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Abstract. Based on the Mindlin’s first-order shear deformation plate theory this paper
focuses on the free vibration behavior of functionally graded nanocomposite plates re-
inforced by aligned and straight single-walled carbon nanotubes (SWCNTs). The ma-
terial properties of simply supported functionally graded carbon nanotube-reinforced
(FGCNTR) plates are assumed to be graded in the thickness direction. The effective
material properties at a point are estimated by either the Eshelby-Mori-Tanaka ap-
proach or the extended rule of mixture. Two types of symmetric carbon nanotubes
(CNTs) volume fraction profiles are presented in this paper. The equations of motion
and related boundary conditions are derived using the Hamilton’s principle. A semi-
analytical solution composed of generalized differential quadrature (GDQ) method,
as an efficient and accurate numerical method, and series solution is adopted to solve
the equations of motions. The primary contribution of the present work is to provide
a comparative study of the natural frequencies obtained by extended rule of mixture
and Eshelby-Mori-Tanaka method. The detailed parametric studies are carried out to
study the influences various types of the CNTs volume fraction profiles, geometrical
parameters and CNTs volume fraction on the free vibration characteristics of FGCNTR
plates. The results reveal that the prediction methods of effective material properties
have an insignificant influence of the variation of the frequency parameters with the
plate aspect ratio and the CNTs volume fraction.
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1 Introduction

In recent years, nanotechnology has sparked a major breakthrough in materials science
leading to the next industrial revolution to begin. Nanostructured materials such as
graphene sheets (GSs), fullerenes and carbon nanotubes (CNTs) are fundamental build-
ing blocks of nanotechnology with wide potential applications in the emerging field of
nanoelectromechanical systems. Carbon nanotubes (CNTs) have attracted much atten-
tion because of their superior mechanical, optical, thermal and electrical properties and
potential applications of novel nanostructures [1–3]. Further development of CNT-based
devices requires a good understanding of their mechanical behavior. Basic mechanical
properties such as Young’s modulus, shear modulus, Poisson’s ratio and maximum ten-
sile and compressive strengths have been studied rigorously, a review of which is given
by Qian et al. [4]. Polymer composites consisting of polymers reinforced with various
additives such as carbon fibers, graphite fibers, glass fibers, or Kevlar fibers and carbon
black are increasingly being used in defense, aerospace, automobile, sports and electron-
ics sectors as light-weight, high strength and high electrical and thermal conducting ma-
terials [5–8]. However, the addition of nano-sized fibers or nanofillers, such as CNTs,
can further increase the merits of such composite materials. These nanocomposites, eas-
ily processed due to the small diameter of the carbon nanotubes (CNTs), exhibit unique
properties [9, 10], such as enhanced modulus and tensile strength, high thermal stabil-
ity and good environmental resistance. This behavior, combined with their low density
makes them suitable for a broad range of technological sectors such as telecommuni-
cations, electronics [11] and transport industries, especially for aeronautic and aerospace
applications where the reduction of weight is crucial in order to reduce the fuel consump-
tion. For example, Qian et al. [12] showed that the addition of 1wt.% (i.e., 1% by weight)
multiwall carbon nanotube to polystyrene resulted in 36-42% and ∼25% increases in the
elastic modulus and the break stress of the nanocomposite properties, respectively.

