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Abstract. In this paper, the G2 interpolation by Pythagorean-hodograph (PH) quin-

tic curves in Rd, d ≥ 2, is considered. The obtained results turn out as a useful tool
in practical applications. Independently of the dimension d, they supply a G2 quin-

tic PH spline that locally interpolates two points, two tangent directions and two
curvature vectors at these points. The interpolation problem considered is reduced

to a system of two polynomial equations involving only tangent lengths of the in-

terpolating curve as unknowns. Although several solutions might exist, the way to
obtain the most promising one is suggested based on a thorough asymptotic analysis

of the smooth data case. The numerical algorithm traces this solution from a partic-

ular set of data to the general case by a homotopy continuation method. Numerical
examples confirm the efficiency of the proposed method.

AMS subject classifications: 65D05, 65D17

Key words: Pythagorean-hodograph curve, Hermite interpolation, geometric continuity, non-
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1. Introduction

Polynomial Pythagorean-hodograph (PH) curves form a special subclass of para-

metric curves and have several important properties, such as a (piecewise) polynomial
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arc length, planar PH curves have rational offsets and spatial PH curves possess ratio-

nal adapted frames. By definition, a parametric polynomial curve p : [0, 1] → Rd of

degree ≤ n is a PH curve if the Euclidean norm of its hodograph

∥∥p′∥∥ =
√

p′Tp′

is a piecewise polynomial of degree ≤ n − 1. They were first systematically studied

in [10]. Since then, a lot of research work was put into studying them in detail.

A polynomial PH curve is usually obtained by the integration of the hodograph,

constructed in a particular way from a so called preimage, which is a complex poly-

nomial for a planar PH curve and a quaternion polynomial for a spatial PH curve (see

e.g. [7, 8]). A generalization to higher dimensional curves involves tools from Clif-

ford algebras [5, 22]. These constructions have many nice properties, specially from

the computational point of view, but might not be so convenient when dealing with

highly nonlinear geometric interpolation problems where the curve is completely de-

termined only from geometric quantities like points, tangent directions and curvatures.

Namely, to determine a geometric interpolant one needs to compute also the unknown

parameters at which the points are interpolated, unknown tangent lengths, etc., and

it is very desirable that these type of unknowns (geometric parameters) are separated

from the unknown coefficients of the curve. When the curve is constructed from a

complex or a quaternion polynomial, a separation of unknowns is difficult to achieve

unless one increases the degree of the preimage which results in a PH curve of a higher

degree [15, 23]. An alternative approach to determine a PH curve that interpolates

the data in a geometric sense was proposed in [14], where a separation of geometric

parameters from the coefficients of a curve is right at hand. Moreover, it provides a

way to analyse the interpolation problem independently of the dimension of the space.

This property is connected to the fact that a PH curve of degree n can interpolate n+1
geometric data regardless of the dimension, as was conjectured in [12].

Many interpolation and approximation methods using PH curves have been de-

veloped. Since only odd degree PH curves are regular, cubic and quintic curves are

probably the most interesting from the practical point of view. Interpolation schemes

using planar cubic PH curves can be found in [3, 12, 13, 19], and spatial PH cubics are

considered in [14,16,17,21]. For planar quintic PH curves, C2 continuous splines that

interpolate given points were constructed in [1] and G1 Hermite interpolation problem

was studied in [4]. Interpolation of G1 Hermite data together with end curvatures by

monotone helical quintics, which form a subclass of general spatial PH curves, is done

in [11].

When designing curves it is often desirable to join two points with a G2 contact. Not

many results are known for this type of interpolation using PH curves of low degree.

A planar cubic G2 spline interpolating only the given points is constructed in [13].

A spatial G2 continuous curve composed of a pair of PH quintic spiral segments is

examined in [20]. For a G2 interpolation scheme with PH curves of degree seven

see [15].
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In this paper, we consider the problem of interpolating G2 Hermite data in Rd,

d ≥ 2, with PH curves with the lowest possible degree, independently of the dimension

d. More precisely, a G2 quintic PH spline that interpolates two points, two tangent

directions and two curvature vectors at these points at every polynomial segment is

searched for. The problem was exposed as an open problem in [11] for spatial as

well as for planar PH curves. The standard approach to this interpolation problem via

complex or quaternion preimage is not prosperous. Mostly due to the fact that separa-

tion of unknown geometric interpolation parameters and coefficients of the preimage

is obviously a hard task. Therefore, to tackle the problem, we follow the approach

introduced in [14] and apply it to the above G2 Hermite interpolation by PH quin-

tics. We succeed to reduce the problem to a system of two polynomial equations (see

Theorem 2.1) which is independent of the space dimension and involves only tangent

lengths as unknowns.

One might use some polynomial solver to find all the solutions and apply any stan-

dard method to select the most acceptable one according to some criteria, e.g., the

smallest absolute rotation index, minimal bending energy (see [8] and the references

therein), etc. Here we suggest an alternative approach based on the asymptotic anal-

ysis. Numerical examples show that there might exist several solutions which are not

qualitatively equivalent. As observed, some do much better as far as asymptotic ap-

proximation order and shape is concerned and some are quite unacceptable. This gives

an idea for a general algorithm based upon a detailed asymptotic analysis how to single

out the desired solution. It starts with a particular problem with a unique best approx-

imation order solution and trace it to a solution of a general problem by a homotopy

continuation method [2]. Numerical experiments show that this procedure behaves

well in practice.

The paper is organized as follows. In Section 2, the interpolation problem is pre-

cisely stated and a system of nonlinear algebraic equations is derived. A preliminary

numerical example is given in Section 3 to justify the necessity of asymptotic analysis

which is done in detail. The existence of several solutions of different approximation

order is established and their asymptotic behaviour is analyzed. Section 4 describes a

general algorithm for solving the interpolation problem. A homotopy method tracing

an appropriate solution of the particular problem to a solution of the problem for gen-

eral data is explained in detail. Finally, a numerical example is given which confirms

theoretical results.

2. Interpolation problem

Suppose that the data

f0,d0,P 0,P 1,d1,f1

are prescribed in Rd, d ≥ 2, where the points P i, the vectors di and f i, i = 0, 1, repre-

sent the values, the first and the second derivatives of some regular parametric curve,

sampled at two distinct parameter values. We will study the following interpolation
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problem: determine a quintic Pythagorean-hodograph curve p : [0, 1] → Rd that inter-

polates the prescribed data in a geometric G2 sense. The G2 interpolation conditions

can be written as

p(u) = P u, p′(u) = λudu, p′′(u) = λ2
ufu + µu du, u = 0, 1, (2.1)

where

λi > 0, µi ∈ R, i = 0, 1,

are free parameters. In addition, the interpolating curve p should satisfy the PH condi-

tion, i.e., its parametric speed

∥∥p′(t)
∥∥ , t ∈ [0, 1],

should be a polynomial of degree ≤ 4. Here, ‖v‖ :=
√
vTv denotes the Euclidean

norm, implied by the standard scalar product.

