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Abstract. In this paper, we study to use nonlocal bounded variation (NLBV) tech-
niques to decompose an image intensity into the illumination and reflectance compo-

nents. By considering spatial smoothness of the illumination component and nonlo-

cal total variation (NLTV) of the reflectance component in the decomposition frame-
work, an energy functional is constructed. We establish the theoretical results of

the space of NLBV functions such as lower semicontinuity, approximation and com-

pactness. These essential properties of NLBV functions are important tools to show
the existence of solution of the proposed energy functional. Experimental results on

both grey-level and color images are shown to illustrate the usefulness of the non-

local total variation image decomposition model, and demonstrate the performance
of the proposed method is better than the other testing methods.
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1. Introduction

In this paper, we address the problem of decomposing an image into its illumination

and reflectance components. The illumination component is modeled as the amount of

light intensity onto the objects in the image scene. The reflectance component is related

to the light source reflected based on the nature of the objects in the image scene.

There are many applications of such image decomposition like image enhancement

and shadow removal, see [1–5].
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The recovery of the illumination and reflectance components from a given im-

age is known to be an ill-posed problem [6, 7]. Land and McCann’s Retinex algo-

rithm [6, 8, 9] successfully decompose an image into the illumination and reflectance

components. The Retinex algorithm is based on random walk and is a path-based al-

gorithm. In [10–13], the researchers further proposed to develop recursive algorithms

via recursive matrix operations to perform image decomposition into illumination and

reflectance components. The efficiency of recursive algorithms is better than that of

the path-based methods. Recently, several variational frameworks for Retinex theory

are studied [1–5, 14–24]. In the setting, a mathematical optimization problem is for-

mulated by decomposing an input image into the reflectance and illumination compo-

nents, where their pointwise multiplication between these two components is assumed

to be given input image. In [5], Kimmel et al. assumed that the illumination compo-

nent was smooth and employed such smoothness condition in the objective function.

In [20], bilateral filters were also used to construct regularization terms to perform

image decomposition. In [3, 4, 15–19], the illumination component was assumed to

be smooth and the reflectance component was assumed to be a piecewise constant

function. According to these two assumption, a Poisson equation was set up for image

decomposition. In [21], Ma and Osher proposed to use total variation and nonlocal

total variation regularization models for Retinex theory. In their method, Bregman it-

eration was used to solve their models. In [22], Ma et al. further proposed a L1-based

variational model which is focused on recovering the reflectance component. In [23],

Zosso presented a unifying framework for Retinex theory that is able to study many of

the existing Retinex implementations including the methods in [21] and [22]. In [24],

Ng and Wang developed and studied a total variation model for image decomposition

which considers both reflectance and illumination components in the objective func-

tion.

The main aim of this paper is to use nonlocal bounded variation (NLBV) techniques

to decompose an image intensity into the illumination and reflectance components. By

considering spatial smoothness of the illumination component and nonlocal total vari-

ation (NLTV) of the reflectance component in the decomposition framework, an energy

functional is constructed. The motivation behind is that the reflectance component

contains a sparse set of texture patches in the space of nonlocal bounded variation

functions. As an example, we compare in Fig. 1 the image decomposition of using

the NLTV model and that of using the TV model [24]. We see from the figure that

the reflectance component by the NTLV model (especially the upper region) is visually

sharper and clearer than that by the TV model†.

There are two main contributions in this paper. Firstly, we establish the theoreti-

cal results of the space of NLBV functions such as lower semicontinuity, approximation

and compactness. These essential properties of NLBV functions are important tools to

show the existence of solution of the proposed energy functional. To the best of our

†Here we have used the best set of parameters chosen in [24] for the TV image decomposition model

(c1 = 1, c2 = 0.1 and c3 = 10
−5), and the best set of parameters for the NLTV model (c1 = 1, c2 = 1 and

c3 = 10
−5).
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Figure 1: The first column: the input image; the second column: the illumination component by using TV
(upper) and NLTV (lower) models; the third column: the reflectance component by using TV (upper) and
NLTV (lower) models.

knowledge, these basic results are not found in the literature. Secondly, we study an

objective function for image decomposition by consisting of the NLTV of the reflectance

component, the H1-norm of the illumination component, the data-fitting term between

the input image, the reflectance and illumination components, and the L2-norm of

the illumination component. The first two terms have been employed in L1-based

Retinex [22]. The last term has been used in the Retinex methods [1,2] for the fidelity

term between reflectance and input image. Instead of using the equality constraint be-

tween the input image, the reflectance and illumination components, we measure their

difference and employ it as a data-fitting term in the proposed model. In the paper, we

provide the existence and uniqueness results of the NLTV model. We employ an alter-

nating minimization algorithm to solve the NLTV model numerically. The convergence

results of the minimization algorithm are also presented. Experimental results on both

grey-level and color images are shown to illustrate the usefulness of the nonlocal total

variation image decomposition model. The performance of the NLTV model is better

than that of the other testing methods.