Motivated by the concept of functionally graded materials (FGMs), Shen [13] sug-
gested that for CNT-reinforced composite structures the distributions of CNTs within an
isotropic matrix were designed purposefully to grade with certain rules along desired
directions for the improvement of the mechanical properties of the structures and the
nonlinear bending behaviors of the resulting functionally graded CNT reinforced com-
posite (FG-CNTRC) plates in thermal environments were presented. With the knowl-
edge that load transfer between the nanotube and polymeric phases is less than perfect
(e.g., the surface effects, strain gradients effects, intermolecular coupled stress effects,
etc), Shen introduced the CNT efficiency parameters to account load transfer between
the nanotube and polymeric phases and other effects on the material properties of CN-
TRCs. They determined CNT efficiency parameters by matching the elastic modulus of
CNTRCs observed from the MD simulation results with the numerical results obtained
from the extended rule of mixture. Wang and Shen [14] investigated the large amplitude
vibration of nanocomposite sandwich plates reinforced by SWCNTs resting on an elastic
foundation in thermal environments. The effect of CNT volume fraction on the com-
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pressive postbuckling and thermal postbuckling behavior of functionally graded CN-
TRC plates was reported by Shen and Zhu [15] and Shen and Zhang [16]. They found
that in some cases the CNTRC plate with intermediate CNT volume fraction does not
have intermediate buckling temperature and initial thermal postbuckling strength. Ke
et al. [17] investigated the nonlinear free vibration of functionally graded CNTRC Tim-
oshenko beams. They found that both linear and nonlinear frequencies of functionally
graded CNTRC beam with symmetrical distribution of CNTs are higher than those of
beams with uniform or unsymmetrical distribution of CNTs. Yas and Heshmati [18] in-
vestigated vibrational characteristics of functionally graded nanocomposite beams rein-
forced by randomly oriented straight SWCNTs under the action of moving load. They
used the Eshelby-Mori-Tanaka approach based on an equivalent fiber to investigate the
material properties of the beam and also they used finite element method to discretize the
model and obtain a numerical approximation of the motion equation. Moradi-Dastjerdi
et al. [19] studied dynamic analysis of nanocomposite cylinders reinforced by single-
walled carbon nanotubes subjected to an impact load was carried out by a mesh-free
method. An axisymmetric model was used and volume fraction of CNT was assumed
to vary continuously along thickness direction. The effective material properties of func-
tionally graded carbon nanotube were estimated using extended rule of mixture. Very
recently, bending behavior of functionally graded carbon nanotube reinforced composite
plate embedded in thin piezoelectric layers subjected to mechanical uniform load based
on three-dimensional theory of elasticity was studied by Alibeigloo [20].

The main aim of this paper is to present free vibration analysis of the functionally
graded carbon nanotube-reinforced (FGCNTR) plates by making the use of the first-
order shear deformation theory (FSDT) and generalized differential quadrature (GDQ)
method. The FGCNTR plate is assumed to be made from a mixture of aligned and
straight SWCNT, graded distribution in the thickness direction, and matrix which is as-
sumed to be isotropic. This paper deals with harmonic oscillation of CNT-reinforced
plates, which presumes that the deflection amplitude is much smaller than the thickness
of a plate. The material properties of SWCNT are determined according to molecular dy-
namics (MD) and then the effective material properties of CNTRCs are estimated through
the rule of mixture in which the CNT efficiency parameters are introduced to account for
the scale-dependence of the resulting nanostructures. Furthermore, the material proper-
ties of SWCNT can be used to calculate the elastic properties of nanocomposites using
the Mori-Tanaka modified approach that utilizes Eshelby tensors. The primary contri-
bution of the present work is to provide a comparative study of the natural frequencies
obtained by extended rule of mixture and Eshelby-Mori-Tanaka method. Two types of
the symmetric carbon nanotubes (CNTs) volume fraction profiles are presented in this
paper. The effects of various types of the CNTs volume fraction profiles, geometrical
parameters and CNT s volume fraction on the free vibration characteristics of FGCNTR
plates are discussed in detail. The results for CNTRC plates with uniformly distributed
CNTs are also provided for comparison. The results of the parametric studies show that
the above mention effects play very important role on the free vibration behavior of the
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FGCNTR plates and it is believed that interesting and new results are presented for free
vibration characteristics of FGM nano-structure plates which are of interest to the scien-
tific and engineering community in the area of nano-structures.

2 Problem formulation

2.1 Geometrical configuration

A flat, nanocomposite rectangular plate of length a, width b and uniform thickness h,
made of functionally graded materials carbon nanotube-recinforced is depicted in Fig. 1.
The Cartesian coordinate system (x,y,z) is considered to extract mathematical formula-
tions when x and y axes are located in the undeformed midplane of the plate.

Figure 1: Configuration of an FGCNTR rectangular plate.

