3.5)

From (3.3), (3.4) and (3.5), it follows that

H ′′
n(f, x) =

1

h3

∫ h

0
[4h2 − 6hs− 6xh+ 12xs]f ′′(s)ds. (3.6)

It is easy to verify that

1

h3

∫ h

0
[4h2 − 6hs − 6xh+ 12xs]ds = 1. (3.7)

From (3.6), (3.7) and the Newton-Leibniz formula, we obtain

H ′′
n(f, x)− f ′′(x) =

1

h3

∫ h

0
[4h2 − 6hs− 6xh+ 12xs]

[
f ′′(s)− f ′′(x)

]
ds

=
1

h3

∫ h

0
[4h2 − 6hs− 6xh+ 12xs]ds

∫ s

x

f (3)(t)dt

=− 1

h3

∫ x

0
[4h2 − 6hs− 6xh+ 12xs]ds

∫ x

s

f (3)(t)dt

+
1

h3

∫ h

x

[4h2 − 6hs− 6xh+ 12xs]ds

∫ s

x

f (3)(t)dt. (3.8)

Exchanging the integral order, we obtain
∫ x

0
[4h2 − 6hs − 6xh+ 12xs]ds

∫ x

s

f (3)(t)dt

=

∫ x

0
f (3)(t)dt

∫ t

0
[4h2 − 6hs − 6xh+ 12xs]ds

=

∫ x

0
f (3)(t)

[
4h2t− 3ht2 − 6xht+ 6xt2

]
dt. (3.9)

Similarly, one has

∫ h

x

[4h2 − 6hs − 6xh+ 12xs]ds

∫ s

x

f (3)(t)dt

=

∫ h

x

f (3)(t)dt

∫ h

t

[4h2 − 6hs − 6xh+ 12xs]ds

=

∫ h

x

f (3)(t)
[
h3 − 4h2t+ 3ht2 + 6xht− 6xt2

]
dt. (3.10)

Denote

K1(x, t) =





−4h2t+3ht2+6xht−6xt2

h3 , 0 ≤ t ≤ x ≤ h;

h3−4h2t+3ht2+6xht−6xt2

h3 , 0 ≤ x ≤ t ≤ h.
(3.11)
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Then by (3.8)-(3.11), we know

H ′′
n(f, x)− f ′′(x) =

∫ h

0
f (3)(t)K1(x, t)dt. (3.12)

For p = ∞, from (2.4) and (3.12), it follows that

sup
f∈W 3

∞
(R)

max
0≤x≤h

|H ′′
n(f, x)− f ′′(x)| = max

0≤x≤h

∫ h

0
|K1(x, t)|dt. (3.13)

From (3.11), it follows that for an arbitrary 0 ≤ x ≤ h,
∫ h

0
|K1(x, t)|dt =

1

h3

∫ x

0

∣∣4h2t− 3ht2 − 6xht+ 6xt2
∣∣ dt

+
1

h3

∫ h

x

∣∣h3 − 4h2t+ 3ht2 + 6xht− 6xt2
∣∣ dt. (3.14)

We consider the first integral in (3.14) now. For 0 ≤ x ≤ 2h
3 , it is easy to verify that

∫ x

0

∣∣4h2t− 3ht2 − 6xht+ 6xt2
∣∣ dt

=

∫ x

0

[
4h2t− 3ht2 − 6xht+ 6xt2

]
dt = 2x2(h− x)2. (3.15)

For 2h
3 ≤ x ≤ h, by a direct computation, we obtain

∫ x

0

∣∣4h2t− 3ht2 − 6xht+ 6xt2
∣∣ dt

=−
∫ 2h(2h−3x)

3h−6x

0

[
4h2t− 3ht2 − 6xht+ 6xt2

]
dt

+

∫ x

2h(2h−3x)
3h−6x

[
4h2t− 3ht2 − 6xht+ 6xt2

]
dt

=2x2(h− x)2 +
8h3(3x− 2h)3

27(h − 2x)2
. (3.16)

We will consider the second integral in (3.14). For 0 ≤ x ≤ h
3 , it is easy to verify that

∫ h

x

∣∣h3 − 4h2t+ 3ht2 + 6xht− 6xt2
∣∣ dt

=

∫ h2

3h−6x

x

[
h3 − 4h2t+ 3ht2 + 6xht− 6xt2

]
dt

−
∫ h

h2

3h−6x

[
h3 − 4h2t+ 3ht2 + 6xht− 6xt2

]
dt

=2x2(h− x)2 +
8h3(h− 3x)3

27(h − 2x)2
. (3.17)
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For h
3 ≤ x ≤ h, by a simple computation, it follows that

