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Abstract. This article describes the implementation of a simple wavelet-based optical-
flow motion estimator dedicated to continuous motions such as fluid flows. The wavelet
representation of the unknown velocity field is considered. This scale-space represen-
tation, associated to a simple gradient-based optimization algorithm, sets up a well-
defined multiresolution framework for the optical flow estimation. Moreover, a very
simple closure mechanism, approaching locally the solution by high-order polynomials
is provided by truncating the wavelet basis at fine scales. Accuracy and efficiency of the
proposed method is evaluated on image sequences of turbulent fluid flows.
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1. Introduction

Recent years have seen significant progress in signal processing techniques for fluid
motion estimation. The wider availability of image-like data, whether coming from exper-
imental facilities (e.g., particle image velocimetry) or from larger-scale geophysical study
systems such as lidars or meteorological and oceanographical satellites, strongly motivates
the development of computer-vision methods dedicated to their analysis. Correlation-
based and variational methods have proven to be efficient in this context. However, the
specific nature of fluid motion highly complicates the process. Indeed, one has to deal with
continuous fields showing complex structures evolving at high velocities. This is particu-
larly problematic with optical flow methods, where the problem non-linearity requires to
resort to an ad-hoc multiresolution strategy. Although leading to good empirical results,
this technique is known to have a number of drawbacks. Moreover, the underdetermined
nature of the optical flow estimation problem imposes to add some prior information about
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the sought motion field. In many contributions dealing with rigid-motion estimation, first-
order regularization is considered with success. However, when tackling more challenging
problems such as motion estimation of turbulent fluids, this simple prior turns out to be in-
adequate. Second-order regularizers [5,16,17], or a first order regularizer [7] allowing to
enforce physically-sound properties of the flow, are considered; but their implementation
raises up several issues.

In this paper, we propose an optical flow estimation procedure based on a wavelet ex-
pansion of the velocity field. This approach turns out to offer a nice mathematical frame-
work for multiresolution estimation algorithms, which avoids some of the drawbacks of the
usual approach. Note that algorithms based on wavelet expansion of the data [1], of the
velocity field [15] or even both [4] have been previously proposed. However, unlike the
algorithm presented hereafter, their computational complexity and/or lack of multiscale
mechanism significantly limits their application to small images and/or the estimation of
the coarsest motion scales in [15], and might raise up issues when dealing with large
displacements in [4]. Finally, the multiscale wavelet framework also suggests a very sim-
ple regularization by neglecting smallest scales coefficients; it turns out to be particularly
adapted to "smooth enough" motions.

This article processes as follows: Section 2 recalls concepts behind optical flow estima-
tion. Sections 3 and 4 introduce the wavelet framework, then describe its integration into
the optical flow problem and the implementation of the resulting algorithm. Behavior and
efficiency of the proposed estimator are finally assessed in Sections 5 and 6, using both
synthetic and real flow visualization images.

2. Optic flow problem

The optical flow problem consists in estimating the apparent 2D displacement within a
3D scene depicted by a sequence of images, e.g., obtained from a camera. The time- and
space-variations of an observable image quantity, e.g., its brightness, are used to infer the
underlying motion. In the following, we denote by I(x , t) the brightness of the image at
pixel x ∈ Ω, with Ω ⊂ R2 the image domain, and at a discrete time t ∈ N. The optical
flow, as a 2D vector field v(x , t) : Ω×N 7→ R2, is the projection on the image plane of the
actual 3D motion. It is a dense field, since it provides one velocity vector per pixel of the
input images. The optical flow estimation involves two main aspects: the data term, which
links the motion v to be estimated to the input data — here, image brightness I —, and a
regularization mechanism to overcome the ill-posedness of the problem.

2.1. Data term

Data terms are built upon assumptions on the behavior of the observed image quan-
tity. The most simple and most widely used is a conservation assumption of the image
brightness:

d I

d t
(x , t) =

∂ I

∂ t
(x , t) + v(x , t) · ∇I(x , t) = 0. (2.1)
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Its time integration leads to the well-known displaced frame difference (DFD). Let us denote
by I0(x )¬ I(x , t) and I1(x )¬ I(x , t+1) the brightness of two consecutive images from the
sequence. Under stable lightning conditions and the hypothesis of conservative transport
of the image brightness by a velocity field v(t) = v = (v1, v2)

T constant in the time range
between the two consecutive images I0, I1, the velocity field v satisfies the DFD equation:

∀x ∈ Ω, I0(x )− I1(x + v(x )) = 0. (2.2)

The estimated optical flow is then obtained via a minimization problem of the form

v̂ = arg min
v

J
DFD
(I0, I1, v), (2.3)

where the functional J
DFD

may write:

J
DFD
(I0, I1, v) =

1

2

∫

Ω

[I0(x )− I1(x + v(x ))]2dx . (2.4)

Alternatively to quadratic penalization, robust functions (so-called M -estimators) can be
used to penalize discrepancies with respect to the brightness conservation model [2].

2.2. Regularization mechanisms

The estimation problem defined by (2.3) is under-constrained, as there are twice much
unknowns (two velocity components) as equations (at each pixel). A common approach
to close the problem consists in enforcing some spatial coherence to the solution.