2.2 Material properties of FGCNTR

We assume that the FGCNTR plate is made from a mixture of aligned and straight
SWCNT, graded distribution in the thickness direction, and matrix which is assumed
to be isotropic. In this paper, for the first time, two types of symmetric profiles for CNTs
volume fractions are configurated. As can be seen from Fig. 2, for the first type, a mid-
plane symmetric graded distribution of CNT reinforcements is achieved and both top
and bottom surfaces are CNT-rich referred to as Type I FGCNTR. For the second type,
the distribution of CNT reinforcements is inversed and both top and bottom surfaces are
CNT-poor, whereas the mid-plane surface is CNT-rich, referred to as Type II FGCNTR.
We assume the CNTs volume fraction for Type I FGCNTR follows as:

VCN =
4|z|

h
V∗CN , (2.1)

in which

V∗CN =
wCN

wCN+(ρCN/ρm)−(ρCN/ρm)wCN
.
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(a) (b)

Figure 2: Configurations of FGCNTR ((a): Type I FGCNTR, (b): Type II FGCNTR).

Where wCN is the mass fraction of nanotube [13, 14] and ρCN and ρm are the densities of
CNT and matrix, respectively. The CNTs volume fraction for Type II FGCNTR follows
as:

VCN =4
(

0.5− |z|
h

)

VCN
∗. (2.2)

Note that VCN =V∗CN corresponds to the uniformly distributed CNTR plate, referred to
as UDCNTR. It should be mentioned that these two FGCNTR plates and the UDCNTR
plate have the same CNT mass fraction. The Poisson’s ratio is assumed to be uniformly
distributed [14, 15]:

υ12=V∗CNυ12
CN+Vmυm, (2.3)

where υ12
CN and υm are Poisson’s ratios of CNT and matrix, respectively. For the imple-

mentation of CNTRCs in structural applications, property-microstructure relations are
required in the form of micromechanics models.

2.2.1 Extended rule of mixture

According to the extended rule of mixture, the effective Young’s modulus and shear mod-
ulus of FGCNTR are expressed by the following relations [13–17]:

E11=η1VCNECN
11 +VmEm,

η2

E22
=

VCN

ECN
22

+
Vm

Em
,

η3

G12
=

VCN

GCN
12

+
Vm

Gm
, (2.4)

where ECN
11 , ECN

22 and GCN
12 are the Young’s and shear moduli of the CNTs, Em and Gm are

the corresponding properties for the matrix, and the ηi (i=1,2,3) are the CNT efficiency
parameters, respectively. With the knowledge that load transfer between the nanotube
and polymeric phases is less than perfect (e.g., the surface effects, strain gradients effects,
intermolecular coupled stress effects, etc), Shen et al. [13] introduced the CNT efficiency
parameters to account load transfer between the nanotube and polymeric phases and
other effects on the material properties of CNTRCs. They determined CNT efficiency pa-
rameters by matching the elastic modulus of CNTRCs observed from the MD simulation
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results with the numerical results obtained from the extended rule of mixture. VCN and
Vm are the carbon nanotube and matrix volume fractions and are related by:

VCN+Vm=1. (2.5)

2.2.2 Eshelby-Mori-Tanaka approach

The material properties of SWCNT obtained by molecular dynamics (MD) can be used
to calculate the elastic properties of nanocomposites using the Mori-Tanaka modified
approach that utilizes Eshelby tensors. Previous studies have examined the validity
of the Eshelby-Mori-Tanaka approach in determining the effective properties of com-
posites reinforced with misaligned, carbon fibres, and with carbon nanotubes [21–24].
For instance, Odegard et al. [21] developed constitutive models for SWNT-reinforced
polymer composite materials based on the equivalent continuum modeling technique
for nano-structured materials. It was proposed that the nanotube, the local polymer
near the nanotube, and the nanotube/polymer interface can be modeled as an effec-
tive continuum fiber by using an equivalent-continuum modeling method. They em-
ployed the Eshelby-Mori-Tanaka approach to determine the bulk constitutive properties
of the SWNT/polymer composite with aligned and random nanotube orientations and
with various nanotube lengths and volume fractions. In addition, predicted values of
modulus were compared with experimental data obtained from mechanical testing. As
another example, Shady and Gowayed [24] modified the effective fiber model used to
calculate the elastic properties of nanocomposites in order to include the effect of the
curvature of nanotubes. They used the effective fiber model to calculate the elastic prop-
erties of nanocomposites using the Eshelby-Mori-Tanaka. In the present paper, the pro-
posed model is framed within the Eshelby theory for elastic inclusions. The original
theory of Eshelby [25–27] is restricted to one single inclusion in a semi-infinite elastic, ho-
mogeneous and isotropic medium. The theory, generalized by Mori-Tanaka [28], allows
extending the original approach to the practical case of multiple inhomogeneities embed-
ded into a finite domain. The Eshelby-Mori-Tanaka approach, based on the equivalent
elastic inclusion idea of Eshelby and the concept of average stress in the matrix due to
Mori-Tanaka, is also known as the equivalent inclusion-average stress method [29, 30].
According to Benveniste’s revision [31], the following expression of the effective elastic
tensor is obtained:

C=Cm+VCN

〈

(C f−Cm)·A
〉

·
[

VmI+VCN

〈

A
〉]−1

, (2.6)

where VCN and Vm are the fiber and matrix volume fractions, respectively, I represents
the fourth-order unit tensor, Cm is the stiffness tensor of the matrix material, C f is the
stiffness tensor of the equivalent fiber, the brackets denote an average overall possible
orientations of the inclusions. It should be noted that (·) denotes the dot product. A is
the fourth-order tensor referred to as concentration factor:

A=
[

I+S·Cm
−1 ·

(

C f−Cm

)]−1
. (2.7)
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Figure 3: Representative volume element (RVE) including straight CNTs.

The tensor S is Eshelby’s tensor, as given by Eshelby [25] and Mura [31]. The terms
included in angle brackets in Eq. (2.6) represent the average value of the term over all
orientations defined by transformation from the local fiber coordinates (o−x′1x′2x′3) to
the global coordinates (o−x1x2x3) (Fig. 3).

In this paper, we consider a polymer composite reinforced with straight CNTs aligned
in the x2-axis direction. The matrix is assumed to be elastic and isotropic, with Young’s
modulus Em and Poisson’s ratio νm [29,30]. Each straight CNT is modeled as a fiber with
transversely isotropic elastic properties. Therefore, the composite is also transversely
isotropic. The substitution of non-vanishing components of the Eshelby tensor S for a
straight, long fiber along the x2-direction [30] in Eq. (2.7) gives the dilute mechanical
strain concentration tensor. Then the substitution of A (Eq. (2.7)) into Eq. (2.6) gives the
tensor of effective elastic moduli of the composite reinforced by aligned, straight CNTs.
In particular, the Hill’s elastic moduli are found as:

k=
Em{EmVm+2kr(1+νm)[1+VCN(1−2νm)]}

2(1+νm)[Em(1+VCN−2νm)+2Vmkr(1−νm−2ν2
m)]

, (2.8a)

l=
Em{νmVm[Em+2kr(1+νm)]+2VCN rkr(1−ν2

m)}
(1+νm)[Em(1+VCN−2νm)+2Vmkr(1−νm−2ν2

m)]
, (2.8b)

n=
E2

mVm(1+VCN−Vmνm)+2VmVCN(krnr−l2
r )(1+νm)

2(1−2νm)

(1+νm)[Em(1+VCN−2νm)+2Vmkr(1−νm−2ν2
m)]

+
Em[2V2

mkr(1−νm)+VCNnr(1+VCN−2νm)−4Vmlrνm]

Em(1+VCN−2νm)+2Vmkr(1−νm−2ν2
m)

, (2.8c)

p=
Em[EmVm+2pr(1+νm)(1+VCN)]

2(1+νm)[Em(1+VCN)+2Vm pr(1+νm)]
, (2.8d)

ξ=
Em[EmVm+2mr(1+νm)(3+VCN−4νm)]