∫ h

x

∣∣h3 − 4h2t+ 3ht2 + 6xht− 6xt2
∣∣ dt = 2x2(h− x)2. (3.18)

Combining (3.14)-(3.18), we obtain

∫ h

0
|K1(x, t)|dt =





4
h3

[
x2(h− x)2 + 2h3(h−3x)3

27(h−2x)2

]
, 0 ≤ x ≤ h

3 ;

4x2(h−x)2

h3 , h
3 ≤ x ≤ 2h

3 ;

4
h3

[
x2(h− x)2 + 2h3(3x−2h)3

27(h−2x)2

]
, 2h

3 ≤ x ≤ h.

(3.19)

By (3.19) and the computation of maximal value of differentiable functions on a closed

interval, we get

max
0≤x≤h

∫ h

0
|K1(x, t)|dt =

∫ h

0
|K1(h, t)|dt =

8h

27
. (3.20)

From (3.13) and (3.20), it follows that

sup
f∈W 3

∞
(R)

max
0≤x≤h

|H ′′
n(f, x)− f ′′(x)| = 8h

27
. (3.21)

Similarly, for an arbitrary k ∈ Z, we have

sup
f∈W 3

∞
(R)

max
(k−1)h≤x≤kh

|H ′′
n(f, x)− f ′′(x)| = 8h

27
. (3.22)

From (3.22) we yield (1.2).

For p = 1, from (2.5) and (3.12), it follows that for f ∈ W 3
1 (R),

∫ h

0

∣∣H ′′
n(f, x)− f ′′(x)

∣∣ dx ≤ max
0≤t≤h

∫ h

0
|K1(x, t)|dx ·

∫ h

0

∣∣∣f (3)(t)
∣∣∣ dt. (3.23)

From (3.11) we know that for 0 ≤ t ≤ h, we have

∫ h

0
|K1(x, t)|dx =

1

h3

∫ h

t

∣∣4h2t− 3ht2 − 6xht+ 6xt2
∣∣ dx

+
1

h3

∫ t

0

∣∣h3 − 4h2t+ 3ht2 + 6xht− 6xt2
∣∣ dx. (3.24)
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It is easy to verify that for 0 ≤ t ≤ 2h
3 ,

∫ h

t

∣∣4h2t− 3ht2 − 6xht+ 6xt2
∣∣ dx

=

∫ 4h2−3ht
6(h−t)

t

(
4h2t− 3ht2 − 6xht+ 6xt2

)
dx

−
∫ h

4h2−3ht
6(h−t)

(
4h2t− 3ht2 − 6xht+ 6xt2

)
dx

=
t(4h2 − 3ht)2

6(h− t)
− 4h2t2 + 6ht3 − 3t4 − h3t, (3.25)

and for 2h
3 ≤ t ≤ h,

∫ h

t

∣∣4h2t− 3ht2 − 6xht+ 6xt2
∣∣ dx =

∫ h

t

(
4h2t− 3ht2 − 6xht+ 6xt2

)
dx

= h3t− 4h2t2 + 6ht3 − 3t4. (3.26)

Similarly, we have that for 0 ≤ t ≤ h
3 ,

∫ t

0

∣∣h3 − 4h2t+ 3ht2 + 6xht− 6xt2
∣∣ dx =

∫ t

0

(
h3 − 4h2t+ 3ht2 + 6xht− 6xt2

)
dx

= h3t− 4h2t2 + 6ht3 − 3t4, (3.27)

and for h
3 ≤ t ≤ h,

∫ t

0

∣∣h3 − 4h2t+ 3ht2 + 6xht− 6xt2
∣∣ dx

=−
∫ h(3t−h)

6t

0

(
h3 − 4h2t+ 3ht2 + 6xht− 6xt2

)
dx

+

∫ t

h(3t−h)
6t

(
h3 − 4h2t+ 3ht2 + 6xht− 6xt2

)
dx

=h3t− 4h2t2 + 6ht3 − 3t4 +
h2(h− t)(3t− h)2

6t
. (3.28)

From (3.24)-(3.28), it follows that
∫ h

0
|K1(x, t)|dx

=





1
h3

[
t(4h2−3ht)2

6(h−t) − 8h2t2 + 12ht3 − 6t4
]
, 0 ≤ t ≤ h

3 ;

1
h3

[
t(4h2−3ht)2

6(h−t) − 8h2t2 + 12ht3 − 6t4 + h2(h−t)(3t−h)2

6t

]
, h

3 ≤ t ≤ 2h
3 ;

1
h3

[
2h3t− 8h2t2 + 12ht3 − 6t4 + h2(h−t)(3t−h)2

6t

]
, 2h

3 ≤ t ≤ h.