The paper is organized as follows. In Section 2, we present the theoretical results

related to the space of nonlocal bounded variation functions. In Section 3, we study

the proposed nonlocal decomposition model and the algorithm. In Section 4, we give

the numerical examples. Finally, some concluding remarks are presented in Section 5.

2. Basic results

2.1. Space of bounded variation functions

The space of functions of bounded variation (BV (Ω)) [25] is well adapted for the

purpose of understanding the gradient of discontinuous functions. In this paper, we



A NLTV for Image Decomposition 337

assume Ω to be a bounded open subset of RN , and assume u ∈ L1(Ω), we set,

∫

Ω
|Du| = sup

{
∫

Ω
u(x)div(ϕ(x))dx | ϕ ∈ C1

0(Ω)
N
, ‖ϕ‖L∞ ≤ 1

}

,

where divϕ =
∑N

i=1
∂ϕi

∂xi
, dx is the Lebesgue measure, C1

0(Ω)
N is the space of continu-

ously differentiable functions with compact support in Ω, and ‖ϕ‖L∞ = supx

√

∑

i ϕ
2
i .

Then we define BV (Ω) as follows:

BV (Ω) =

{

u ∈ L1(Ω);

∫

Ω
|Du| < ∞

}

.

There are several main properties of BV (Ω).

• Lower semicontinuity: Let un ∈ BV (Ω), and un −−−−→
L1(Ω)

u, then,

lim inf
n→+∞

∫

Ω
|Dun| ≥

∫

Ω
|Du|.

• Approximation: Let u ∈ BV (Ω), there exists a sequence {un} ⊂ C∞(Ω)
⋂

BV (Ω)
satisfying un −−−−→

L1(Ω)
u, and,

lim
n→+∞

∫

Ω
|Dun| =

∫

Ω
|Du|.

• Compactness: Let {un} ⊂ BV (Ω) be uniformly bounded sequence, there exist a

subsequence(still noted as {un}) and u ∈ BV (Ω), such that,

un −−−−→
L1(Ω)

u.

The success of the space of bounded variation functions comes from the fact that it

allows discontinuous solutions. Hence the total variation regularization can be used in

image processing models to preserve edges [26]. However, there are some limitations

of total variation regularization. For instance, it cannot be used to preserve fine details

and textures in image processing.

2.2. Space of nonlocal bounded variation functions

Recently, nonlocal regularization techniques are proposed and developed in [27–

31]. Nonlocal regularizing functionals are formulated by Kindermann et al. in [32],

and by Gilboa and Osher in [33, 34]. NLTV are proposed and used in many image

processing applications, see for instance [35–37].
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For u ∈ W 1,1(Ω), we define the nonlocal gradient as follows:

∇NLu : Ω× Ω → R
2, (x, y) 7→ (∇u(y)−∇u(x))

√

ω(x, y),

where ω(x, y) satisfies,

ω(x, y) ≥ 0, ω(x, y) = ω(y, x).

Assume p1, p2 : Ω×Ω → R
2, we define the following nonlocal inner product of p1, p2,

〈p1,p2〉NL =

∫

Ω×Ω
p1(x, y) · p2(x, y)dxdy,

where the dot product on the right hand side represents the dot product of R
2. For

any p : Ω × Ω → R
2, we can further define the nonlocal divergence and the nonlocal

Laplacian as follows:

(divNLp)(x) =

∫

Ω
(divx(p(y, x)

√

ω(x, y))− divx(p(x, y)
√

ω(x, y)))dy,

(∆NLu)(x) = divNL(∇NLu)(x) = 2

∫

Ω
(ω(x, y)∆u(x) −∇xω · (∇u(y)−∇u(x)))dy.

Now we establish the following properties for the above nonlocal operators.

Proposition 2.1. Assume u, v ∈ W 1,1(Ω), p is differentiable, and ω(x, ·) ∈ C1
0 (Ω), then

the following equalities hold:

〈∇NLu,p〉NL = −〈u,divNLp〉, 〈∇NLu,∇NLv〉NL = −〈∆NLu, v〉,

〈∆NLu, v〉 = 〈u,∆NLv〉,

∫

Ω
(divNLp)(x)dx = 0.