2.2.1. Explicit regularization

It consists in adding another term to the functional (2.4), balanced by a parameter µ. The
estimation problem then writes

v̂ = arg min
v

J
DFD
(I0, I1, v) +µJ

reg
(v). (2.5)

A first-order regularizer, encouraging weak spatial gradients for both components v1 and
v2, is often used since its introduction by Horn & Schunck [9]:

J
reg
(v) =

1

2

∫

Ω

|∇v1(x )|2+ |∇v2(x )|2dx . (2.6)

In particular, it constitutes a relevant regularization model for rigid motions.
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2.2.2. Implicit regularization

It aims at reducing the number of unknowns by adopting a parametric formulation for the
optical flow motion: v(x )¬ Φ(x ,Θ), where Φ is a function parametrized by Θ. Estimation
of the motion field v is then replaced by the estimation of its parameters Θ, and the use of
a low-order parametric representation (such as piece-wise polynomials) drastically reduces
the number of unknowns. The solution then writes

v̂ = Φ

�

arg min
Θ

J
DFD

�

I0, I1,Φ(Θ)
�

�

. (2.7)

2.3. Known drawbacks or limitations

Previously introduced data model functional (2.4) is non-linear w.r.t. the velocity field
v , which in particular makes difficult the problem of large displacements estimation.
Therefore estimation of optical flow requires a specific optimization approach. A stan-
dard method to tackle non-linearity is to rely on an incremental multiresolution strategy.
This approach consists in choosing some sufficiently coarse low-pass-filtered version of the
images at which the linearity assumption is valid, and to estimate a first displacement
field assumed to correspond to a coarse representation of the motion. Then, a so-called
Gauss-Newton strategy is used by applying successive linearizations around the current
estimate, together with a warping procedure accordingly to a hierarchical image represen-
tation of increasing resolution. More explicitly, let us introduce the following incremental
decomposition of the displacement field at resolution† 2 j:

v j = ṽ j + v
′
j , (2.8)

where v
′
j

represents the unknown incremental displacement field at resolution 2 j and

ṽ j ¬
∑

i< jP j(v
′
i) is a coarse motion estimate computed at the previous scales; P j(v

′
i)

denotes a projection operator which projects v
′
i onto the grid considered at resolution 2 j.

In order to respect the Shannon sampling theorem, the coarse scale data term is derived
by a low-pass filtering of the original images with a kernel‡ G j, followed by a subsampling
of period 2 j. Using (2.8), at coarse scale, image I j(x ) and the motion-compensated image
Ĩ j(x ) are then defined as:

¨

I j(x ) =↓2 j ◦(G j ⋆ I0(x )),

Ĩ j(x ) =↓2 j ◦(G j ⋆ I1(x + ṽ j(x ))),
(2.9)

where ↓2 j denotes a 2 j-periodic subsampling operator. It yields a functional J j

DFD
defined as

a linearized version of (2.4) around ṽ j(x ):

J j

DFD
(I j , v

′
j) =

1

2

∫

Ω j

h

Ĩ j(x )− I j(x ) +v
′
j(x ) · ∇ Ĩ j(x )
i2

dx . (2.10)

†In this paper, we shall use the following convention: indices j ≥ 0 represent the resolution 2 j . Corresponding
scale is 2− j .
‡A Gaussian kernel of variance proportional to 2 j is commonly used.
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Finally, the sought motion estimate v̂ is given by solving a system of coupled equations
associated to resolutions increasing from 2C to 2F :











v̂ = v
′
F + ṽ F = v

′
F +

F−1
∑

i=C

PF (v
′
i),

v
′
j = arg min

v
′

J j

DFD
(I j , v

′), ∀ j ∈ {C , · · · , F},
(2.11)

where the finest scale s = 2−F corresponds to the pixel whereas the coarsest scale is noted
s = 2−C . In practice, equations in (2.11) are usually solved successively, starting from the
coarsest to the finest scale. This coarse-to-fine approach has the drawback of freezing (i.e.,
leaving unchanged), at a given scale, all the previous coarser estimates. Moreover, the
major weakness of this strategy is the arbitrary approximation of the original functional in
(2.4) by a set of coarse scale data terms (2.10), which are defined at different resolutions
by a modification of original input images with (2.9) and by a linearization of model (2.2)
around the previous motion estimate. Authors in [3] have nevertheless successfully given
a theoretical formulation of the warping strategy. In the next sections, we will see that the
framework of wavelet representations also offers an mathematically-sound formulation, as
already investigated in [15].

3. Wavelet formulation

The wavelet framework introduces a decomposition of a signal into several sets of
details at various scales and a remaining coarse approximation. The projection of the two
components v1, v2 of the velocity field v onto such multiresolution approximation spaces

proves to be efficient within the context of optical flow estimation, enabling to handle large
displacements while providing a simple implicit closure to the problem (Section 2.2.2). Let
us first recall the main characteristics of the wavelet formalism for real scalar signals.

3.1. Wavelet formalism

3.1.1. Multiresolution approximations

We consider a multiresolution approximation of L2(R) a sequence {Vj} j∈Z of closed sub-
spaces, so-called approximation spaces, notably verifying§

Vj ⊂ Vj+1;

lim
j→−∞

Vj =

+∞
⋂

j=−∞
Vj = {0};

lim
j→+∞

Vj = Closure

� +∞
⋃

j=−∞
Vj

�

= L2(R).

§See [12] for a complete presentation of wavelet bases.
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Since approximation spaces are sequentially included within each other, they can be de-
composed as Vj+1 = Vj ⊕Wj. Those Wj are the orthogonal complements of approximation
spaces, they are called detail spaces.