(3.29)
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By (3.29) and a numerical solution we obtain that

C1 =
max0≤t≤h

∫ h

0 |K1(x, t)|dx
h

= 0.251498. (3.30)

By (3.23) and (3.30), we know

∫ h

0

∣∣H ′′
n(f, x)− f ′′(x)

∣∣ dx ≤ C1h

∫ h

0

∣∣∣f (3)(t)
∣∣∣ dt. (3.31)

Similar to the proof of (3.31), for an arbitrary k ∈ Z, we have

∫ kh

(k−1)h

∣∣H ′′
n(f, x)− f ′′(x)

∣∣ dx ≤ C1h

∫ kh

(k−1)h

∣∣∣f (3)(t)
∣∣∣ dt. (3.32)

Hence, (3.32) gives that for f ∈ W 3
1 (R),

‖H ′′
nf − f ′′‖1 =

∑

k∈Z

∫ kh

(k−1)h

∣∣H ′′
n(f, x)− f ′′(x)

∣∣ dx

≤ C1h
∑

k∈Z

∫ kh

(k−1)h

∣∣∣f (3)(t)
∣∣∣ dt = C1h

∥∥∥f (3)
∥∥∥
1
≤ C1h. (3.33)

On the other hand, denote W
3
1(R) =

{
f ∈ W 3

1 (R)| supp f (3) ⊂ [0, h]
}

. Then by (3.12),

(2.5) and (3.30), we obtain

sup
f∈W

3
1(R)

‖H ′′
nf − f ′′‖1 = C1h. (3.34)

From W
3
1(R) ⊂ W 3

1 (R), (3.33) and (3.34) we get (1.3). By (2.2), (1.2) and (1.3) we

obtain (1.4). �

4. Proof of Theorem 1.2

Proof. For x ∈ [0, h], from H ′
n(f, 0) = f ′(0), Newton-Leibniz formula and (3.8)-(3.10),

it follows that

H ′
n(f, x)− f ′(x) =

∫ x

0

[
H ′′

n(f, t)− f ′′(t)
]
dt

=− 1

h3

∫ x

0
dt

∫ t

0
f (3)(s)

[
4h2s− 3hs2 − 6ths+ 6ts2

]
ds

+
1

h3

∫ x

0
dt

∫ h

t

f (3)(s)
[
h3 − 4h2s+ 3hs2 + 6ths− 6ts2

]
ds. (4.1)
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Exchanging the integral order, we obtain
∫ x

0
dt

∫ t

0
f (3)(s)

[
4h2s− 3hs2 − 6ths+ 6ts2

]
ds

=

∫ x

0
f (3)(s)ds

∫ x

s

[
4h2s− 3hs2 − 6ths+ 6ts2

]
dt

=

∫ x

0
f (3)(s)

[
4h2xs− 3hxs2 − 3hx2s+ 3x2s2 − 4h2s2 + 6hs3 − 3s4

]
ds. (4.2)

Similarly, one has
∫ x

0
dt

∫ h

t

f (3)(s)
[
h3 − 4h2s+ 3hs2 + 6ths − 6ts2

]
ds

=

∫ x

0
dt

∫ x

t

f (3)(s)
[
h3 − 4h2s+ 3hs2 + 6ths − 6ts2

]
ds

+

∫ x

0
dt

∫ h

x

f (3)(s)
[
h3 − 4h2s+ 3hs2 + 6ths − 6ts2

]
ds

=

∫ x

0
f (3)(s)ds

∫ s

0

[
h3 − 4h2s+ 3hs2 + 6ths− 6ts2

]
dt

+

∫ h

x

f (3)(s)ds

∫ x

0

[
h3 − 4h2s+ 3hs2 + 6ths− 6ts2

]
dt

=

∫ x

0
f (3)(s)

[
h3s− 4h2s2 + 6hs3 − 3s4

]
ds

+

∫ h

x

f (3)(s)
[
h3x− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2

]
ds. (4.3)