Proof. For the first equality, we have,

〈∇NLu,p〉NL

=

∫

Ω×Ω

√

ω(x, y)((∇u(y) −∇u(x)) · p(x, y)dydx

=

∫

Ω×Ω
∇u(y) · (p(x, y)

√

ω(x, y))dydx−

∫

Ω×Ω
∇u(x) · (p(x, y)

√

ω(x, y))dxdy

=−

∫

Ω

∫

Ω
u(y)divy(p(x, y)

√

ω(x, y))dydx +

∫

Ω

∫

Ω
u(x)divx(p(x, y)

√

ω(x, y))dxdy

=−

∫

Ω

∫

Ω
u(x)divx(p(y, x)

√

ω(x, y))dxdy +

∫

Ω

∫

Ω
u(x)divx(p(x, y)

√

ω(x, y))dxdy

=

∫

Ω×Ω
u(x)(divx(p(x, y)

√

ω(x, y))− divx(p(y, x)
√

ω(x, y)))dydx

=−

∫

Ω
u(x)(

∫

Ω
(divx(p(y, x)

√

ω(x, y))− divx(p(x, y)
√

ω(x, y)))dy)dx

=− 〈u,divNLp〉.
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Then we have,

〈∇NLu,∇NLv〉NL = −〈u,divNL(∇NLv)〉 = −〈u,∆NLv〉

= −〈divNL(∇NLu), v〉 = −〈∆NLu, v〉,
∫

Ω
(divNLp)(x)dx = 〈1,divNLp〉 = −〈∇NL1,p〉NL = 0.

This completes the proof. �

Next we generalize the nonlocal gradient as follows. Assume u ∈ L1(Ω), and the

nonlocal total variation NLTV is given by

NLTV (u) =

∫

Ω
|DNLu| = sup

φ∈C1

0
(Ω×Ω)2,‖φ‖∞≤1

∫

Ω
u(x)divNLφ(x)dx.

The corresponding set NLBV (Ω) of functions is given by,

NLBV (Ω) = {u ∈ L1(Ω), NLTV (u) < ∞}.

Now we give some properties of NLBV (Ω) similar to that of BV (Ω).

Proposition 2.2 (Lower semicontinuity). Let un ∈ NLBV (Ω), and un −−−−→
L1(Ω)

u, Then,

lim inf
n→∞

∫

Ω
|DNLun| ≥

∫

Ω
|DNLu|.

Proof. For fixed φ ∈ C1
0 (Ω× Ω)

2
, satisfying ‖φ‖∞ ≤ 1,

∫

Ω
udivNLφdx = lim

n→∞

∫

Ω
undivφdx ≤ lim inf

n→∞

∫

Ω
|DNLun|.

Taking supremum for φ, the result follows. �

Proposition 2.3 (Approximation). For any u ∈ NLBV (Ω), There exist a sequence

{un} ⊂ NLBV (Ω) ∩ C∞(Ω), such that,

lim
n→∞

∫

Ω
|un − u|dx = 0, lim

n→∞

∫

Ω
|DNLun| =

∫

Ω
|DNLu|.

Proof. As is shown in [25], we can find a sequence uǫ ∈ NLBV (Ω) ∩ C∞(Ω) such

that,
∫

Ω
|uǫ − u|dx → 0, as ǫ → 0.

For fixed φ ∈ C∞
0 (Ω× Ω)2, satisfying ‖φ‖∞ ≤ 1,

∫

Ω
udivNLφdx = lim

ǫ→0

∫

Ω
uǫdivNLφdx.
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Therefore,

lim
ǫ→0

∫

Ω
uǫdivNLφdx ≤

∫

Ω
|DNLu|.

According to the above equation, we can find ǫ0 > 0, such that if ǫ < ǫ0,

∫

Ω
uǫdivNLφdx ≤

∫

Ω
|DNLu|.

Then for ǫ < ǫ0,
∫

Ω
|DNLuǫ| ≤

∫

Ω
|DNLu|.

Noting the Lower semicontinuity, we have,
∫

Ω
|DNLu| ≤ lim inf

ǫ→0

∫

Ω
|DNLuǫ| ≤ lim sup

ǫ→0

∫

Ω
|DNLuǫ| ≤

∫

Ω
|DNLu|.

This completes the proof. �

Proposition 2.4 (Compactness). Assume {un} is uniformly bounded in NLBV (Ω), there

exist a subsequence (still noting as {un}) and u ∈ NLBV (Ω), such that un −−−−→
L1(Ω)

u.

Proof. By using Proposition 2.3, we can find a sequence {vn} ⊂ NLBV (Ω)∩C∞(Ω)
such that, for any positive integer k,

‖ vk − uk ‖L1(Ω)≤
1

k
,

∫

Ω
|DNLvk| ≤

∫

Ω
|DNLuk|+

1

k
.

By using Lemma 5.3 in [38], there exist a constant C(Ω) such that,

∫

Ω
|∇vk|dx ≤ C(Ω)

(
∫

Ω
|∇NLvk|dx+ ‖ vk ‖L1(Ω)

)

.