The first simplification of the interpolation problem is straightforward. If the pre-

scribed data are based upon the arc-length parameterization of the underlying curve,

we observe

‖di‖ = 1, dT
i f i = 0, i = 0, 1. (2.2)

If this is not the case, we may apply the Gram-Schmidt orthogonalization steps

f i →
1

‖di‖2
(
f i −

fT
i di

‖di‖2
di

)
, di →

1

‖di‖
di, i = 0, 1,

so that the modified data vectors satisfy (2.2). Note that the interpolation conditions

(2.1) remain of the same form if one properly renames the unknowns. Thus we shall

assume throughout the paper that the original data already satisfy (2.2).

A proper choice of a basis of the polynomial space P5 gives the interpolating curve

that satisfies (2.1) in a simple closed form. With

π1(t) := (1− t)3t(3t+ 1), π2(t) :=
1

2
(1− t)3t2,

π3(t) := t3
(
6t2 − 15t+ 10

)
, π4(t) := π2(1− t), π5(t) := −π1(1− t),

the curve p reads

p = f0λ
2
0π2 + d0 (λ0π1 + µ0π2) + P 0 +∆P 0π3 + d1 (λ1π5 + µ1π4) + f1λ

2
1π4,

where ∆P 0 := P 1 − P 0. Thus the linear part (2.1) of the interpolation problem is

fulfilled. In order to derive additional equations that correspond to the PH condition,

we follow [14, Sec. 3]. Let us define

w :=
(
λ2
0π

′
2, λ0π

′
1 + µ0π

′
2, π

′
3, λ1π

′
5 + µ1π

′
4, λ

2
1π

′
4

)T
,

and

V := (vj)
4
j=0 :=

(
f0, d0, ∆P 0, d1, f1

)
∈ R

d×5.
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The hodograph can be expressed as

p′ = Vw,

and the parametric speed is given by

∥∥p′∥∥ =
√
wTGw, G := V T V. (2.3)

The Gram matrix G is a symmetric positive semidefinite matrix that depends on the

given data only. The assumption (2.2) then simplifies the Gram matrix to

G =




g00 0 g02 g03 g04
0 1 g12 g13 g14
g02 g12 g22 g23 g24
g03 g13 g23 1 0
g04 g14 g24 0 g44




.

There are several approaches on how to deal with PH curves. For planar curves one

would usually use complex representation, for spatial ones quaternion algebra is in-

volved. For curves of higher degree a generalization of these structures might be used

leading to Clifford algebras. But there is also a straightforward way to incorporate PH

conditions in the interpolation problem, i.e., to write them in a purely algebraic way.

Here we found this approach the most promising one, since it led to the simplest set of

nonlinear equations independently of the space dimension d. In order to apply it, let

us recall [14, Rem. 1], with a particular choice of the points, divided differences [·] are

based upon. The parametric speed (2.3) would be a polynomial of degree ≤ 4 iff the

following (scaled) equations

ei := ei(λ0, λ1, µ0, µ1) :=
1

ci
[0, · · · , 0︸ ︷︷ ︸

i+1

, 1, · · · , 1︸ ︷︷ ︸
5−i

]
∥∥p′(.)

∥∥ = 0, i = 0, 1, · · · , 4,

are satisfied, where constants ci, i = 0, 1, · · · , 4, are equal to 8, 2, 2, 2, 8 respectively.

Four equations are independent only, and one may take either the first equation e0 = 0
or the last one e4 = 0 as extraneous. It is straightforward to compute the polynomials

λ1e0, e1, e2, e3, λ0e4 ∈ R[λ0, λ1, µ0, µ1],

e1 = λ1 (λ1g44 (7λ1 − µ1) + 60g24)− µ0 (3λ1g14 + 2g13 − 2)

− λ2
0 (3λ1g04 + 2g03)− 8λ0 (3λ1g14 + g13 − 1) , (2.4a)

e2 = g44λ
3
1 − g00λ

3
0 − 3

(
g03λ

2
0 + g14λ

2
1

)
+ 24 (λ0 − λ1) (1− g13)

+ 3 ((µ0 + µ1) (1− g13)− 20g12 + 20g23) , (2.4b)

e3 = λ0 (60g02 − λ0g00 (7λ0 + µ0)) + µ1 (3λ0g03 − 2g13 + 2)

+ λ2
1 (3λ0g04 − 2g14)− 8λ1 (3λ0g03 − g13 + 1) , (2.4c)
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e4 = 4g03 (3µ0µ1 − 140λ0λ1) + λ3
0g00

(
λ2
0g00 − 169

)
+ 240µ0g02

+ 2
(
λ2
1g04 (37λ0 + 6µ0) + λ0

(
−2µ2

0g00 + 37µ1g03 + 660g02
))

+ 2λ2
0g00 (3g13 (µ1 − 8λ1) + 60g12 − 25µ0)− 8λ1 (12µ0g03 + g13 − 1)

+
1

λ0

(
6λ1

(
λ1g14

(
λ3
0g00 − 24λ1g13

)
+ 24µ1

(
1− g213

)
− 480 (g12g13 − g23)

)

+ 9
(
µ2
1

(
g213 − 1

)
+ 40µ1 (g12g13 − g23) + 400

(
g212 − g22

))

+ 9λ2
1

(
λ2
1

(
g214 − g44

)
+ 2µ1g13g14 + 64g213 + 40g12g14 − 40g24 − 64

) )
, (2.4d)

and similarly e0. Note that the first three polynomials in (2.4) are linear in the variables

µ0 and µ1. If we express them from e1 and e3, we obtain

µ0(λ0, λ1) =
(2− 2g13 + 3g03λ0) e1(λ0, λ1, 0, 0) + g44λ

2
1e3(λ0, λ1, 0, 0)

D (λ0, λ1)
, (2.5a)

µ1(λ0, λ1) =
(2− 2g13 − 3g14λ1) e3(λ0, λ1, 0, 0) + g00λ

2
0e1(λ0, λ1, 0, 0)

D (λ0, λ1)
, (2.5b)

with the denominator given as

D (λ0, λ1) := g00g44λ
2
0λ

2
1 + (3g03λ0 − 2g13 + 2) (3g14λ1 + 2g13 − 2) . (2.6)

Further, if we insert the expressions (2.5) in the remaining two equations, we end up

with a system of two rational equations

ei(λ0, λ1, µ0(λ0, λ1), µ1(λ0, λ1)) = 0, i = 2, 4, (2.7)

for the unknowns λ0 and λ1. The polynomial form of (2.7) is given as

D (λ0, λ1) e2(λ0, λ1, µ0(λ0, λ1), µ1(λ0, λ1)) = 0, (2.8a)

D (λ0, λ1)
2 λ0 e4(λ0, λ1, µ0(λ0, λ1), µ1(λ0, λ1)) = 0. (2.8b)

Let us summarize the preceding discussion.

Theorem 2.1. Any pair λ0 > 0, λ1 > 0 that satisfies polynomial equations (2.8), such

that D (λ0, λ1) 6= 0, determines the quintic PH curve that solves the interpolation problem

(2.1) with the data that satisfy (2.2). Corresponding µ0, µ1 are computed from (2.5).