2(1+νm){Em[Vm+4VCN(1−νm)]+2Vmmr(3−νm−4ν2
m)}

, (2.8e)

where ξ, l, m, n and p are Hill’s elastic moduli of the composite; ξ is the plane-strain
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bulk modulus normal to the fiber direction, n is the uniaxial tension modulus in the
fiber direction, l is the associated cross modulus, m and p are the shear moduli in planes
normal and parallel to the fiber direction, respectively. kr, lr, mr, nr and pr are the Hill’s
elastic moduli for the reinforcing phase (CNTs) [32]. The elastic moduli parallel and
normal to CNTs are related to Hill’s elastic moduli by

EL =n− l2

ξ
, ET =

4m(ξn−l2)

ξn−l2+mn
, GLT =2p, vLT =

l

2ξ
. (2.9)

2.3 Constitutive relations

According to the based on the first-order shear deformation theory of Mindlin [33–35],
in which the in-plane displacements are expanded as linear functions of the thickness
coordinate and the transverse deflection is constant through the plate thickness, the dis-
placement components of the middle surface of the rectangular plate along the x, y, and
z axes, designated by u, v and w, may be expressed as:

u(x,y,z,t)=u0(x,y,t)+zϕx(x,y,t), (2.10a)

v(x,y,z,t)=v0(x,y,t)+zϕy(x,y,t), (2.10b)

w(x,y,z,t)=w0(x,y,t), (2.10c)

where u0 and v0 denote the in-plane displacements on mid-plane in x- and y- directions,
respectively; w0 is the transverse displacement; ϕx and ϕy are the rotational displace-
ments about the x and y axes at the middle surface of the plate and t is the time.

By neglecting normal strain in the thickness direction εzz in the stress-strain relations,
the general strain-displacement relations for small deformation are defined as:

εxx =u,x, εyy=v,y, γxy=u,y+v,x, γyz=v,z+w,y, γxz=u,z+w,x, (2.11)

where ε and γ denote the normal and shear strains, respectively. Here, the symbol ”,”
is used to indicate the partial derivative. For example, v,y is equivalent to ∂v/∂y. By
substituting the Eq. (2.10) into Eq. (2.11), the strain-displacement relations are derived:

{ε ij}={ε0
ij}+z{ε1

ij}, i, j= x,y,z, (2.12)

where
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The constitutive relation for an FGCNTR plate is consequently given by the two-
dimensional Hooke’s law as:
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. (2.14)

In which the Qij components are expressed as:

Q11=
E11

1−υ12
2

, Q12=
υE22

1−υ12
2
=

υE11

1−υ12
2

, Q22=
E22

1−υ12
2

, (2.15a)

Q55=G13, Q44=G23, Q66=G12, (2.15b)

where Eii, Gij and υ are Young’s modulus, shear moduli and Poisson’s ratio of the FGC-
NTR plate, respectively. The stress resultant-displacement relations are given by:

(Ni,Mi)=
∫ h

2

− h
2

σi(1,z)dz, i= xx,yy,xy, (2.16a)

Qi= k
∫ h

2

− h
2

σizdz, i= x,y, (2.16b)

in which k is the transverse shear correction coefficient, applied to the transverse shear
forces due to the fact that the transverse shear strains (γxz and γyz) have a nearly
parabolic dependency to the thickness coordinate and in this study is taken as k= 5/6.
Substituting Eqs. (2.12) and (2.13) into Eq. (2.14) and then into Eqs. (2.16a) and (2.16b)
gives the forces and the resultant moments (Nij and Mij) and the transverse shear forces
(Qi) per unit length as follows:

Nxx =
1

1−ν12
2

[

(E1a+E1d)(ε
0
xx+ν21ε0

yy)+(E1b+E1e)(ε
1
xx+ν12ε1

yy)
]

, (2.17a)

Nyy=
1

1−ν12
2

[

(E2a+E2d)(ε
0
yy+ν12ε0

xx)+(E2b+E2e)(ε
1
yy+ν12ε1

xx)
]

, (2.17b)

Nxy=(G12a+G12d)γ
0
xy+(G12b+G12e)γ

1
xy, (2.17c)

Mxx=
1

1−ν12
2

[

(E1b+E1e)(ε
0
xx+ν12ε0

yy)+(E1c+E1 f )(ε
1
xx+ν12ε1

yy)
]