Denote

K2(x, s) =





h3s−4h2xs+3hxs2+3hx2s−3x2s2

h3 , 0 ≤ s ≤ x ≤ h;

h3x−4h2xs+3hxs2+3hx2s−3x2s2

h3 , 0 ≤ x ≤ s ≤ h.
(4.4)

By (4.1)-(4.4), we know

H ′
n(f, x)− f ′(x) =

∫ h

0
f (3)(s)K2(x, s)ds. (4.5)

For p = ∞, from (2.4) and (4.5), it follows that

sup
f∈W 3

∞
(R)

max
0≤x≤h

|H ′
n(f, x)− f ′(x)| = max

0≤x≤h

∫ h

0
|K2(x, s)|ds. (4.6)

From (4.4), it follows that for an arbitrary 0 ≤ x ≤ h,
∫ h

0
|K2(x, s)|ds =

1

h3

∫ x

0

∣∣h3s− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2
∣∣ ds

+
1

h3

∫ h

x

∣∣h3x− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2
∣∣ ds. (4.7)
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We consider the first integral in (4.7) now. For 0 ≤ x ≤ h
3 , it is easy to verify that

∫ x

0

∣∣h3s− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2
∣∣ ds = x2(h− x)2(h− 2x)

2
. (4.8)

For h
3 ≤ x ≤ h, by a direct computation, we obtain

∫ x

0

∣∣h3s− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2
∣∣ ds

=−
∫ h(3x−h)

3x

0

[
h3s− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2

]
ds

+

∫ x

h(3x−h)
3x

[
h3s− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2

]
ds

=
x2(h− x)2(h− 2x)

2
+

h3(h− x)(3x− h)3

27x2
. (4.9)

We will consider the second integral in (4.7). For 0 ≤ x ≤ 2h
3 , it is easy to verify that

∫ h

x

∣∣h3x− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2
∣∣ ds

=

∫ h2

3(h−x)

x

[
h3x− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2

]
ds

−
∫ h

h2

3(h−x)

[
h3x− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2

]
ds

=
x2(h− x)2(2x− h)

2
+

h3x(2h − 3x)3

27(h − x)2
. (4.10)

For 2h
3 ≤ x ≤ h, by a simple computation, it follows that

∫ h

x

∣∣h3x− 4h2xs+ 3hxs2 + 3hx2s− 3x2s2
∣∣ ds = x2(h− x)2(2x− h)

2
. (4.11)

Combining (4.7)-(4.11), we obtain

∫ h

0
|K2(x, s)|ds =





x(2h−3x)3

27(h−x)2 , 0 ≤ x ≤ h
3 ;

x(2h−3x)3

27(h−x)2
+ (h−x)(3x−h)3

27x2 , h
3 ≤ x ≤ 2h

3 ;

(h−x)(3x−h)3

27x2 , 2h
3 ≤ x ≤ h.

(4.12)

Similar to (3.20), by (4.12), we get

max
0≤x≤h

∫ h

0
|K2(x, s)|ds =

∫ h

0

∣∣∣∣∣K2

(
(5−

√
13)h

6
, s

)∣∣∣∣∣ ds =
(13

√
13 − 46)h2

27
. (4.13)
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Similar to the proof of (1.2), by (4.6) and (4.13) we get (1.5).

For p = 1, from (2.5) and (4.5), it follows that for f ∈ W 3
1 (R),

∫ h

0

∣∣H ′
n(f, x)− f ′(x)

∣∣ dx ≤ max
0≤s≤h

∫ h

0
|K2(x, s)|dx ·

∫ h

0

∣∣∣f (3)(s)
∣∣∣ ds. (4.14)

From (4.4) we know K2(x, s) = K2(s, x). Combining this fact with (4.13) we obtain

max
0≤s≤h

∫ h

0
|K2(x, s)|dx =

(13
√
13− 46)h2

27
. (4.15)

Similar to the proof of (1.3), by (4.14) and (4.15) we get (1.6). By (2.2), (1.5) and

(1.6) we get (1.7). �

5. Proof of Theorem 1.3

Proof. For x ∈ [0, h], from Hn(f, 0) = f(0), Newton-Leibniz formula and (4.1)-(4.3), it

follows that

Hn(f, x)− f(x)

=

∫ x

0

[
H ′

n(f, t)− f ′(t)
]
dt

=
1

h3

∫ x

0
dt

∫ t

0
f (3)(s)

[
h3s− 4h2ts+ 3hts2 + 3ht2s− 3t2s2

]
ds

+
1

h3

∫ x

0
dt

∫ h

t

f (3)(s)
[
h3t− 4h2ts+ 3hts2 + 3ht2s− 3t2s2

]
ds. (5.1)