The equations (2.8) are of the total degree 7 and 14 respectively, quite in reach

of nowadays polynomial equations solvers. However, since several solutions are to

be expected, a robust recipe that would usually give the proper solution would be

appropriate.

Quite clearly, a change of sign of the data vectors, and the corresponding reparam-

eterization t → 1 − t of the curve p should lead to a system that evolves from (2.4).

The following remark reflects this.



380 G. Jaklič et al.

Remark 2.1. Suppose that the elements of the Gram matrix G are changed as follows,

g00 → g44, g44 → g00, g02 → −g24, g24 → −g02,

g03 → g14, g14 → g03, g12 → −g23, g23 → −g12.

If we change the unknowns

λ0 → −λ1, λ1 → −λ0, µ0 → µ1, µ1 → µ0,

too, we obtain the same system of equations (2.4), since

e5 → e0, e0 → e5, e3 → e1, e1 → e3.

3. Asymptotic analysis

Not all solutions of Eq. (2.7) that satisfy λ0 > 0, λ1 > 0 are acceptable from the

approximation point of view. One would expect that the interpolation curve p would

be an approximation of order six, at least for moderate data. As an example, let us

consider a particular curve g : [0, b] → R3,

g(t) :=
1√
5




√
5 ln(1 + t) cos t√

1 + t2 − 1 + 2 ln(1 + t) sin t

2
(√

1 + t2 − 1
)
− ln(1 + t) sin t


 , (3.1)

interpolated at t = 0 and t = b.
A choice b = 1

4 yields five admissible solutions (see Fig. 1). One of them is obviously

unacceptable, and there is an undesirable kink in the other solution too. The remaining

three, which are shown in a better local view in Fig. 2 seem to be similar at a first

glance. So we are faced with a question, discussed quite often in the literature (see,

e.g., [1, 4, 9]): which solution should be returned by a computer program as the most

P0 P1

Figure 1: Five solutions of a particular G2 quintic interpolation problem.
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P0

P1

Figure 2: The three best solutions of a particular G2 quintic interpolation problem.

appropriate one? But the data here are provided by the known curve g, and some

further analysis can be carried out. Table 1 reveals the Hausdorff distance between g

and the interpolating curves. Quite clearly, the first solution is the one to be chosen.

However, since this error estimate selection is not computable in the general case, let

us trace the solutions obtained as functions of decreasing b. If the Hausdorff distance

decays as ≈ const b−α, the decay rate α may be estimated from Hausdorff distances

computed for consecutive b-s. The result of the numerical experiment, Fig. 3, indicates

that the solutions belong to three entirely different approximation order classes: α ≈
0, 2, 6. This gives a motivation for a rigorous asymptotic analysis as well as a hint for

a numerical algorithm that gives an appropriate solution of Eq. (2.7): a continuation

method (e.g., [2]) that begins with a model problem and its particular solution of the

approximation order six.

Table 1: The Hausdorff distance and parameters λi, µi, i = 0, 1, with b = 1

4
for all five solutions of a

particular G2 quintic interpolation problem.

Hausdorff distance 1

b
λ0

1

b
λ1

1

b
µ0

1

b
µ1

1 1.23236× 10−6 1.03695 0.86432 -0.40493 0.036217

2 1.45516× 10−3 1.27367 2.27877 -11.1875 1.69003

3 1.41561× 10−3 2.51591 1.16926 -3.09427 9.94449

4 1.71950× 10−2 3.02391 2.68586 -13.1529 11.2369

5 3.51152× 10−1 2.62773 2.32101 -13.2049 11.1413

In order to analyse the asymptotic behaviour of the solutions λi and µi, let us as-

sume that the data are sampled from a smooth parametric curve r :
[
−h

2 ,
h
2

]
→ Rd, 2 ≤

d, parameterized by the arc-length s. Although we have to choose d = 5 in order to

avoid possible irregular PH solution [14, Lemma 2], for the asymptotic analysis it does

not really matter which particular dimension d one selects. The analysis will therefore

be given for the most natural choice, i.e., d = 3. The data to be interpolated are

P 0 = r

(
−h

2

)
, d0 = r′

(
−h

2

)
, f0 = r′′

(
−h

2

)
, (3.2a)

P 1 = r

(
h

2

)
, d1 = r′

(
h

2

)
, f1 = r′′

(
h

2

)
, (3.2b)

where the interval length h is assumed to be as small as needed. Suppose also that the

Frenet frame of r, denoted F(r), is well defined for all s ∈
[
−h

2 ,
h
2

]
. Without loss of
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0.010 0.1000.0500.020 0.0300.015 0.1500.070

0

1

2

3

4

5

6

Figure 3: Decay rates of the Hausdorff distance between g and the five polynomial interpolants depending
on the interval length b. The solutions of decay 2 are almost indistinguishable.

generality we may choose the coordinate system with the origin at r(0), and the axes

determined by the Frenet frame of r at t = 0, which somewhat simplifies the expansion

of r. Suppose that the curvature κ and the torsion τ of the curve r at s = 0 expand as

κ(s) = κ0 +
κ1
1!

s+
κ2
2!

s2 +
κ3
3!

s3 +O
(
s4
)
, τ(s) = τ0 +

τ1
1!
s+

τ2
2!
s2 +

τ3
3!
s3 +O

(
s4
)
,

where the fact κ0 > 0 will be needed throughout this section. Since r′ = (F(r))1, and

we have assumed

r (0) = (0, 0, 0)T , F(r) (0) = (δi,j)
3
i,j=1 ,

it is straightforward to derive the expansion of r,

r (s) = r (0) + r′ (0)
1

1!
s+ r′′ (0)

1

2!
s2 + · · · ,

from the Frenet-Serret formulas as

r(s) =




s− 1
6κ

2
0s

3 − 1
8κ0κ1s

4 +O
(
s5
)

1
2κ0s

2 + 1
6κ1s

3 − 1
24

(
κ30 + τ20κ0 − κ2

)
s4 +O

(
s5
)

1
6κ0τ0s

3 + 1
24 (2κ1τ0 + κ0τ1) s

4 +O
(
s5
)


 . (3.3)

With a help of (3.3) we obtain expansions of the asymptotic data in (3.2). The elements

gij := gij(h) of the Gram matrix expand as

g00(h) = κ20 − κ0κ1h+
1

4

(
κ0κ2 + κ21

)
h2 − 1

24
(κ0κ3 + 3κ1κ2) h

3 +O
(
h4

)
, (3.4a)

g22(h) = h2 − 1

12
κ20h

4 +O
(
h6

)
, g44(h) = g00(−h), (3.4b)
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and

g02(h) =
1

2
κ20h

2 − 1

3
κ0κ1h

3 +O
(
h4

)
, (3.5a)

g03(h) = κ20h− 1

2
κ0κ1h

2 − 1

6
κ0

(
κ30 + κ0τ

2
0 − κ2

)
h3 +O

(
h4

)
, (3.5b)

g04(h) = κ20 +
1

4

(
κ0

(
κ2 − 2κ0

(
κ20 + τ20

))
− κ21

)
h2 +O

(
h4

)
, (3.5c)

g12(h) = h− 1

6
κ20h

3 +O
(
h4

)
, (3.5d)

g13(h) = 1− 1

2
κ20h

2 +O
(
h4

)
, (3.5e)

g14(h) = g03(−h), g23(h) = −g12(−h), g24(h) = −g02(−h). (3.5f)

A brief look at Remark 2.1, and the expansions (3.4) and (3.5) confirm the following

lemma.