In practice, signals have a finite number of samples. We consider those signals to
be defined on a discretization of unit segment [0,1]; the resolution of this discretization
increasing with the number of samples. Let w[k] be an 2F -sample approximation, i.e.,
∈ VF , of signal w(x):

w[k] = w
� k

2F

�

= w(xk), ∀0≤ k < 2F . (3.1)

Then, applying recursively the decomposition of approximation spaces Vj ,

w ∈ VF = VC ⊕WC ⊕WC+1⊕ · · · ⊕WF−1 ⊂ L2([0,1]), (3.2)

where C ∈ [0; · · · ; F − 1] denotes the coarsest scale considered, and F is the finest.

3.1.2. Wavelet bases

The projection of w onto the set of spaces in (3.2) writes:

w(x) =

2C−1
∑

k=0

〈w,φC ,k〉L2φC ,k(x)+

F−1
∑

j=C

2 j−1
∑

k=0

〈w,ψ j,k〉L2ψ j,k(x), ∀x ∈ [0,1]. (3.3)

Here, {φC ,k}k and {ψ
j,k}k are orthonormal bases of VC and Wj, respectively. They are

defined by dilations and translations¶ of the so-called scale function φ and its associated
wavelet function ψ. The representation of a signal projected onto the multiscale wavelet
basis is given by the set of coefficients appearing in (3.3): aC ,k ¬ 〈w,φC ,k〉L2 and d j,k ¬

〈w,ψ
j,k〉L2 are approximation and detail coefficients, respectively.

Those results are extended to the case of 2D signals, in order to obtain separable mul-

tiscale orthonormal bases of L2([0,1]2). With the isotropic 2D wavelet transform, basis
functions are obtained by dilations and (2D) translations of:

φ(x )¬ φ(x1)φ(x2); ψ1(x )¬ φ(x1)ψ(x2); (3.4a)

ψ2(x )¬ψ(x1)φ(x2); ψ3(x )¬ψ(x1)ψ(x2). (3.4b)

3.2. Wavelet data term

Each scalar component vi of the velocity field is projected onto the multiscale wavelet
basis. We denote by Θi the set off all coefficients — both approximation and details —
related to component vi, and ΘT = (ΘT

1 ,ΘT
2 ) the superset of all coefficients related to

¶Written in a general form f j,k(x) = 2 j/2 f (2 j x − k).
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motion v . The reconstruction operation in (3.3) — from the wavelet basis to the canonical
basis — is linear, we denote by Φ its operator and write:

v(x ) = Φ(x )Θ. (3.5)

One may already recognize the parametric form introduced in Section 2.2.2, although up
to now the number of unknowns does not change: there are as much coefficients in Θ as
scalar values in v . From there, we insert (3.5) into DFD equation (2.2), and the optical
flow estimation problem finally writes:

v̂ = ΦΘ̂ ∈ VF , (3.6a)

Θ̂ = arg min
Θ

J
DFD
(I0, I1,Θ). (3.6b)

3.3. Implicit regularization

In order to close the minimization problem, the number of unknowns has to be low-
ered. A very simple way to achieve this reduction consists in formulating the motion es-
timation problem on a truncated wavelet basis, i.e., by neglecting coefficients correspond-
ing to smallest scales. As a consequence, the solution v̂ belongs to a lower-resolution
space VL ⊂ VF . Details coefficients corresponding to the neglected detail scales (Wj , with
L ≤ j ≤ F − 1) are set to zero. Writing Θ| j to describe the unknown coefficients vector Θ
having all scales finer than j cancelled, so that v = ΦΘ| j ∈ Vj ⊂ VF , the now regularized
optical flow problem reads:

v̂ = ΦΘ̂|L ∈ VL , L < F, (3.7a)

Θ̂|L = arg min
Θ|L

J
DFD
(I0, I1,Θ|L). (3.7b)

From the dyadic structure of the wavelet decomposition, the number of coefficients is
multiplied by 4 whenever a new detail scale is added. As a consequence, it is theoreti-
cally possible to estimate coefficients up to the penultimate small scale (Section 2.2), i.e.,
v ∈ VF−1. In practice, this remains often impossible due to underdeterminations in regions
of poor luminance contrast, or in areas where photometric gradients are aligned. As a
consequence, a lower value must be imposed. Obviously, adaptive strategies relying on
some sparsity constraint could be proposed; this requires however to setup schemes allow-
ing to fix locally the corresponding scales. This will not be explored in this study, so we
stick here to a global thresholding methodology. Finally, a full-scale estimation (v ∈ VF )
requires the use of explicit smoothing terms, as previously mentioned in Section 2.2. The
design of high-order regularization schemes for the proposed wavelet-based estimator has
been investigated in [10] and led to promising results; its description is however out of the
scope of this paper.
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3.4. Properties of the solution

The choice of the wavelet basis is of major importance, especially since smallest scales
are neglected. Indeed, the regularity of the solution, as well as the quantity of energy
"lost" from small scales cancellation, may highly depends on the wavelet basis, through the
number of vanishing moments.

Vanishing moments The notion of vanishing moments (VM) simply reflects the orthogo-
nality of a given wavelet function to polynomials up to a certain order:

ψ has n VM ⇔ 
ψ, x p
�

L2 =

∫

ψ(x)x pd x = 0, ∀0≤ p < n. (3.8)

The number of VM is linked to the size of the support of basis functions φ, ψ: the higher
the number of VM, the wider the support. Hence it is also related to the wavelet basis
ability to cope with the previous underdetermination problem (referred to as the "aperture
problem" in optical flow literature).