Therefore, {vn} is uniformly bounded in BV (Ω). Noting the compactness of BV (Ω),
there exist a subsequence (still noting as {un}) and u ∈ BV (Ω) such that un −−−−→

L1(Ω)
u.

In a word, We can find a subsequence {un} corresponding to {vn} such that,

un −−−−→
L1(Ω)

u.

Noting the Lower semicontinuity,

lim inf
i→∞

∫

Ω
|DNLui| ≥

∫

Ω
|DNLu|.

Then we have u ∈ NLBV (Ω). �

In the next section, we will use these theoretical results of the space of NLBV func-

tions to study the existence of minimizer of NLTV energy functional.
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3. The NLTV Retinex model

In the model, we assume that the intensity of an image S defined on the region Ω
depends on two components. The first component is modeled as the amount of light

intensity onto the objects in the image scene. The second component is the amount

of light source reflected based on the nature of the objects in the image scene. In the

formulation, we consider the intensity of an image is product of the illumination com-

ponent U and the reflectance component R, i.e., S = U ◦ R, where ◦ refers to the

pointwise multiplication operation. The reflectance function is related to reflectivity

of the objects, and therefore we impose the condition: 0 < R ≤ 1. The illumination

function is related to illumination effect on the objects, and therefore we impose the

condition: 0 < U < ∞. The product form can be handled more effectively by consider-

ing the form in the domain of logarithm, i.e., s = log(S), u = log(U), r′ = log(R). It is

clear that we derive the following relation: s = u + r′. Because 0 < R ≤ 1, we obtain

r = −r′ ≥ 0. It follows that the model becomes u = s+ r.

In this paper, we employ the nonlocal total variation to represent the reflectance

component. We study the following energy functional for image decomposition:

Φ(r, u) =

∫

Ω
|DNLr|+

c1

2

∫

Ω
|∇u|2dx +

c2

2

∫

Ω
(u− r − s)2dx +

c3

2

∫

Ω
u2dx. (3.1)

where ci (i = 1, 2, 3) are positive parameters to control the balance of different terms.

Here we consider the spatially smoothness of the illumination component, and there-

fore the regularization term
∫

Ω |∇u|2 can be used; the reflectance function is of nonlocal

bounded variation, and therefore nonlocal total variation regularization
∫

Ω |DNLr| is

used. The fitting term is given by
∫

Ω(u − r − s)2dx. The term
∫

Ω u2dx has been used

in [1,2]. Also it can be used to establish the theoretical results [24].

In the following discussion, we consider the set:

Λ = {(r, u) | (r, u) ∈ NLBV (Ω)×W 1,2(Ω), r ≥ 0, u ≥ s}.

The resulting optimization problem for the image decomposition is given by:

min
(r,u)∈Λ

Φ(r, u). (3.2)

Then we show that the solution of this optimization problem exists.

Theorem 3.1. Let s ∈ L∞(Ω), then the problem (3.2) has a unique solution.

Proof. The proof of the existence is similar to that of Theorem 2.1 in [24] by using

Propositions 2.2 and 2.4. Moreover, we note that the Hessian of the last two terms in

(3.1) is given by:
(

c2 + c3 −c2
−c2 c2

)

,

which is a positive definite matrix. As both the NLTV of r and H1-norm of u are convex,

it implies that the objective function in (3.1) is strictly convex. By noting that the
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convexity of the constraint set, the uniqueness of the solution holds. The result follows.

�

Next we present the alternating minimization scheme for solving problem (3.2).

Algorithm 3.1.

1. Take k = 0 and u0 = s be the initial guess of illumination component;

2. At the kth iteration:

• Given uk, compute rk+
1
2 by solving:

min
r

J1(r) ≡

∫

Ω

|DNLr| +
c2

2

∫

Ω

(r + s− uk)2dx, (3.3)

and update rk+1 by using:
rk+1 = max{rk+

1
2 , 0}; (3.4)

• Given rk+1, compute uk+ 1
2 by solving:

min
u

J2(u) ≡
c1

2

∫

Ω

|∇u|2dx +
c2

2

∫

Ω

(u − rk+1 − s)2dx +
c3

2

∫

Ω

u2dx, (3.5)

and update uk+1 by using:
uk+1 = max{uk+ 1

2 , s}; (3.6)

3. Goto Step (2) until ||uk+1−u
k||

||uk+1||
≤ ǫu and ||rk+1−r

k||
||rk+1||

≤ ǫr.

For the given optimization subproblem in (3.3), we employ the Split Bregman

method which is introduced in [39], and extended to a nonlocal version in [37] to

solve it.