Lemma 3.1. The asymptotic form of the system (2.4) has a solution

λ0 = λ0(h), λ1 = λ1(h), µ0 = µ0(h), µ1 = µ1(h)

for h small enough if and only if

λ0 = −λ1(−h), λ1 = −λ0(−h), µ0 = µ1(h), µ1 = µ0(−h)

is a solution too.

As h → 0, the parameters λi of a regular curve should stay positive and bounded,

so we may assume that they behave as

λ0 = ξ0h
α + O (hα) , λ1 = ξ1h

β + O

(
hβ

)
, ξ0 > 0, ξ1 > 0, α ≥ 0, β ≥ 0. (3.6)

Lemma 3.2. Suppose that κ0 6= 0, and h > 0 is small enough. Further, let the unknowns

λi expand as (3.6). The only possible exponents α, β are

α = β = 0, (3.7)

or

α = β = 1. (3.8)

Proof. Let us insert the expansions (3.4) and (3.5) in the polynomial form of the

system (2.8). The first equation e2 expands as

e2 =κ60λ
2
0λ

2
1

(
λ3
1 − λ3

0

)
(1 +O(h)) + 3κ60λ

2
0λ

2
1

(
λ2
1 − λ2

0

) (
h+O

(
h2

))

+
3

2
κ60λ0λ1 (λ0 − λ1)

(
3λ2

0 + 4λ1λ0 + 3λ2
1

) (
h2 +O

(
h3

))

+ 21κ50λ0λ1

(
λ2
0 − λ2

1

) (
h3 +O

(
h4

))
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Table 2: The dominating terms and the corresponding dominance region.

term dominance region

39κ6
0ξ0h

α+6 1 < α < 2 ∧ β > α

−39κ6
0ξ1h

β+6 β > 1 ∧ ((α > 1 ∧ β < α ∧ α ≤ 2) ∨ (α > 2 ∧ β < 2))

− 7

2
κ6
0ξ

3
0h

3α+4 0 ≤ α < 1 ∧ α+ β > 2
7

2
κ6
0ξ

3
1h

3β+4 β < 1 ∧ ((α+ β > 2 ∧ α > 1 ∧ α ≤ 2) ∨ (α > 2 ∧ β ≥ 0))

−κ6
0ξ

5
0ξ

2
1h

5α+2β α ≥ 0 ∧ α < β ∧ α+ β < 2

κ6
0ξ

2
0ξ

5
1h

2α+5β (α ≤ 1 ∧ 0 ≤ β < α) ∨ (α > 1 ∧ β ≥ 0 ∧ α+ β < 2)

− 1

2
κ50

(
κ0 (λ0 − λ1)

(
7λ2

0 + 88λ1λ0 + 7λ2
1

)
+ 10κ1λ0λ1

) (
h4 +O

(
h5

))

− 18κ60
(
λ2
0 − λ2

1

) (
h5 +O

(
h6

))
+ 39κ60 (λ0 − λ1)

(
h6 +O

(
h7

))

+ 5κ50

(
κ1 +

3

4
(λ0λ1τ0 (κ1τ0 − κ0τ1))

)(
h8 +O

(
h9

))
. (3.9)

If we insert (3.6) in (3.9), we obtain a sum of terms with various exponents of h,

depending on α and β. Six of the terms, each of them in a particular subregion of

{(α, β) |α ≥ 0, β ≥ 0} respectively, become dominant as h → 0 (Table 2). This leaves

us with the following possible exponents

0 ≤ α = β < 2, (3.10)

α+ β = 2 ∧ α ≥ 0 ∧ β ≥ 0, (3.11)

α = 1 ∧ β > 1, β = 1 ∧ α > 1, α ≥ 2 ∧ β ≥ 2, (3.12)

which could not be excluded by a single dominating term (Fig. 4). The expansion of

the second equation e4 is rather long. But the particular case simplification

e4 = −900κ1010h
12 + O

(
h12

)
, α > 1 ∧ β > 1,

rules out the last possibility in (3.12). It also shortens (3.10) to 0 ≤ α = β ≤ 1. In the

latter case, if α ∈ (0, 1), the equations expand as

e2 = −κ60ξ
2
0ξ

2
1

(
ξ30 − ξ31

)
h7α + O

(
h7α

)
,

e4 = −κ100 ξ40ξ
3
1

(
18ξ50 + 15ξ1ξ

4
0 + 6ξ21ξ

3
0 − 8ξ31ξ

2
0 + 9ξ51

)
+ O

(
h12α

)
.

The leading terms can not both vanish since the leading one of e2 implies ξ1 = ξ0, but

then

e4 = −40κ100 ξ120 + O

(
h12α

)
.

This proves that the only possible exponents in the case (3.10) are given by (3.7). Let

us consider now the case (3.11). The main part of the expansion reads

e4 = 6ξ70 (1− ξ0ξ1) (2ξ0ξ1 − 7) κ100 h7α+5 + O

(
h7α+5

)
, 0 ≤ α < 1, (3.13a)

e4 = −κ100 ξ61 (9− 4ξ0ξ1)
2 + O

(
h18−6α

)
, 1 < α ≤ 2. (3.13b)
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Figure 4: Exponents of the dominating terms and the corresponding dominance region. The part of the
first quadrant α ≥ 0, β ≥ 0 that can not be excluded is shown in black.