3.4.1. Polynomial approximations

From (3.8), a wavelet with n VM is hence orthogonal to any polynomial of degree n− 1.
Consequently, piecewise‖ polynomials of degree n−1 belonging to VF are exactly described
in VF−1, since the elements of the basis that belong to its orthogonal complement WF−1

have vanishing coefficients. Therefore v̂ ∈ VL , solution of (3.7), is a piecewise polynomial
of order n− 1 in VL+1 over the support of scaling functions.

3.4.2. Truncation error

Because of the energy conservation provided by the wavelet transform, truncating small
scales coefficients certainly introduces an error. Using the Lipschitz regularity of the es-
timated motion, it is possible to obtain a bound for the number of VM, above which the
truncation error no longer depends on the number of VM, but on the motion regularity
only.

Lipschitz regularity The Lipschitz regularity gives a measure of the local regularity of
a given signal. A function w(t) is pointwise-Lipschitz α ≥ 0 at t0 if there exists a local
polynomial Pt0

(t) of degree n= ⌊α⌋ and K constant such that

�

�w(t)− Pt0
(t)
�

� ≤ K |t − t0|α. (3.9)

It is then uniformly-Lipschitz α over [a, b] if it satisfies (3.9) for any t0 ∈ [a, b], with K

independent of t0.

‖On the support of {φF−1,k}.
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Coefficients decay and vanishing moments The uniform Lipschitz regularity of a signal
can be related to the decay across scales of its wavelet coefficients amplitude. Let us
consider a signal w ∈ L2([0,1]), uniformly Lipschitz α over [0,1], and its projection on a
wavelet basis. The wavelet has n vanishing moments and is C n with fast decay derivatives.
At fine scales,

• if n< α, the decay of coefficient amplitude depends on n:

�

�〈w,ψ j
p〉L2

�

� = |d j,p| ∼ 2− j(n+ 1
2
);

• if n≥ α, it depends on α [12]:

∃A> 0, such that |d j,p| ≤ A2− j(α+ 1
2
).

Consequences of the truncation The amplitude of truncated small-scales coefficients
depends on either α the signal regularity, or n the number of vanishing moments of the
analyzing wavelet. Therefore the amount of energy lost by neglecting small scales will
depend either on the wavelet basis, when n< α, or on the signal regularity if n≥ α.

Consequently, using a "high enough" number of vanishing moments should ensure that
the amount of neglected energy does not depend on the wavelet basis. The interest of this
simple rule however has to be balanced, since the increase of VM also results in a significant
increase of the computational burden, due to the wider support of basis functions.

4. Implementation

4.1. Minimization

4.1.1. Multi-scale estimation

Coefficients are estimated sequentially from the coarsest scale C to the chosen finest one
L < F , using a gradient-descent algorithm for the minimization of the functional. At
current scale j, C ≤ j ≤ L, the unknown vector Θ| j includes all coefficients from coarse
scale C to j, coefficients estimated at previous coarser scales (C to j − 1) being used as
the initialization point of the gradient descent. This strategy enables to update (to correct)
those coarser coefficients while estimating "new" details at current scale j. In other words,
the solution is sequentially sought within higher resolution spaces VC ⊂ VC+1 ⊂ · · · ⊂
VL , which recalls the subspace correction methods investigated in [14]. This way, the
projection of the current solution v̂ ∈ Vj onto every coarser space Vp with C ≤ p < j is
constantly updated, contrary to the standard incremental approach.

4.1.2. Gradient-descent algorithm

At each refinement level j, minimization of functional JDFD is efficiently achieved with a
gradient-based quasi-Newton algorithm (l-BFGS) [13], to seek the optimum Θ̂| j. For any
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coefficient θi,p ∈Θi ⊂ Θ, it is straightforward to show that

∂ J
DFD

∂ θi,p
(I0, I1,Θ) =
D ∂ I1

∂ x i

(·+Φ(·)Θ)[I1(·+Φ(·)Θ)− I0(·)],Φp

E

L2([0,1]2)
, (4.1)

where Φp is the wavelet basis atom related to θi,p. As a consequence, components of the
spatial gradient of the data-term functional are simply given by the coefficients resulting
from the projection on the considered wavelet basis of the two following terms:

∂ I1

∂ x i

(x +Φ(x )Θ)
�

I1(x +Φ(x )Θ)− I0(x )
�

, i = 1,2.

Note that conversely to the algorithm proposed in [15] which involves the Hessian matrix
to minimize an incremental quadratic error, here only the gradient is required; its compu-
tation is efficiently achieved via the fast wavelet transform presented hereafter. Therefore,
the overall reasonable complexity of this algorithm does not restrict motion estimation to
the very coarsest scales and/or to images of small size.

4.2. Fast wavelet transform

Evaluation of J
DFD

gradient and value requires the computation of motion-compensated
image I1(x + v(x )). Therefore each evaluation involves:

• two inverse wavelet transforms (one per scalar component), from Θ to v , in order to
compute I1(x + v(x ));

• two forward wavelet transforms to compute gradient components, from (4.1).

The fast wavelet transform (FWT) uses the two-scales relation verified by scaling and
wavelet functions:

φ(x) =
p

2
∑

k∈Z
h[k]φ(2x − k), ψ(x) =

p
2
∑

k∈Z
g[k]φ(2x − k). (4.2)

Sequences h[k] = 〈φ(x),p2φ(2x − k)〉 and g[k] = 〈ψ(x),p2φ(2x − k)〉 are called con-

jugate mirror filters. Those filters, as well as their time-reverses∗∗ h̄ and ḡ, enable the
fast implementation through filter banks of forward and inverse wavelet transforms us-
ing decimation, expansion and (circular) convolution operations. For a given 2D signal
of N = 2F × 2F pixels and filters h, g of length K , forward and inverse transforms are
computed with fewer than 8KN/3 operations (see Appendix).