For the given optimization subproblem in (3.5), we can obtain the solution by using

fast Fourier transform:

uk+1 = F−1
( c2F(rk+1 + s)

c1(F∗(∇x)F(∇x) + F∗(∇y)F(∇y)) + c2 + c3

)

.

Below we present two theorems to demonstrate the projections in (3.4) and (3.6)

can give their associated solutions of the two given optimization subproblems.

Theorem 3.2. Let Ψ = {r : r ∈ NLBV (Ω), r ≥ 0}. If r̂∗ is the solution of the optimiza-

tion problem in (3.3), then r̂ = max{r̂∗, 0} as in (3.4) is the solution of the optimization

problem as follows:

min
r∈Ψ

J1(r).

Theorem 3.3. Let Ξ = {u : u ∈ W 1,2(Ω), u ≥ s}. If û∗ is the solution of the optimization

problem in (3.5), then û = max{û∗, s} is the solution of the optimization problem as

follows:

min
u∈Ξ

J2(u).



A NLTV for Image Decomposition 343

We remark that the proofs of Theorems 3.3 and 3.4 are similar to that in Theorem

3.3 [24] by using Propositions 2.2 and 2.3.

Now we can establish the convergence of Algorithm 3.1.

Theorem 3.4. Let {(rk, uk)} be the sequence generated by Algorithm 3.1. Then {(rk, uk)}
converges to (r∗, u∗) ∈ Λ (up to a subsequence in the convergence), which is the unique

solution of problem in (3.2).

Proof. As the proof of Theorem 3.5 in [24], we derive the similar result by using

Propositions 2.2 and 2.4, i.e., assume that {(rk, uk)} is the sequence generated by

Algorithm 3.1, then {(rk, uk)} converges to (r∗, u∗) ∈ Λ (up to a subsequence in the

convergence), and we have for any r ∈ Ψ and u ∈ Ξ,

Φ(r∗, u∗) ≤ Φ(r, u∗), Φ(r∗, u∗) ≤ Φ(r∗, u).

According to the optimality condition of each subproblem in Algorithm 3.1, we have

0 ∈ ∂JNL(r∗) + c2(r∗ + s− u∗), (3.7)

and

0 ∈
c1

2
∂J(u∗) + c2(u∗ − r∗ − s) + c3u

∗, (3.8)

where JNL(r) and J(u) refers to
∫

Ω |DNLr| and
∫

Ω |∇u|2dx respectively. The subdiffer-

ential of Φ(r, u) at (r∗, u∗) is given by

∂Φ(r∗, u∗) = ∂

(
∫

Ω
|DNLr∗|+

c1

2

∫

Ω
|∇u∗|

2dx +
c2

2

∫

Ω
(u∗ − r∗ − s)2dx +

c3

2

∫

Ω
u2∗dx

)

= ∂
(

JNL(r∗) +
c1

2
J(u∗)

)

+ ∂

(

c2

2

∫

Ω
(u∗ − r∗ − s)2dx +

c3

2

∫

Ω
u2∗dx

)

.

Noting that the part c2
2

∫

Ω(u − r − s)2dx + c3
2

∫

Ω(u)
2dx is differentiable at (r∗, u∗), we

have

∂

(

c2

2

∫

Ω
(u∗ − r∗ − s)2dx +

c3

2

∫

Ω
u2∗dx

)

=

(

c2(r∗ + s− u∗)
c2(u∗ − r∗ − s) + c3u∗

)

. (3.9)

Since J(u) is continuous, we have,

∂
(

JNL(r∗) +
c1

2
J(u∗)

)

=

(

∂JNL(r∗)
c1
2 ∂J(u∗)

)

. (3.10)

Therefore,

∂Φ(r∗, u∗) =

(

∂JNL(r∗) + c2(r∗ + s− u∗)
c1
2 ∂J(u∗) + c2(u∗ − r∗ − s) + c3u∗

)

.

By combining the above equation with (3.7) and (3.8), we derive
(

0
0

)

∈ ∂Φ(r∗, u∗).

It is equivalent that (r∗, u∗) is the solution of the problem (3.2). This completes the

proof. �
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4. Numerical results

In this section, we test Algorithm 3.1 on several images to illustrate the effectiveness

of the proposed model. In Algorithm 3.1, we set the stopping criteria to be ǫu = ǫr =
1×10−4. Also we use nonlocal weight ω with patch size 5×5, ten best neighbors in the

searching window of 11 × 11, which has been introduced in [37], and we update the

weight iteratively along with steps (3.3)-(3.6). When we deal with color images, we

perform the proposed model in HSV color space. More precisely, we apply Algorithm

3.1 to the V channel of HSV color space to obtain the illumination and reflectance

components. Similar to [5], we consider to use a corrected version of the computed

illumination. The procedure computes the illumination image U = exp(u) and the

reflectance image R = exp(−r) from Algorithm 3.1. The Gamma correction of U with

an adjusting parameter γ is defined by:

U ′ = W

(

U

W

)
1

γ

.