Both leading terms in (3.13) may vanish. However, these particular cases give

ξ1 =
1

ξ0
: e4 = −25κ100 ξ60h

6α+6 + O

(
h6α+6

)
, 0 ≤ α < 1,

ξ1 =
2

7ξ0
: e4 = 200κ100 ξ60h

6α+6 + O

(
h6α+6

)
, 0 ≤ α < 1,

ξ1 =
9

4ξ0
: e4 = −178623225κ100 h16−4α

65536ξ40
+ O

(
h16−4α

)
, 1 < α ≤ 2,

which eliminates all the possible α but α = 1. Finally, the expansions

e2 =
1

2
κ60ξ1 (ξ1 (7ξ1 + 36)− 78) h7 + O

(
h7

)
, α > 1, β = 1,

e4 = −9κ100 (3ξ1 + 1) 2 (ξ1 (ξ1 + 4)− 10) 2 + O

(
h12

)
, α > 1, β = 1,

eliminate the possibility α > 1, β = 1, since the leading terms could not vanish simul-

taneously. The case α = 1, β > 1 follows similarly. The proof is completed. �

Lemma 3.3. Let the assumptions of Lemma 3.2 be fulfilled. If α = β = 0, there exists a

unique solution of (2.4) and the unknowns λi and µi expand as

λ0 =
2
√
10

κ0
+

2
√
10κ1
3κ20

h+O
(
h2

)
, λ1 =

2
√
10

κ0
− 2

√
10κ1
3κ20

h+O
(
h2

)
, (3.14a)

µ0 = −8
√
10

κ0
+O(h) , µ1 =

8
√
10

κ0
+O(h) . (3.14b)
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Proof. At the limit h = 0, the unknowns λ0 = ξ0, λ1 = ξ1 should satisfy the equations

e2 = 0, e4 = 0 when h = 0. This gives

e2|h=0
= π1(ξ0, ξ1) = 0, e4|h=0

= π2(ξ0, ξ1) = 0,

where

π1(ξ0, ξ1) := κ60ξ
2
0ξ

2
1

(
ξ31 − ξ30

)
,

π2(ξ0, ξ1) := κ100 ξ40ξ
3
1

(
κ20ξ1ξ

6
0 − 18ξ50 − 15ξ1ξ

4
0 − 6ξ21ξ

3
0 + 8ξ31ξ

2
0 − 9ξ51

)
.

The first polynomial of the Gröbner basis of the ideal 〈π1, π2〉 with respect to variables

(ξ0, ξ1) is determined as

κ100 ξ20ξ
12
1

(
κ20ξ

2
1 − 40

) (
κ40ξ

4
1 − 5κ20ξ

2
1 + 25

)
.

This polynomial has precisely one positive root ξ1 = 2
√
10

κ0
, and the rest of the basis

vanishes at ξ0 = 2
√
10

κ0
. This gives the limit solutions λi = ξi, i = 1, 2. The Jacobian at

the limit solution is nonsingular, since its determinant equals

−3145728000000000
√
10

κ0
.

But then the Implicit function theorem implies that the unknowns λi admit the Taylor

series expansion,

λ0 =
2
√
10

κ0
+ ζ0h+O

(
h2

)
, λ1 =

2
√
10

κ0
+ ζ1h+O

(
h2

)
. (3.15)

If we insert (3.15) in the expansions of e2 and e4, the O(h) terms determine the con-

stants ζ0 and ζ1, which confirms the first row of (3.14). The second one follows then

from the expansion of (2.6). �

Let us consider now the second possible exponent choice (3.8), i.e., α = β = 1. The

leading terms of equations turn out rather long. If we compute the Gröbner basis of

both with respect to variables (ξ0, ξ1), the first basis function, independent of ξ0, turns

out as

κ100 (ξ1 − 1)9 (ξ1 − 3)
(
ξ21 − 3ξ1 − 1

)2
π3(ξ1)π4(ξ1)

2π5(ξ1)h
12,

where

π3(ξ1) := (ξ1 + 1)3
(
ξ21 + 8ξ1 + 1

)3 (
2ξ21 + 8ξ1 + 15

)
,

π4(ξ1) := 4ξ101 + 51ξ91 + 256ξ81 + 618ξ71 + 2506ξ61 + 2025ξ51

+ 5612ξ41 − 22578ξ31 − 29560ξ21 − 12003ξ1 − 1606,

π5(ξ1) := ξ61 − 28ξ51 + 823ξ41 − 1236ξ31 + 2478ξ21 − 19008ξ1 + 20736.
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The polynomial π3 has obviously no positive roots. The only positive root ξ1 ≈ 1.7811 of

the polynomial π4 determines ξ0 ≈ −0.316622 from the rest of equations. The following

argument rules out also the positive root ξ1 =
1
2

(
3 +

√
13
)

of the polynomial ξ21−3ξ1−1.

The remaining polynomials of the Gröbner basis determine the corresponding ξ0 =
1
2

(
3 +

√
13

)
. But the leading term of the denominator (2.6) expansion

D (ξ0h, ξ1h) = κ40
(
ξ20ξ

2
1 − 9ξ0ξ1 − 3ξ1 − 3ξ0 − 1

)
h4 +O

(
h5

)

vanishes at

ξ0 = ξ1 =
1

2

(
3 +

√
13

)
. (3.16)

However, the expansion of the second rational equation in (2.7) at the values (3.16) is

e4(ξ0h, ξ1h, µ0(ξ0h, ξ1h), µ1(ξ0h, ξ1h) =
135

2

(
659− 183

√
13

)
κ20h

3 +O
(
h4

)
.

So the solution (3.16) is extraneous, and it is due to the switch from the rational

(2.7) to the polynomial form (2.8) of the equations. This yields the possible choices

ξ1 = 1, 3, u0, u1, where u0 ≈ 1.27927 and u1 ≈ 2.55324 are positive roots of π5. The rest

of the Gröbner basis gives the corresponding values ξ0 = 1, 3, u1, u0 respectively. The

last three pairs (ξ0, ξ1) produce also a nonsingular Jacobian of the polynomial part of

the scaled equations

1

h7
e2 (ξ0h, ξ1h, µ0(ξ0h, ξ1h), µ1(ξ0h, ξ1h)) +O(h) , (3.17a)

1

h12
e4 (ξ0h, ξ1h, µ0(ξ0h, ξ1h), µ1(ξ0h, ξ1h)) +O(h) , (3.17b)

at the limit solution. So one can follow the steps of the proof of Lemma 3.3 and confirm

the following lemma in a similar manner. Of course, some further expansions have to be

carried out on the way, but Lemma 3.1 shortens them significantly: if λ0 = ξ0h+ζ0h
2+

O
(
h3

)
, λ1 = ξ1h + ζ1h

2 + O
(
h3

)
is an admissible solution pair then if ξ0 6= ξ1, there

exists also an admissible solution pair λ0 = ξ1h−ζ1h
2+O

(
h3

)
, λ0 = ξ0h−ζ1h

2+O
(
h3

)
.

If ξ0 = ξ1 and the solution is simple, then it should be of the form

λ0 = ξ0h+ ζ0h
2 +O

(
h3

)
, λ1 = ξ0h− ζ0h

2 +O
(
h3

)
. (3.18)

Lemma 3.4. Let the assumptions of Lemma 3.2 be fulfilled. The system (2.4) has in the

case α = β = 1 three simple asymptotic solutions given by

λ0 = λ0(h) := 3h+
11κ1
12κ20

h2 +O
(
h3

)
, λ1 = −λ0(−h),

µ0 = µ0(h) := −12h+O
(
h2

)
, µ1 = µ0(−h),

and

λ0 = λ0(h) := u0h+ ζ0h
2 +O

(
h3

)
, λ1 = λ1(h) := u1h+ ζ1h

2 +O
(
h3

)
,

µ0 = µ0(h) := ν0h+O
(
h2

)
, µ1 = µ1(h) := ν1h+O

(
h2

)
,

λ0 = −λ1(−h), λ1 = −λ0(−h), µ0 = µ1(−h), µ1 = µ0(−h),
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with

u0 ≈ 1.27927, u1 ≈ 2.55324, ζ0 =
0.653557κ1

κ0
, ζ1 = −0.28438κ1

κ0
,

ν0 = −1.79886, ν1 = 11.0729.