, (2.17d)

Myy=
1

1−ν12
2

[

(E2b+E2e)(ε
0
yy+ν12ε0

xx)+(E2c+E2 f )(ε
1
yy+ν12ε1

xx)
]

, (2.17e)

Mxy=(G12b+G12e)γ
0
xy+(G12c+G12 f )γ

1
xy, (2.17f)

Qx = k(G12a+G12d)γ
0
xz, Qy= k(G12a+G12d)γ

0
yz, (2.17g)
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where coefficients Eij, G12i are as follows:

(E1a,E1b,E1c)=
∫ 0

− h
2

E11(1,z,z2)dz, (E1d,E1e,E1 f )=
∫ h

2

0
E11(1,z,z2)dz, (2.18a)

(E2a,E2b,E2c)=
∫ 0

− h
2

E22(1,z,z2)dz, (E2d,E2e,E2 f )=
∫ h

2

0
E22(1,z,z2)dz, (2.18b)

(G12a,G12b,G12c)=
∫ 0

− h
2

G12(1,z,z2)dz, (G12d,G12e,G12 f )=
∫ h

2

0
G12(1,z,z2)dz. (2.18c)

2.4 Equations of motion

Herein, Hamilton’s principle is used to derive equations of motion based on the FSDT.
The principle can be stated as follows:

∫ t2

t1

(δKe−δPe)dt=0, (2.19)

where

δKe=
∫

Ω0

{

∫ h
2

− h
2

ρ[(u̇0+zϕ̇x)(δu̇0+zδϕ̇x)+(v̇0+zϕ̇y)(δv̇0+zδϕ̇y)

+ẇ0δẇ0]dz
}

dxdy, (2.20a)

δPe=
∫

Ω0

{

∫ h
2

− h
2

[

σxx(δε
(0)
xx +zδε

(1)
xx )+σyy(δε

(0)
yy +zδε

(1)
yy )+σxy(δγ

(0)
xy +zδγ

(1)
xy )

+σxzδγ
(0)
xz +σyzδγ

(0)
yz

]

dz
}

dxdy, (2.20b)

where Ke is the kinetic energy of the plate and Pe is the elastic potential energy of the FGC-
NTR plate. Simplifying Eqs. (2.20a) and (2.20b) and inserting the results into Eq. (2.19)
and performing the integrations by parts in Hamilton’s equation (2.19), one obtains

Nxx,x+Nxy,y= I0ü0+ I1 ϕ̈x, Nxy,x+Nyy,y= I0v̈0+ I1 ϕ̈y, Qx,x+Qy,y= I0ẅ0, (2.21a)

Mxx,x+Mxy,y−Qx = I1ü0+ I2 ϕ̈x, Nxy,x+Nyy,y−Qy= I1v̈0+ I2 ϕ̈y, (2.21b)

where

Ii=
∫ h

2

− h
2

(z)iρ(z)dz, i=0,1,2. (2.22)

For a simply supported FGCNTR rectangular plate, the boundary conditions can be ex-
pressed on the x-constant and y-constant edges as

v0=w0=Nxx =Mxx= ϕy=0 at x=0,a, (2.23a)

u0=w0=Nyy =Myy= ϕx=0 at y=0,b. (2.23b)
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This paper deals with harmonic oscillation of CNT-reinforced plates, which presumes
that the deflection amplitude is much smaller than the thickness of a plate. For free
harmonic vibration, the Fourier expansion form of the displacement components in the
x direction which satisfy the geometric boundary conditions at y=0, b can be written as:

u0(x,y,t)=Un(x)sin
(nπ

b
y
)

e−iωt, v0(x,y,t)=Vn(x)cos
(nπ

b
y
)

e−iωt, (2.24a)

w0(x,y,t)=Wn(x)sin
(nπ

b
y
)

e−iωt, ϕx(x,y,t)=Xn(x)sin
(nπ

b
y
)

e−iωt, (2.24b)

ϕy(x,y,t)=Yn(x)cos
(nπ

b
y
)

e−iωt, (2.24c)

where n is the wave number along the y- direction, ω is the natural frequency of the
vibration and i (=

√
−1) is the imaginary number.