4.2.1. Optimizing wavelet transform

From the implicit regularization introduced in Section 3.3 and the sequential estimation
process in Section 4.1, we see that most of wavelet transforms (to reconstruct v or to com-
pute gradient) involve several fine scales with null coefficients. A very simple optimization

∗∗More explicitly, f̄ [n] = f [−n].
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Figure 1: Typi
al gain observed by the use of a modi�ed �lter bank, to save 
omputations by ex
ludingnull-
oe�
ient s
ales. When one s
ale only is empty, the observed gain is ≃ 55%, below the theoreti
al
62.5%.
consists in using "smart" filter banks which do not take null-coefficient scales into account,
thus saving 62.5% of operations at each step-see Appendix. Fig. 1 shows the typical gain
obtained thanks to the use of this modified filter bank.

4.3. Pseudo-code

Pseudo-code of the sequential estimation is presented Fig. 2. Contrary to local ap-
proaches (patches) such as the well-known Lucas and Kanade [11], motion is searched
globally so the process cannot be parallelized. However, the convolution-based wavelet
transforms makes it likely to be suitable for a GPU implementation. Furthermore, as each
pair is processed independently, long image sequences can be processed efficiently on mul-
ticore computers. At the moment, this algorithm has been implemented in C++, usinglibLBFGS [13] for the optimization routines, CImg for the image processing aspects and
a custom wavelet library. Much low-level optimization is still to be done; computation time
for a single image pair is of order 5− 30s for 256× 256px images of Section 5.

Figure 2: Sequential Estimation Pseudo
ode.
5. Validation with synthetic data

Influence of parameters L (finest estimated motion scale), C (coarsest scale considered)
and n (number of vanishing moments) on the estimated motion are characterized by several
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experiments in Sections 5.2, 5.3 and 5.4. The choice of the wavelet family is then discussed
in Section 5.5. Finally two image sequences of 100 frames long are processed. Results are
compared to other state-of-the-art estimators.

5.1. Input data

This algorithm has been originally designed to extract motions from sequences of fluid
flow images such as satellite and lidar imagery or fluid flow visualization techniques, e.g.,
particle imagery velocimetry (PIV), Schlieren photography or laser-induced fluorescence
(LIF). The following experiments investigate the capacities of the proposed algorithm,
when applied to images resulting from two characteristic types of flow visualization meth-
ods: flows seeded with particles (hereafter referred to as "particle images" or as PIV) and
passive scalar advection (called "scalar images"). Particle images are highly textured (see
Fig. 3(a) for a synthetic image or Fig. 10(b) for a real one), hence particularly well suited
to the optical flow computation. On the contrary, scalar advection-diffusion pictures (syn-
thetic example Fig. 3(c)) present much more almost-constant-value areas. Besides, the
brightness conservation assumption (2.1) is not respected due to the diffusion process;
this makes scalar images far more difficult to process.

The first data set used for evaluation is a synthetic sequence of PIV images of size
256 × 256pixels (i.e., finest scale available F = 8), representing small particles (of ra-
dius smaller than 4 pixels) advected by a forced 2D turbulent flow with periodic boundary
conditions. The dynamic of the fluid flow is supplied by a numerical simulation of 2D
Navier-Stokes equations at Re = 3000, using the vorticity-velocity formulation and the
Lagrangian equation for non-heavy particles transported by the flow (simulation details
can be found in [8]). This simulated flow has a null-divergence by construction. It fea-
tures relatively small displacements, with a maximum magnitude of 3.5 pixels. Most of
the following experiments used the two first frames of the sequence; the whole 100-frame
sequence being processed at last. First image I0 is displayed in Fig. 3(a). The underlying
ground-truth flow motion, that is supposed to be recovered from optical flow estimation,

(a) (b) (c)Figure 3: The �rst frame of the syntheti
 PIV image sequen
e (a) with the vorti
ity of the underlyingreferen
e velo
ity �eld v ref (b). A sample frame from the syntheti
 passive s
alar adve
tion-di�usionsequen
e (
).
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will be referred to as v ref hereafter; its vorticity (i.e., the curl of the velocity field) is dis-
played in Fig. 3(b). Estimated velocity field evaluation is based on the Root Mean Square
end-point-norm Error (RMSE).

The second dataset consists in a synthetic sequence of images depicting the advection-
diffusion of a passive scalar transported by the same 2D flow described above. A sample
frame is presented Fig. 3(c).

5.2. Influence of the truncation

The finest estimated scale parameter L fixes the approximation space VL ∈ VF in which
the solution is sought. Its choice is a tradeoff between the need to reduce the number of
unknowns, in order to close the estimation problem, and the will to estimate the finest
scales of the motion. Fig. 4 presents a 2D-plot of RMSE values as a function of the number
of VM and the finest scale L. For this benchmark, it appears that minimum of RMSE are
obtained in the region corresponding to L = 5 and 6. As expected from remarks in Section
3.3, best results are obtained with L = 6 = F − 2, i.e., v̂ ∈ V6 (and a number of VM n > 4,
the influence of which being discussed in Section 5.4). This corresponds to a number of
unknowns reduced by 87.5%.

A similar analysis carried out on scalar images gives L = 5 as the optimal value of this
parameter. As previously mentioned, scalar diffusion images have much more low-gradient
areas (Fig. 3(c)). Uncertainties due to these low gradients arise sooner than with particle
images (as we proceed towards finer scales), therefore it is not surprising to find that the
optimum solution space is coarser with scalar images than with particles.