We remark that W refers to the white value which is equal to 255 in a 8-bit image. The

final result is then given by:

S′ = U ′ ·R.

For color images, the resulting V-channel image and the other original H and S channels

provide the final enhanced image. In Fig. 2(d), we see the picture without using the

Gamma correction is over-enhanced. In Fig. 2(e), we see the picture without using

Retinex decomposition but with Gamma correction only, the resulting image cannot

be enhanced. However, the pictures in Figs. 2(b) and 2(c) with using both Retinex

decomposition and the Gamma correction are visually more natural.

4.1. The effect of parameters for recovered reflectance

In the first test, we demonstrate the effect of the parameter in the Gamma correction

procedure. In Fig. 3, we show the results of enhanced images by using different values

of γ: 2.2, 10, 100, 1000. We see from the figure that the enhanced images by using TV

Retinex model are not sharp and pleasant enough. In particular, when γ is large, some

information like in the wall paintings are lost. However, the enhanced images by using

the proposed NLTV Retinex model are visually appealing, and the proposed method is

more robust for different values of γ.

In the next test, we study the effect of parameters c1, c2, and c3. First we set

c2 = 1, c3 = 10−5, and c1 = 0.01, 0.1, 1, 10. Recall that c1 controls the contribution

of the regularization term of the illumination function. We see from the first row of

Fig. 4 that the reflectance component becomes flatter as c1 decreases. Then we set

c1 = 1, c3 = 10−5, and c2 = 0.01, 0.1, 1, 10, and we see from the second row of Fig. 4

that the reflectance component is enhanced gradually as c2 increases. Finally, we set

c1 = 1, c2 = 1, and c3 = 10−2, 10−3, 10−4, 10−5. As is show in the third row of Fig. 4,
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(a) (b) (c) (d) (e)

Figure 2: (a) The input image; the resulting images using both Retinex decomposition and Gamma cor-
rection: (b) [γ = 2.2] and (c) [γ = 10]; (d) the resulting image using Retinex decomposition without
Gamma correction; (e) the resulting image without using Retinex decomposition but with Gamma correc-
tion [γ = 10]. Here the parameters are set: c1 = 1, c2 = 1 and c3 = 10

−5.

Figure 3: The first row: the enhanced images by TV Retinex model with γ = 2.2, 10, 100, 1000 respectively;
the second row: the enhanced images by NLTV Retinex model with γ = 2.2, 10, 100, 1000 respectively.

the reflectance component is over-enhanced with c3 = 10−2, and other results change

very little as c3 varies. Similarly, we show in Fig. 5 the illumination components for

the above sets of parameters. We see from the first row and the second row of Fig. 5

that the illumination component turns sharper as c1 decreases, and the illumination

component is less smoothed as c2 increases. We see from the third row of Fig. 5 that the
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Figure 4: The first row: the reflectance component by using the proposed model with c2 = 1, c3 = 10
−5, and

c1 = 0.01, 0.1, 1, 10 respectively; the second row: the reflectance component by using the proposed model
with c1 = 1, c3 = 10

−5, and c2 = 0.01, 0.1, 1, 10 respectively; the third row: the reflectance component by
using the proposed model with c1 = 1, c2 = 1, and c3 = 10

−2, 10−3, 10−4, 10−5 respectively.

illumination component is weakened with c3 = 10−2, and again other results change

very little as c3 varies.

In the following experiments, we fix γ = 2.2, c1 = c2 = 1 and c3 = 10−5 in the

proposed NLTV Retinex model to test its performance.

4.2. Enhanced images by different methods

In this subsection, we compare the results of NLTV model with Kimmel’s method in

[5], L1-based method in [22], nonlocal method in [21] and TV Retinex model in [24].

We use the parameters in the tests: α = 0.0001 and β = 0.1 in [5], t = 10 in [22], t = 10
in [21], and α = 1, β = 1, µ = 10−5 in TV Retinex model [24]. These parameters are

fixed as that in [5,21,22,24] to generate good enhanced images visually with respect to

different methods. We remark that the computational times of one iteration in Kimmel’s
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Figure 5: The first row: the illumination component by using the proposed model with c2 = 1, c3 = 10
−5,

and c1 = 0.01, 0.1, 1, 10 respectively; the second row: the illumination component by using the proposed
model with c1 = 1, c3 = 10

−5, and c2 = 0.01, 0.1, 1, 10 respectively; the third row: the illumination
component by using the proposed model with c1 = 1, c2 = 1, and c3 = 10

−2, 10−3, 10−4, 10−5 respectively.

method, L1-based method, TV Retinex model in [24], nonlocal method in [21], and the

proposed NLTV model are 1.32, 0.58, 0.49, 5.48, and 5.54 seconds, respectively for an

512 × 768 image. We note in the last two methods that nonlocal weights are required

to handle in each iteration. Therefore, more computational time is needed.