The case ξ0 = ξ1 = 1 requires some additional attention since at this limit solution

the Jacobian of Eq. (3.17) vanishes identically as h → 0.

Lemma 3.5. Let us suppose again that the assumptions of Lemma 3.2 are fulfilled. Besides

the asymptotic solutions established in Lemma 3.4, the system (2.4) has for α = β = 1 in

the general case an odd number ≤ 15 of simple asymptotic solutions. All of them are of

the form

λ0 = λ0(h) = h+ ζh2 + ̺h3 + θh4 +O
(
h5

)
, λ1 = −λ0(−h), (3.19a)

µ0 = µ0(h) = −2ζh2 − 6̺h3 + χh4 +O
(
h5

)
, µ1 = µ0(−h). (3.19b)

Here, ζ and ρ are real solutions of a particular system of polynomial equations (3.22). The

term general excludes some exceptional relations between the coefficients of the curvature

expansions which imply a zero of multiplicity at least 3 of the polynomial (3.25).

Proof. Since the expansion of the unknowns λi starts with the linear term h, the

expansion should be of the form

λ0 = h+ h (ζ0h
α + O (hα)) , λ1 = h+ h

(
ζ1h

β + O

(
hβ

))
, ζ0 6= 0, ζ1 6= 0,

with α, β > 0. The leading terms

e2 = 15κ60ζ
3
0h

3α+7 + O

(
h3α+7

)
, 0 < α < 1 ∧ α < β,

e2 = −15κ60ζ
3
1h

3β+7 + O

(
h3β+7

)
, 0 < β < 1 ∧ β < α,

rule out all the possible exponents in D = {(α, β) |0 < α < 1 ∨ 0 < β < 1} but α = β.

In the latter case we obtain

e2 =15κ60 (ζ0 − ζ1) (ζ0 + ζ1)
2h3α+7 + O

(
h3α+7

)
,

e4 =1800κ100 (ζ0 + ζ1)
2 (4ζ0 + ζ1)h

3α+12 + O

(
h3α+12

)
.

This additionally implies ζ1 = −ζ0, but then

e2 = −20κ60ζ
5
0h

5α+7 + O

(
h5α+7

)

rules out D completely. So we may assume α = β = 1, but we additionally allow that

ζ0, ζ1 might depend on h as decreasing functions of the argument. Thus we obtain

e2 =30κ50∆
2
0 (2κ0∆0 − κ1)h

10 + · · · , (3.20a)

e4 =1800κ90∆
2
0 (20κ0∆0 + 12κ0∆1 − 3κ1) h

15 + · · · , (3.20b)
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with ∆0 := ζ0+ζ1
2 , ∆1 := ζ0−ζ1

2 . A particular linear combination of these equations

reveals

1

36000κ100 h15
(
e4 − 180κ40h

5e2
)
= π6(∆0,∆1) +O

(
h4

)
, (3.21a)

π6(u, v) := u3 + π7(u, v)u
2h+ π8(u, v)uh

2 + π9(u, v)h
3. (3.21b)

The coefficients of polynomials πi, i = 7, 8, 9, depend on the data curvature only, but

not on h. The expansion (3.21) clearly implies

∆0 = ρh+ O (h) , ρ ∈ R.

Let also ∆1 = ζ + O (1) , ζ ∈ R. These assumptions give two polynomial equations for

the unknowns ρ and ζ. From (3.20) we obtain

1

h2
e2 =: π10 (ζ, ρ) + O (1) , π10 (ζ, ρ) = π12 (ζ) ρ

2 + π13 (ζ) ρ+ π14 (ζ) ,

and the relation (3.21) gives

1

h3
π6 (ρh+ O (h) , ζ + O (1)) =: π11 (ζ, ρ) + O (1) ,

π11 (ζ, ρ) = ρ3 + π15 (ζ) ρ
2 + π16 (ζ) ρ+ π17 (ζ) .

The coefficient polynomials involved in π10 and π11 are

π12 (ζ) = 4κ0ζ − κ1, π13 (ζ) = −2

3
κ0ζ

3 − 3

2
κ1ζ

2 + · · · ,

π14 (ζ) = −2

3
κ0ζ

5 + κ1ζ
4 + · · · ,

π15 (ζ) = − 7

10
ζ2 − 9κ1

20κ0
ζ + · · · , π16 (ζ) = −13

60
ζ4 +

23κ1
40κ0

ζ3 + · · · ,

π17 (ζ) = − 43

360
ζ6 +

29κ1
120κ0

ζ5 + · · · .

The system of polynomial equations that should determine ζ and ρ finalizes as

π10 (ζ, ρ) = 0, π11 (ζ, ρ) = 0. (3.22)

A little of the computer algebra work verifies a reduction

π2
12 (ζ)π11 (ζ, ρ) = π18 (ζ, ρ) π10 (ζ, ρ) + π19 (ζ) ρ+ π20 (ζ) . (3.23)

If the unknowns ζ, ρ satisfy (3.22), ρ could be expressed in terms of ζ from (3.23),

ρ = −π20 (ζ)

π19 (ζ)
. (3.24)
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But then the polynomial form of the first equation in (3.22) factorizes as

π2
19 (ζ)π10 (ζ,−π20 (ζ) /π19 (ζ)) = π2

12 (ζ)π21 (ζ) ,

where

π21 (ζ) =
700

243
κ30ζ

15 − 875

81
κ20κ1ζ

14 + · · · . (3.25)

Thus Eq. (3.25) has an odd number of simple real solutions in general, and from (3.24)

consequently the system (3.22) too. The exceptional cases are excluded by the assump-

tion

gcd
(
π21, π

′
21, π

′′
21

)
= const.

If (ζ, ρ) is a simple solution of the system (3.22), the unknowns ∆i admit series expan-

sion in h, and so do λi. By (3.18), the latter has to be of the form (3.19). The expansion

of µi is then straightforward. The proof is concluded. �

Theorem 3.1. Suppose that κ0 6= 0, and h > 0 is small enough. The system (2.4) has

asymptotically an O(1) solution, determined in Lemma 3.3. Further, all the solutions,

established in Lemma 3.4, are of the order O
(
h2

)
. At last, there is an odd number of

optimal O
(
h6

)
solutions, confirmed in Lemma 3.5.

Proof. The existence part of the assertions has already been proved in Lemmas

3.3, 3.4 and 3.5. It remains to prove the asymptotic approximation order only. Let us

recall the parametric distance (see, e.g., [18]) as a measure of the distance between

parametric curves f : [c, d] → Rd and g : [a, b] → Rd, defined as

distP (f ,g) := inf
ϕ

max
a≤t≤b

‖ (f ◦ ϕ) (t)− g(t)‖, (3.26)

where the infimum is taken among all diffeomorphisms ϕ : [a, b] → [c, d], and ‖.‖ is

the usual Euclidean norm. Any particular reparameterization ϕ gives an upper bound

on the parametric distance (3.26). Here, f = r : [−h
2 ,

h
2 ] → Rd is a smooth data curve,

and g = p : [0, 1] → Rd is the quintic PH interpolating polynomial curve.