(a) (b)Figure 4: RMSE between estimated v̂ and referen
e motion v ref as a fun
tion of the number of vanishingmoments (VM) and the �nest s
ale L, with C = 0 here. Region of interest, with RMSE < 0.1 pixel, is
olored in red. It 
orresponds to L = 5; 6. (a) plots sli
es from (b) taken at L = 5 (red) and 6 (blue).
5.3. Importance of multiscale bases

Having chosen the fine scale parameter L, we may now wonder whether the various
equivalent bases of space VL lead to identical solutions. Indeed, thank to wavelet formalism
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(3.2), several multiscale decompositions of VL may be considered:

VL =VL−1 ⊕WL−1

=VL−2 ⊕WL−2⊕WL−1 = · · ·
=VC ⊕WC ⊕ · · · ⊕WL−1

=V0 ⊕W0 ⊕W1⊕ · · · ⊕WL−1. (5.1)

Parameter C (coarsest scale considered) fixes the number of scales comprised within coarse
approximation space VC , and the number of remaining detail scales (L − C). The closer
is C to L, the lesser is the number of detail scales to be estimated sequentially (algorithm
Fig. 2). This choice has two main consequences:

1. With C close to L, there are less steps in the sequential optimization process. More-
over, forward and inverse wavelet transforms require less operations, resulting in an
overall much faster process.

2. However, in the presence of strong non-linearities, in particular for large displace-
ment, a high value of C will result in the impossibility to capture those high-amplitude
motions.

This is studied by adding a mean displacement of magnitude ≃ 8.5 pixels to the ref-
erence motion v ref presented above (Section 5.1). This large-magnitude motion will be
referred to as ṽ ref hereafter. Fig. 5 shows plots of RMSE as a function of parameters (L, C)

for both motions estimated on a 5 VM wavelet basis, according to observations from Sec-
tion 5.2.

Figure 5: RMSE between estimated v̂ and referen
e motions v ref and ṽ ref as a fun
tion of parameters
L (�nest motion 
oe�
ients s
ale 2−L, horizontal axis) and C (
oarsest motion 
oe�
ients s
ale 2−C ,verti
al axis), with L ≥ C . Low RMSE regions are 
olored in red. Left graph shows results obtainedfor v ref (referen
e motion), right graph presents results for ṽ ref (large magnitude). Optimum 
ouples ofparameters, in terms of RMSE and 
omputing time, are indi
ated for both 
ases by yellow stars.

Experiments confirm previous results (Section 5.2): optimum is obtained for L = 6 for
both cases. Regarding v ref estimation (reasonably small displacements), estimated motions
v̂ are identical for any C ∈ [0; 5]. From above remark 1, the best choice of parameters is
therefore (L, C) = (6,5), i.e., a coarse approximation and 1 scale of details only. However,
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those same parameters used for ṽ ref estimation (large displacements) result in a complete
failure, which confirms remark 2. Here the available range is C ∈ [0,2], the optimum
choice being (L, C) = (6,2), i.e., 4 detail scales considered. This lower value of C results
in a twice longer computation time.

These results suggest that a sequential estimation on a multiscale basis is always prefer-
able to a single-step estimation on the equivalent (monoscale) basis. Indeed estimating
v ref directly in V6 (parameters (6,6)) fails, but choosing instead a 2-step estimation in
V5 ⊕W5 = V6 (parameters (6,5)) leads to proper convergence. Moreover, the choice of
coarse approximation space VC strongly influences the success of the estimation process.
With larger displacements, it is necessary to consider low values for C: basis functions with
a larger support are required to capture the high-amplitude motions.

5.4. Influence of the number of vanishing moments

From remarks in Section 3.4, the number of vanishing moments influences the regu-
larity of the solution as well as the reconstruction error and the computation time.

Fig. 6 takes estimated motions v̂ ∈ V6 and projections of v ref onto V6: v ref|6 ¬ PV6
(v ref)

(by canceling small scales coefficients in W6 and W7), obtained using different numbers
of VM. Those two motions are compared to the ground truth motion v ref, in terms of
RMSE and kinetic energy. RMSE values (Fig. 6(a)) rapidly decrease as the number of VM
increases, converging towards 0.089 and 0.014 pixels for v̂ and v ref|6, resp. Regarding the
kinetic energy (Fig. 6(b)), the percentage w.r.t. v ref of kinetic energy contained by motions
v̂ and v ref|6 also rapidly converges towards 98.5% and 99.98%, resp.

Those results indicate that v ref|6 is a "reasonably good" approximation of v ref, using a
wavelet with n > 4 VM, since in that case the two finest scales that were cancelled by the
projection contain only ≃ 0.02% of the overall kinetic energy. However, it appears that

(a) (b)Figure 6: Experiments on the in�uen
e of the number of VM, for a given 
ouple (L, C) = (6, 0). Es-timation results v̂ and "trun
ated" referen
e motion v ref|6, both ∈ V6, are 
ompared to ground truthmotion v ref. (a) 
ompares RMSE of estimations (red) and trun
ated truth (blue). We observe a rapid
onvergen
e towards asymptotes at 0.089 and 0.014 pixels for estimation and trun
ated truth, resp. (b)shows the kineti
 energy of v̂ (red) and v ref|6 (blue) as a per
entage of v ref energy. We observe again arapid 
onvergen
e towards 98.5% and 99.98% for estimation and trun
ated truth, resp.
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(a) (b)Figure 7: Experiments on the in�uen
e of the number of VM. End-point-norm error maps obtained forestimates with (L, C) = (6, 0), n= 1 (left) or n= 20 (right). Only small, tube-shaped stru
tures remainunestimated with n = 20.
our estimations v̂ never manage to reach the quality of v ref|6, either in terms of RMSE or
energy. This remaining gap can be explained by looking at maps of end-point-norm error
obtained for n = 1 and n = 20 VM — Fig. 7. Only small structures, tube-shaped, are not
estimated using n = 20. This is notably due to a lack of information at small scales in
the input images: the smallest motion structures are not necessary "visible" (detectable)
from particles displacement. Those small structures might need more elaborate, physically-
sound regularization terms to be recovered.