In Fig. 6, we show five input underexposed images for enhancement. We give the

enhancement results in Figs. 7(a), 7(b) and 7(c), 7(d) and 7(e), 7(f), 7(g) correspond-

ing to Kimmel’s method [5], L1-based method [22], nonlocal method [21], TV Retinex

model [24] and the proposed NLTV model. In [21, 22], their computed results are

performed in RGB color space. As for a comparison, we show their results by using

both RGB and HSV color spaces. Both the TV and NLTV models are performed in HSV

color space‡. The visual quality of enhanced images in Figs. 7(c) and 7(e) under the

‡In our experiments, we find that the performance of the proposed NLTV method in HSV color space is

better than that in RGB color space. Therefore we only display the enhancement results in the HSV color

space.
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Figure 6: Input images.

(a) (b) (c) (d) (e) (f) (g)

Figure 7: The enhanced images by using (a) Kimmel’s method [5]; (b) L1-based method [22] (t = 10) in
HSV color space; (c) L1-based method [22] (t = 10) in RGB color space; (d) nonlocal based method [21]
(t = 10) in HSV color space;(e) nonlocal based method [21] (t = 10) in RGB color space; (f) TV Retinex [24]
and (g) the proposed NLTV Retinex.

RGB color space are not good, especially in the second and third pictures. We see from

Figs. 7(a) and 7(f) that the input images are enhanced uniformly in the whole image

domain by Kimmel’s method and TV Retinex model. We also observe that the nonlocal

method in [21] preserve more details than the L1-based method [22], but there are

still some unpleasant distortions such as the region near the foot of the woman in the

second image, and the sky part in the fifth image. The visual quality of the enhanced
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 8: The illumination components by using (a) Kimmel’s method [5], (b) L1-based method [22], (c)
nonlocal method [21], (d) TV Retinex [24], and (e) the proposed NLTV Retinex; The reflectance components
by using (f) L1-based method [22], (g) nonlocal method [21], (h) TV Retinex [24], and (i) the proposed
NLTV Retinex.

images by the proposed NLTV Retinex model is better than that by the other testing

methods. The output enhanced images are more sharper and clearer than those by the

other testing methods. For instance, we see that the steps in the second image, the

floor in the third image, and the sofa in the fourth image are clearly enhanced.

Moreover, we give the results of the recovered illumination components decom-

posed from Kimmel’s method, L1-based method, nonlocal method, TV Retinex and the

proposed NLTV Retinex in Figs. 8(a), 8(b), 8(c), 8(d), and 8(e) respectively. We see

from the results that the illumination components by NLTV Retinex model are smoother

than those by other methods. In Figs. 8(f), 8(g), 8(h), and 8(i), we give the results of

the reflectance components decomposed from L1-based method, nonlocal method, TV

Retinex and the proposed NLTV Retinex respectively. Again we see from the results

that the reflectance components by using the proposed NLTV Retinex are sharper and

clearer than those generated by the other methods.

Also we test the medical images in Fig. 9(a), and compare the proposed model

with homomorphic filtering, Kimmel’s method in [5], N3 method in [40], L1-based

method in [22], nonlocal method in [21] and TV Retinex model in [24] as well. Here

N3 is not based on Retinex theory. It is a nonparametric method for automatic cor-

rection of intensity non-uniformity in medical images. We display the results by using

homomorphic filtering, Kimmel’s method in [5], N3 method in [40], L1-based method
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9: (a) the original images; (b) the enhanced results by using homomorphic filtering; (c)the enhanced
results by using Kimmel’s method [5]; (d) the enhanced results by using N3 method; (e) the enhanced results
by using L1-based method [22](t = 2); (f) the enhanced results by using nonlocal method [21](t = 5); (g)
the enhanced results by using TV Retinex [24]; (h) the enhanced results by using the proposed NLTV Retinex
model.

in [22], nonlocal method in [21], TV Retinex in [24] and the proposed NLTV Retinex

model in Figs. 9(b), 9(c), 9(d), 9(e), 9(f), 9(g), and 9(h) respectively. We can see

more details from the results by using the proposed model than those by using other

methods. In particular, the results by using Kimmel’s method, N3 method, L1-based

method, nonlocal method and TV Retinex lose some details in the brain. However, the

proposed model can generate better enhanced images with high contrast and preserve

more features in the enhancement.