Let us consider the asymptotic solutions, determined in Lemma 3.5, and let us

choose the reparameterization ϕ : [0, 1] → [−h
2 ,

h
2 ] as a quintic polynomial, determined

by conditions

ϕ(0) = −h

2
, ϕ(1) =

h

2
, ϕ′(0) = λ0, ϕ′(1) = λ1, ϕ′′(0) = µ0, ϕ′′(1) = µ1.

The quintic polynomial curve p agrees with r ◦ ϕ three-fold at 0 and at 1, respectively.

Thus the Newton form of the interpolation error reads

(r ◦ ϕ) (t)− p(t) = t3(t− 1)3 [0, 0, 0, 1, 1, 1, t] (r ◦ ϕ)
= t3(t− 1)3 (r ◦ ϕ)(6) (ηt), ηt ∈ [0, 1].
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The chain rule applied to r ◦ ϕ reveals that the error term would be O
(
h6

)
if the

derivatives of the reparameterization satisfy ϕ(ℓ) = O
(
hℓ
)

for ℓ = 1, 2, · · · , 5 on [0, 1].

Note additionally that ϕ(6) ≡ 0. The simplest way to confirm the assertion is to compute

the divided difference table that determines Newton forms of ϕ. The upper diagonal

that gives the first one reads

[0]ϕ = −h

2
,

[0, 0]ϕ = λ0 = h+O
(
h2

)
,

[0, 0, 0]ϕ =
µ0

2
= −ζh2 +O

(
h3

)
,

[0, 0, 0, 1]ϕ = h− λ0 −
µ0

2
= 2ρh3 +O

(
h4

)
,

[0, 0, 0, 1, 1] ϕ = −3h+ 2λ0 + λ1 +
µ0

2
=

(
θ +

1

2
χ

)
h4 +O

(
h5

)
,

[0, 0, 0, 1, 1, 1] ϕ = 6h− 3λ0 − 3λ1 −
µ0

2
+

µ1

2
= O

(
h5

)
.

So

ϕ′(t) =
(
[0]ϕ+ [0, 0]ϕ t+ [0, 0, 0]ϕ t2 + · · ·

)′
= h+O

(
h2

)
,

and ϕ is a regular reparameterization that satisfies ϕ(ℓ) = O
(
hℓ
)
, ℓ = 2, 3, · · · , 5. This

concludes the proof for the O
(
h6

)
solutions. The O(1) case of Lemma 3.3 follows from

the fact that the interpolating curve is bounded independently of h. For the O
(
h2

)

case one can choose a parabola that interpolates the values −h
2 , λ0,

h
2 at 0, 0, 1 as a

reparameterization ϕ. The proof is completed. �

Quite clearly, if the interpolated curve is a quintic PH curve one of the O
(
h6

)
so-

lutions would reproduce it exactly and the others, if they exist, would be O
(
h6

)
and

not better. On the other hand, the solutions of Lemmas 3.3 and 3.4 could not do better

than O(1) and O
(
h2

)
, respectively, in general. A constant

Θ(p) := min
−h/2≤s≤h/2

Θ(p; s), Θ(p; s) :=

∥∥∥∥r(s)− p

(
1

2

)∥∥∥∥ ,

bounds the Hausdorff distance between the curve r and the PH interpolant p from

below. The solution from Lemma 3.3 yields

Θ(p) =
5

4τ0
+O(h) .

For the solutions of Lemma 3.4 we obtain

Θ(p; s)2 = h2π2
22

( s

h

)
+O

(
h3

)
, (3.27)

where π22 is a linear polynomial with coefficients independent of h. But Θ(p)2 =
O
(
h4

)
, so the first term of s/h should be a root of π22. This gives the values s that
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minimize the right-hand side of (3.27) for the three solutions as

s = O
(
h2

)
, s ≈ ±0.343966h +O

(
h2

)
,

and the lower bounds

Θ(p) =

√
κ40 + κ21
8κ0

h2 +O
(
h3

)
, Θ(p) ≈

√
0.00311317κ40 + 0.112154κ21

10κ0
h2 +O

(
h3

)

respectively. Theorem 3.1, and the previous discussion prove that the Hausdorff dis-

tance distH (r,p) behaves precisely like

distH (r,p) = const +O(h) , const > 0, distH (r,p) = consth2 +O
(
h3

)
, const > 0,

for the solutions of Lemmas 3.3 and 3.4 respectively. So, for h small enough, they

should differ significantly from the optimal order solutions of Lemma 3.5. This explains

the background of the numerical algorithm developed in the next section.

4. Algorithm and numerical examples

In practical applications there is usually a large number of data to be interpolated.

The presented G2 PH quintic interpolation scheme constructs polynomial curves which

can be joined together to the spline entirely locally. Asymptotic analysis reveals that

there might exist many solutions of the interpolation problem considered and one must

decide which of them is to be used on each spline segment. Quite clearly, the solution

with the best approximation order, i.e., order six in this case, should be chosen. But this

can be done only in an asymptotic way, i.e., when the data is taken from a smooth para-

metric curve over some small parameter interval. To avoid this limitation we propose

an algorithm based on a continuation method that can be used also for the nonasymp-

totic data.

The idea is to choose a particular set of data for which all the solutions can be com-

puted and distinguished by the order of approximation. Then this particular data is

connected with the original data by a smooth homotopy. Starting with the “best solu-

tion” of the particular interpolation problem, we trace this solution by a continuation

method to reach the original data. In this way the asymptotic results are carried over

to the nonasymptotic data.

Particular data

V ∗ :=
(
f∗
0, d∗

0, ∆P ∗
0, d∗

1, f∗
1

)
(4.1)

are taken from a quintic PH curve

p∗(t) :=




1
48

(
−48t4 + 184t2 − 43

)
+ 536

625
1
72

(
48t5 − 280t3 + 435t + 184

)
− 54992

28125
1
6

(
8t4 − 14t2 + 3

)
− 298

625


 (4.2)
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Table 3: The Hausdorff distance and parameters λi, µi for seven solutions of the particular case, where h
is the length of the curve p

∗ on the interval [t0, t1].