Fig. 8 shows the evolution of the computation time as a function of the number of

Figure 8: Experiments on the in�uen
e of the number of VM on the estimation 
omputing time, usingusual �lter banks (blue) or "smart" ones (red), for (L, C) = (6, 5) (solid line) and (6, 0) (dashed line).Estimated motions are almost the same, in terms of RMSE, for any number of VM n> 4, any of the two
ouples (L, C) and of 
ourse any of the �lter bank employed � the part of the graph lo
ated right of theverti
al bla
k line. Computation times are normalized w.r.t. optimum parameters, i.e., (L, C) = (6, 5),
n = 5 and smart �lter bank. This referen
e time 
orresponds to 9 se
onds. Using usual �lter banks,the 
omputational burden rapidly in
reases with the number of VM, espe
ially with low C (dashed blueline). This 
an be tempered by the use of smart �lter banks (dashed red) and/or by 
hoosing a highervalue for C (solid lines).
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VM n, for couples (L, C) = (6,5) and (6,0) and using either usual or "smart" filter banks
(Section 4.2). As already pointed out in Section 5.3-1, picking C = 5 instead of C = 0
results in a significative drop of the computational burden (∼ 60% decrease). Reducing
n by 1 has a much lower impact (∼ 5% decrease). The use of smart filter banks also
contributes to reduce the computational burden, from a ∼ 10% decrease at small VM up
to 50% for higher values.

5.5. Influence of the wavelet family

Several orthogonal wavelet families have been implemented for this study:

1. Daubechies wavelets, known for having the shortest compact support for a given
number of VM (less computations);

2. Coiflets, which feature a compact support as well as interpolating scaling functions;

3. Battle-Lemarié wavelets, polynomial splines with fast decay but no compact support.

Previous experiments used Daubechies wavelets, since filters are available for a wide range
of VM. Table 1 shows RMSE obtained using those three wavelet families, for (L, C) = (6,0)
and VM n= 2,4,6. The improvement brought by the use of more elaborate bases is some-
what negligible (≃ 2%), regarding especially the computation time which increases very
quickly due to much larger supports (e.g.,+55% with Battle-Lemarié instead of Daubechies
wavelets, n= 6 VM).Table 1: RMSE obtained using di�erent wavelet families, for n= 2, 4, 6 VM.

Family \ VM 2 4 6
Daubechies 0.11 0.091 0.090
Coiflets 0.096 0.091 0.089
Battle-Lemarié 0.092 0.088 0.088

5.6. Comparison to state-of-the-art

A total of 100 frames from both sequences of particle (Fig. 3(a)) and scalar advection-
diffusion (Fig. 3(c)) images have been processed. Fig. 9 compares results, in terms of
RMSE, of the proposed wavelet-based estimator using parameters n= 20 VM and (L, C) =

(6,5), (5,5) for particle and scalar images, respectively, to those of several state-of-the-art
estimators. Results are projected to the null-divergence space when necessary, in order to
compare all methods on the same basis; this applies as well to our estimator. Regarding
the particle image sequence, our algorithm clearly outperforms most of other estimators
and compete on par with [7] which use a far more complex self-similarity prior. How-
ever, results of the scalar advection images are worse than those obtained by any other
estimator, except the correlation-based method. Scalar advection pictures are much less
textured than particle ones, thus more difficult to process due to the aperture problem.
More elaborate regularization mechanisms, using for instance the aforementioned prior
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(b) scalarFigure 9: The two sequen
es introdu
ed in Se
tion 5.1 are pro
essed with parameters (L, C) = (6, 5) and
n = 20 for parti
les, (L, C) = (5, 5) and n = 5 for s
alar images. Results (in thi
k brown) are 
ompared,in terms of RMSE, to those of other estimators from state-of-the-art: 
orrelation (gray), �rst orderregularization [9℄ (green), div-
url regularization [16℄ (blue), multis
ale regularization [7℄ (purple). (a)shows parti
les images results, (b) 
on
erns passive s
alar adve
tion.
on self-similarity [7], on the power spectrum [6] or exact high-order regularization [10]
are required in order to obtain more acceptable estimates.