Exchanging the integral order, we obtain

∫ x

0
dt

∫ t

0
f (3)(s)

[
h3s− 4h2ts+ 3hts2 + 3ht2s− 3t2s2

]
ds

=

∫ x

0
f (3)(s)ds

∫ x

s

[
h3s− 4h2ts+ 3hts2 + 3ht2s− 3t2s2

]
dt

=

∫ x

0
f (3)(s)

[
s5 − 5hs4

2
+ 2h2s3 +

(
3hx2

2
− h3 − x3

)
s2 + hx(h− x)2s

]
ds. (5.2)

Similarly, one has

∫ x

0
dt

∫ h

t

f (3)(s)
[
h3t− 4h2ts+ 3hts2 + 3ht2s− 3t2s2

]
ds

=

∫ x

0
dt

∫ x

t

f (3)(s)
[
h3t− 4h2ts+ 3hts2 + 3ht2s− 3t2s2

]
ds

+

∫ x

0
dt

∫ h

x

f (3)(s)
[
h3t− 4h2ts+ 3hts2 + 3ht2s− 3t2s2

]
ds
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=

∫ x

0
f (3)(s)ds

∫ s

0

[
h3t− 4h2ts+ 3hts2 + 3ht2s− 3t2s2

]
dt

+

∫ h

x

f (3)(s)ds

∫ x

0

[
h3t− 4h2ts+ 3hts2 + 3ht2s− 3t2s2

]
dt

=

∫ x

0
f (3)(s)

[
−s5 +

5hs4

2
− 2h2s3 +

h3s2

2

]
ds

+

∫ h

x

f (3)(s)

[
h3x2

2
+ hx2(x− 2h)s +

x2(3h− 2x)s2

2

]
ds. (5.3)

Denote

K3(x, s) =





(3hx2−h3−2x3)s2+2hx(h−x)2s

2h3 , 0 ≤ s ≤ x ≤ h;

h3x2+2hx2(x−2h)s+x2(3h−2x)s2

2h3 , 0 ≤ x ≤ s ≤ h.
(5.4)

By (5.1)-(5.4), we know

Hn(f, x)− f(x) =

∫ h

0
f (3)(s)K3(x, s)ds. (5.5)

For p = ∞, from (2.4) and (5.5), it follows that

sup
f∈W 3

∞
(R)

max
0≤x≤h

|Hn(f, x)− f(x)| = max
0≤x≤h

∫ h

0
|K3(x, s)|ds. (5.6)

From (5.4), it follows that for an arbitrary 0 ≤ x ≤ h,

∫ h

0
|K3(x, s)|ds =

1

2h3

∫ x

0

∣∣(3hx2 − h3 − 2x3
)
s2 + 2hx(h − x)2s

∣∣ ds

+
1

2h3

∫ h

x

∣∣h3x2 + 2hx2(x− 2h)s + x2(3h− 2x)s2
∣∣ ds. (5.7)

We consider the first integral in (5.7) now. For 0 ≤ x ≤ h
2 , it is easy to verify that

∫ x

0

∣∣(3hx2 − h3 − 2x3
)
s2 + 2hx(h − x)2s

∣∣ ds = 2x3(h− x)3

3
. (5.8)

For h
2 ≤ x ≤ h, by a direct computation, we obtain

∫ x

0

∣∣(3hx2 − h3 − 2x3
)
s2 + 2hx(h − x)2s

∣∣ ds

=

∫ 2hx
2x+h

0

[(
3hx2 − h3 − 2x3

)
s2 + 2hx(h − x)2s

]
ds

−
∫ x

2hx
2x+h

[(
3hx2 − h3 − 2x3

)
s2 + 2hx(h − x)2s

]
ds

=− 2x3(h− x)3

3
+

8h3x3(h− x)2

3(2x + h)2
. (5.9)
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We will consider the second integral in (5.7). For 0 ≤ x ≤ h
2 , it is easy to verify that

∫ h

x

∣∣h3x2 + 2hx2(x− 2h)s + x2(3h − 2x)s2
∣∣ ds

=

∫ h2

3h−2x

x

[
h3x2 + 2hx2(x− 2h)s + x2(3h− 2x)s2

]
ds

−
∫ h

h2

3h−2x

[
h3x2 + 2hx2(x− 2h)s + x2(3h − 2x)s2

]
ds

=− 2x3(h− x)3

3
+

8h3x2(h− x)3

3(3h − 2x)2
. (5.10)