Hausdorff distance λ0 λ1 µ0 µ1

1 0 0.994512h 0.994512h 0.0271798h2 −0.0271798h2

2 1.1143× 10−5 0.812225h 1.20396h 0.248020h2 0.335774h2

3 1.1143× 10−5 1.20396h 0.812225h −0.335774h2 −0.248020h2

4 3.4566× 10−3 1.22545h 2.52048h −10.9048h 1.66426h

5 3.4566× 10−3 2.52048h 1.22545h −1.66426h 10.9048h

6 4.7791× 10−2 3.03129h 3.03129h −12.3336h 12.3336h

7 4.2009 24.8279 24.8279 −110.916 110.916

at the parameter values − 1
10 and 1

10 . For the numerical part it is convenient to separate

geometric properties of the data Gram matrix in the distance and the angle part by

δi := +
√
gii, i = 0, 1, · · · , 4, cij :=

1

δiδj
gij, i, j = 0, 1, · · · , 4. (4.3)

The constants (4.3) that correspond to the particular data (4.1) will be denoted by

δ∗i , c∗ij . Clearly, one of the solutions is the curve p∗ itself, but there are six additional

ones. The unknown parameters for all of them are given in Table 3. Solutions 2 and

3 are order 6 approximants of p∗, solutions 4, 5 and 6 have order two and the last

solution is far away from p∗. The results in Table 3 match the results from Lemma 3.3,

Lemma 3.4 and Lemma 3.5. One can see that parameters λi and µi, i = 0, 1, for order

six approximants differ significantly from parameters for the other solutions. The same

can be observed already from Table 1.

The homotopy algorithm has three steps:

1. Translation, rotation and scaling of the original data.

2. Construction of a homotopy function.

3. Solving the system by a continuation method.

Before we explain each step in detail, let us shortly recall the theory of spatial rotations.

As it is known, they are closely connected with the quaternions. Namely, any nonzero

quaternion q = ±[q0, (q1, q2, q3)
T ] ∈ H, where H is a field of quaternions, defines a

rotation R = Rot(q), given by

Rot(q) =
1

‖q‖2



q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23


 .

The mapping Rot : H →
{
R ∈ R3×3, RTR = 1,detR = 1

}
is called a kinematical map-

ping. Conversely, every rotation can be represented by two antipodal unit quaternions

±q ∈ H, ‖q‖ = 1 (see [6]).
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STEP 1:

The original data V =
(
f0, d0, ∆P 0, d1, f1

)
are translated, rotated and

scaled as

P 0 → (0, 0, 0)T , (4.4a)

P 1 →
δ∗2
δ2

R∆P 0, (4.4b)

di → Rdi, i = 0, 1, (4.4c)

f i →
δ2
δ∗2

R∆f i, i = 0, 1, (4.4d)

where R ∈ R3×3 is a rotation matrix that transforms a vector ∆P 0 onto δ2
δ∗
2

∆P ∗. More

precisely,

R = Rot

([
cos

φ

2
, sin

φ

2
a

])
,

where the rotation axis a and the rotation angle φ are given as

a =
1

δ2δ∗2
∆P 0 ×∆P ∗

0, cosφ =
1

δ2δ∗2
∆P 0 ·∆P ∗

0.

Note that the solution of the transformed problem (4.4) is just a scaled solution of the

original one

λi →
δ∗2
δ2

λi, µi →
δ∗2
δ2

µi, i = 0, 1.

STEP 2: Construction of a homotopy function that connects the particular data V ∗ with

the transformed data (4.4).

Since di⊥f i and d∗
i⊥f∗

i , i = 0, 1,

Qi :=
(
di,

1
δ4i

f i,
1
δ4i

di × f i

)
and Q∗

i :=
(
d∗
i ,

1
δ∗
4i

f∗
i ,

1
δ∗
4i

d∗
i × f∗

i

)

are the rotation matrices. Let qi and q∗
i be the unit quaternions, that correspond to Qi

and Q∗
i . The sign must be chosen in such a way that qTi q

∗
i > 0, i = 0, 1. The quaternion

line

hi(t) := (1− t)q∗
i + t qi, i = 0, 1,

defines a rational spherical motion of degree two. The homotopy function is defined as

H : [0, 1] → V, H(t) =
(
f0(t), d0(t), ∆P 0(t), d1(t), f1(t)

)
,

where

∆P 0(t) := ∆P 0, (4.5a)

f i(t) := ((1− t)δ∗4i + t δ4i) Rot (hi(t))
(
0, 1, 0

)T
, i = 0, 1, (4.5b)

di(t) := Rot (hi(t))
(
1, 0, 0

)T
, i = 0, 1. (4.5c)
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Quite clearly, H(0) = V ∗ and H(1) = V , where V denotes the data after the first step.

STEP 3: Continuation method.

Choose one solution from Table 3. Trace this solution by a continuation method

along the homotopy path defined by H. The result is the solution of the interpolation

problem for data (4.4).

The proposed algorithm works efficiently for most data configurations, however

the following problems may occur. The solution that we trace can be lost along the

homotopy path if two solutions meet and turn into a pair of complex solutions or if the

solution crosses the boundary of the domain

{(λ0, λ1, µ0, µ1) : λi > 0, µi 6= 0, i = 0, 1} .

The reason for this problem is usually that the interpolation problem does not have a

solution at all. It may happen that the solution exists, but the homotopy path contains

parts where it does not. In this case we should use the extended continuation method

that enables us to trace the solutions in the complex domain and return back.

As an example, let us connect particular data V ∗ =
(
f∗
0,d

∗
0,∆P ∗

0,d
∗
1,f

∗
1

)
, taken

from the quintic PH curve (4.2) at parameters − 1
10 and 1

10 , with the data V = (f0,d0,

∆P 0,d1,f1), taken from the curve (3.1) at parameters 0 and 1
4 . Let us trace the first

solution from Table 3 by using homotopy approach considered above. In the first step of

the algorithm, the original data V are transformed to data Ṽ =
(
f̃0, d̃0, ∆̃P 0, d̃1, f̃1

)
,

as described in (4.4) (see Fig. 5). Secondly, homotopy path that connects the trans-

formed data to the particular data V ∗ has to be constructed as presented in (4.5) (see

P0=P0
*

P1

P1
*

d0

f0

d1

f1

d0
�

f0
�

d1
�f1

�

Figure 5: Original data V (dashed gray) and the data Ṽ after the first step of the algorithm (black).
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P0
�
=P0

* P1
�
=P1

*

d0
�

f0
� d1

�

f1
�

d0
*

f0
*

d1
*f1

*

Figure 6: Homotopy from the particular data V ∗ (gray) to the transformed original data Ṽ (black).

Figure 7: Transformations of parameters λ0 (left) and λ1 (right) along the homotopy path from the best

solution of the transformed original data Ṽ to the best solution for the particular data V ∗.

Figure 8: A G2 quintic PH spline interpolating the curve (3.1) at parameters i

4
, i = 0, 1, · · · , 8.

Fig. 6). Finally, the selected solution is traced by the continuation method along the

obtained homotopy path. As expected, parameters λi and µi, i = 0, 1, obtained from

the first row in Table 3, after transformation in the first step of the algorithm, transform

to the parameters given in the first row in Table 1 (see Fig. 7). As the second example,

let us consider an interpolation by a G2 quintic PH spline. Let the data be taken from

the curve (3.1) at parameters i
4 , i = 0, 1, · · · , 8. Using the same approach as in the

previous example for each particular segment we obtain the final G2 PH spline shown

in Fig. 8.
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