6. Results on real images

Performances of the algorithm are then assessed on actual PIV images, which were ac-
quired and kindly provided by D. Heitz and A. Guibert, from IRSTEA Rennes. The sequence
of 1024×1024 pixels frames depicts the classical case of a cylinder wake at Reynolds num-
ber Re = 3900. Configuration of the experiment and a sample frame subregion are shown
Fig. 10. The whole sequence has been processed; several estimated motions correspond-
ing to a single image pair are compared in Fig. 11. No ground truth is available here. In
order to highlight the differences between the different solutions, estimated motions are
compared on the basis of their vorticity. This differential quantity enlightens the structures
of the flow and also emphasizes its local variations. Several estimates with n = 10 VM
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(a) (b)Figure 10: Con�guration of the 
ylinder wake experiment (a); a 256×256 pixels subregion (1/16 of thetotal area) of a sample of PIV image (b).
(a) L = 5 (b) L = 6

(c) L = 7 (d) L = 8

(e) Order 2 smoothing (f) CorrelationsFigure 11: Vorti
ity 
omparison. Estimates (a), (b), (
), (d) are obtained with proposed estimator,varying parameter L. Motion (e) is obtained with a more evolved estimator featuring expli
it smoothingterms [10℄. Last estimate (f) is a referen
e given by the 
orrelation-based method.
and decreasing parameter L are presented, as well as an estimate obtained from a simi-
lar yet more elaborate wavelet-based estimator featuring explicit second-order smoothing
terms [10], and a last estimate given by correlations method. With L = 5 (Fig. 11(a)),
motion structures look too coarse when compared to the estimate with explicit smoothing
(Fig. 11(e)). However we can see this solution corresponds quite well to the motion pro-
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vided by the correlations technique (Fig. 11(f)), but with much more regularity. Setting
L = 6 enables to retrieve more structures than the correlations, yet structures still look too
coarse. Increasing further the number of estimated scales (L = 7, 8) enables to recover
some finer structures, however the vorticity now presents an increasing noisy aspect. It cor-
responds to local variations of the motion field that are consequences of poorly-estimated
fine scale coefficients, due to the ambiguities arising from the aperture problem. Conse-
quently, taking the vorticity aspect as a quality criterion, the use of an explicit smoothing
term (Fig. 11(e)) is mandatory in order to properly estimate finest scales. Here, the best
compromise with our simple estimator is probably L = 6. It is remarkable to note that this
estimate has exactly the same number of unknowns as the correlation results (Fig. 11(f)):
2× 4096, i.e., 0.4% of the total unknowns for a full fine-scale estimation. Yet structures
are better shaped and the whole vorticity field is not too noisy.

This sequence is made of 3072 frame pairs in total. Processing such a large amount of
data takes a long time, hence it might be advantageous to optimize parameter C prior to
start working on the whole sequence. How to proceed, when no ground truth is available?
Having fixed fine scale parameter L = 5, we may solve, for a single image pair, the optical
flow problem for every coarse scale parameter C ∈ [L; 0]. Then, we compare these various
solutions between each other. Under the hypothesis that there exists a range for parameter
C for which the solution is identical, the upper bound of this range gives as a rule of thumb
the optimal parameter in terms of computing time. Indeed, experiments on a single image
pair give identical estimates for C ∈ [0,3]. Hence C = 3 is the optimal parameter, since it
minimizes the number of steps and the cost of wavelet transforms: computing time drops
by 58% with respect to C = 0 solution.

7. Conclusions

We introduced an optical flow estimation algorithm based on the wavelet expansion of
the velocity field. The multiscale framework brought by the wavelet formalism enables to
design a simple multiscale motion estimation algorithm, without requiring to resort to the
standard incremental approach. A simple closure is provided by neglecting small scales
coefficients, the truncation error being independent of the number of vanishing moments.
The use of a gradient-based optimization method avoids the cumbersome computation of
the Hessian matrix, hence enabling to process large images up to relatively fine scales.
Evaluation of the gradient is done through forward wavelet transforms, the later being
optimized to reduce computations. The proposed method is evaluated on fluid flows image
sequences; it proves to be surprisingly efficient on particle images, but fails to process less
textured scalar-advection pictures. This algorithm is however generic enough and should
not be restricted to fluid flow images processing; it shall be well-adapted to estimation of
any kind of "relatively smooth" motions for which the small-scales truncation is relevant.
The main issue remains the choice of the truncation scale; a criterion could probably be
derived from the analysis of input image gradients. More complex estimators, allowing a
full estimation up to finer scales and featuring explicit high-order regularization schemes
based on wavelet coefficients properties, are being investigated [10].
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Appendix: Gain from smart filter banks

We consider filters h, g of length K and a current approximation a j at a given scale
j ≥ 0 (i.e., with 2 j × 2 j coefficients). Applying one step of the decomposition filter bank
requires 8K22( j−1) multiplications, using the factorized form:

1. for each of the 2 j rows:

• 2( j−1) convolutions with h̄;

• 2( j−1) convolutions with ḡ;

which give 4K22( j−1) multiplications;

2. for each of the 2× 2( j−1) columns:

• 2( j−1) convolutions with h̄;

• 2( j−1) convolutions with ḡ;

giving again 4K22( j−1) multiplications.

So that the grand total is 8K22( j−1) multiplications. For an input image of N = 2F × 2F

pixels, iteration of the filter bank to reach coarse scale C gives an upper bound of 8KN/3
operations. Then, by dropping computation of details d i

j :

1. for each of the 2 j rows:

• 2( j−1) convolutions with h̄;

which give 2K22( j−1) multiplications;

2. for each of the 2( j−1) columns left:

• 2( j−1) convolutions with h̄;

which give K22( j−1) multiplications;

then the total number of required multiplications drops down to 3K22( j−1), hence saving
62.5% of multiplications at each step involving useless details. A step of the reconstruction
filter bank to get a j from a j−1 (and eventually {d1

j−1, d2
j−1, d3

j−1}) requires the same amount
of operations for both cases.

In practice, several scales — at least 2 — of null coefficients are considered. These
coefficients of the 2 finest scales represent 87.5% of the total, therefore the overall decrease
in computation brought by the use of those detail-less filter banks is significant — Fig. 1.
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