4.3. Comparison by S-CIELAB color metric

In this test, we give a comparison by using the S-CIELAB color metric [41] which is

very efficient for measuring color reproduction errors of digital images. The S-CIELAB

color metric extends CIELAB by incorporating factors related to the pattern-color sensi-

tivities of the human eye. The original image is shown in Fig. 11(a) with high contrast.

We make use of Fig. 11(a) to generate twelve dark images by scaling of the pixel values.

More precisely, the original image is divided into two parts with different scaling pa-

rameters to generate a nonuniform darkness. The corresponding scaling parameters in

the two parts are set to be (0.45, 0.40), (0.50, 0.45), (0.55, 0.50), (0.60, 0.55), (0.65, 0.60),
(0.70, 0.65), (0.75, 0.70), (0.80, 0.75), (0.85, 0.80), (0.90, 0.85), (0.95, 0.90), (1, 0.95) re-

spectively. In Fig. 10, we show the S-CIELAB errors between the original image and

the enhanced twelve images by using Kimmel’s method in [5], TV Retinex in [24],

and the proposed NLTV Retinex model. The pixel numbers whose S-CIELAB errors are

larger than 5 units are considered. We can see from the results that the proposed NLTV

Retinex model can produce better color restoration.

As an example, we show a generated dark image in Fig. 11(b) with the scaling pa-
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Figure 10: The S-CIELAB error that are 5 units or higher between the enhanced image and the original
image. The x-axis refers to the twelve generated images.

rameter (0.75, 0.70). The enhanced images are given in Figs. 11(c), 11(d), and 11(e)

corresponding to Kimmel’s method in [5], TV Retinex in [24] and the proposed NLTV

Retinex, Figs. 11(f), 11(g), and 11(h) are the corresponding residuals in the V channel

between the enhanced images and the original image. We see that the residual im-

age by using Kimmel’s method has the strongest contrast, i.e., the effect of the color

restoration is the worst. The residual image by using TV Retinex model has lower con-

trast, however, some details like textures are involved. Therefore, we observe that the

proposed NLTV Retinex model can produce best restoration results because NLTV reg-

ularization is able to preserve more detailed information. We further show the spatial

distributions of S-CIELAB errors which are larger than 5 units between Fig. 11(a) and

Figs. 11(c), 11(d), and 11(e) in Figs. 11(i), 11(j), and 11(k) respectively. The cor-

responding histogram distribution of S-CIELAB errors gives the numbers of pixels per

error unit, and are displayed in Figs. 11(l)-11(n). In this comparison, we find that there

are about 13.96%, 8.61%, and 7.14% of image pixels whose S-CIELAB errors exceeding

5 units by using Kimmel’s method, TV Retinex and the proposed NLTV Retinex. Because

of the assumption that both illumination and reflectance components vary smoothly in

Kimmel’s method, there are 4159 image pixels whose errors are even larger than 25

units. In contrast, TV Retinex and NLTV Retinex only have 1885 and 312 image pixels

whose errors are larger than 25 units. It is clear that there are more pixels in the range

[0, 5] of the S-CIELAB errors in Fig. 11(n). These results suggest that the proposed NLTV

Retinex model can provide a good quality of enhanced images.

5. Conclusions

In this paper, we have presented to use nonlocal bounded variation (NLBV) tech-

niques for Retinex to decompose an image intensity into illumination and reflectance
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 11: (a) The original image; (b) the dark input image; (c) the enhanced image by using Kimmel’s
method [5]; (d) the enhanced image by using TV Retinex [24]; (e) the enhanced image by using the
proposed NLTV Retinex model; (f)-(h) the corresponding residual parts between (a) and (c), (d), (e); (i)-
(k) the spatial distribution of the errors between Fig. (a) and Figs. (c), (d), (e) that are 5 units or higher
(marked by green color); (l)-(n) the histogram distribution of S-CIELAB error between Fig. (a) and Figs. (c),
(d), (e).
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components. NLBV function space has been studied in the first part of this paper. We

have given and proved some important properties of NLBV functions which are helpful

to construct the minimization theory of the proposed NLTV Retinex model. We have

shown the existence and uniqueness for the solution of the proposed model in the

paper. We employed a fast computation method to solve the proposed minimization

problem including the convergence results. Experimental results have been given to

illustrate the effectiveness of the proposed model in terms of the quality of enhanced

images.

In (3.1), the spatially smoothness assumption of the illumination component is

considered, and the regularization term
∫

Ω |∇u|2 is used. For the future research topic,

we consider in (3.1) to use the L1-norm of the gradient to handle images with shadows

in the illumination component.
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