For h
2 ≤ x ≤ h, by a simple computation, it follows that

∫ h

x

∣∣h3x2 + 2hx2(x− 2h)s + x2(3h − 2x)s2
∣∣ ds = 2x3(h− x)3

3
. (5.11)

Combining (5.7)-(5.11), we obtain

∫ h

0
|K3(x, s)|ds =





4x2(h−x)3

3(3h−2x)2 , 0 ≤ x ≤ h
2 ;

4x3(h−x)2

3(2x+h)2
, h

2 ≤ x ≤ h.
(5.12)

Similar to (3.20), by (5.12), we get

max
0≤x≤h

∫ h

0
|K3(x, s)|ds =

∫ h

0

∣∣∣∣K3

(
h

2
, s

)∣∣∣∣ ds =
h3

96
. (5.13)

Similar to the proof of (1.2), by (5.6) and (5.13), we get (1.8).

For p = 1, from (2.5) and (5.5), it follows that for f ∈ W 3
1 (R),

∫ h

0
|Hn(f, x)− f(x)| dx ≤ max

0≤s≤h

∫ h

0
|K3(x, s)|dx ·

∫ h

0

∣∣∣f (3)(s)
∣∣∣ ds. (5.14)

From (5.4) we obtain

∫ h

0
|K3(x, s)|dx =

1

2h3

∫ h

s

∣∣(2(h − s)x− hs)(h− x)2s
∣∣ dx

+
1

2h3

∫ s

0
x2(h− s)

∣∣2sx+ h2 − 3hs
∣∣ dx. (5.15)

If 0 ≤ s ≤ h
2 , then

∫ h

s

∣∣(2(h − s)x− hs)(h− x)2s
∣∣ dx =

∫ h

s

(2(h − s)x− hs)(h− x)2sdx. (5.16)
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If h
2 ≤ s ≤ 2h

3 , then

∫ h

s

∣∣(2(h − s)x− hs)(h− x)2s
∣∣ dx =−

∫ sh
2(h−s)

s

(2(h− s)x− hs)(h − x)2sdx

+

∫ h

sh
2(h−s)

(2(h − s)x− hs)(h− x)2sdx. (5.17)

If 2h
3 ≤ s ≤ h, then

∫ h

s

∣∣(2(h − s)x− hs)(h− x)2s
∣∣ dx = −

∫ h

s

(2(h − s)x− hs)(h− x)2sdx. (5.18)

If 0 ≤ s ≤ h
3 , then

∫ s

0

∣∣x2(h− s)(2sx+ h2 − 3hs)
∣∣ dx =

∫ s

0
x2(h− s)(2sx+ h2 − 3hs)dx. (5.19)

If h
3 ≤ s ≤ h

2 , then

∫ s

0

∣∣x2(h− s)(2sx+ h2 − 3hs)
∣∣ dx =−

∫ 3hs−h2

2s

0
x2(h− s)(2sx+ h2 − 3hs)dx

+

∫ s

3hs−h2

2s

x2(h− s)(2sx+ h2 − 3hs)dx. (5.20)

If h
2 ≤ s ≤ h, then

∫ s

0

∣∣x2(h− s)(2sx+ h2 − 3hs)
∣∣ dx = −

∫ s

0
x2(h− s)(2sx+ h2 − 3hs)dx. (5.21)

From (5.15)-(5.21) and a direct computation, we obtain

∫ h

0
|K3(x, s)|dx =





s(h−s)(h−2s)
12 , 0 ≤ s ≤ h

3 ;

s(h−s)(h−2s)
12 + h(h−s)(3s−h)4

96s3
, h

3 ≤ s ≤ h
2 ;

s(h−s)(2s−h)
12 + hs(2h−3s)4

96(h−s)3
, h

2 ≤ s ≤ 2h
3 ;

s(h−s)(2s−h)
12 , 2h

3 ≤ s ≤ h.

(5.22)

Similar to (3.20), by (5.22) we obtain that

max
0≤s≤h

∫ h

0
|K3(x, s)|dx =

∫ h

0

∣∣∣∣∣K3

(
x,

3−
√
3

6
h

)∣∣∣∣∣ dx =

√
3

216
h3. (5.23)

Similar to the proof of (1.3), by (5.14) and (5.23) we get (1.9). From (2.2), (1.8) and

(1.9) we obtain (1.10). �
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