3 GDQ discretized form of the equations of motion

Discretization is based on the generalized differential quadrature method (GDQ) [36–38].
According to GDQ method the rth-order partial derivative of a continuous function f (ζ)
with respect to ζ at a given point ζi can be approximated as a linear sum of weighted
function values at all of the discrete points in the domain of ζ, i.e., [36]

∂r f (ζi)

∂ζr
=

N

∑
k=1

c
(r)
ik f (ζk), i=1,··· ,N, r=1,··· ,N−1, (3.1)

where N is the number of sampling points in the axial direction, f (ζk) represents the

functional value at a sample point ζk and c
(r)
ik are the weighting coefficients of the rth-

order derivative. The weighting coefficients for the first derivative (i.e., r=1) are [36]

c
(1)
ij =























M(1)(xi)

(xi−xj)M(1)(xj)
, i 6= j, i, j=1,2,··· ,N,

−
N

∑
j=1, i 6=j

c
(1)
ij , i= j, i=1,2,··· ,N,

(3.2)

where

M(xi)=
N

∏
j=1, i 6=j

(xi−xj). (3.3)

For higher-order derivatives

c
(1)
ij =























r
[

c
(r−1)
ii c

(1)
ij −

c
(r−1)
ij

(xi−xj)

]

, i 6= j, i, j=1,2,··· ,N, r=2,3,··· ,N−1,

−
N

∑
j=1, i 6=j

c
(r)
ij , i= j, i=1,2,··· ,N.

(3.4)
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After substituting Eq. (2.24) into Eq. (2.21), the partial differential equations in terms of
the variables x, y and t reduces to ordinary differential equations in terms of the vari-
able x and by application GDQ discretization rule (3.1) for spatial derivatives, the dis-
cretized form of the differential equations of motion at each domain grid point xi with
(i=2,3,··· ,Nx−1) can be obtained as:

1

1−ν12
2

[

(E1a+E1d)
( Nx

∑
k=1

c(2)
ik

Unk−
nπ

b
ν12

Nx

∑
k=1

c(1)
ik

Vnk

)

+(E1b+E1e)
( Nx

∑
k=1

c(2)
ik

Xnk

− nπ

b
ν12

Nx

∑
k=1

c(1)
ik

Ynk

)

]

+(G12a+G12d)
(

−
(nπ

b

)2
Uni−

nπ

b

Nx

∑
k=1

c(1)
ik

Vnk

)

+(G12b+G12e)
(

−
(nπ

b

)2
Xni−

nπ

b

Nx

∑
k=1

c(1)
ik

Ynk

)

=(ρa+ρd)ω
2Uni+(ρb+ρe)ω

2Xni, (3.5a)

1

1−ν12
2

[

(E2a+E2d)
(

−
(nπ

b

)2
Vni+

nπ

b
ν12

Nx

∑
k=1

c(1)
ik

Unk

)

+(E2b+E2e)
(

−
(nπ

b

)2
Yni

+
nπ

b
ν12

Nx

∑
k=1

c(1)
ik

Xnk

)

]

+(G12a+G12d)
(nπ

b

Nx

∑
k=1

c(1)
ik

Unk+
Nx

∑
k=1

c(2)
ik

Vnk

)

+(G12b+G12e)
(nπ

b

Nx

∑
k=1

c(1)
ik

Xnk+
Nx

∑
k=1

c(2)
ik

Ynk

)

=(ρa+ρd)ω
2Vni+(ρb+ρe)ω

2Yni, (3.5b)

k(G12a+G12d)
( Nx

∑
k=1

c(2)
ik

Wnk+
Nx

∑
k=1

c(1)
ik

Xnk

)

+k(G12a+G12d)
(

−
(nπ

b

)2
Wni−

(nπ

b

)

Yni

)

=(ρa+ρd)ω
2Wni, (3.5c)

1

1−ν12
2

[

(E1b+E1e)
( Nx

∑
k=1

c(2)
ik

Unk−
nπ

b
ν12

Nx

∑
k=1

c(1)
ik

Vnk

)

+(E1c+E1 f )
( Nx

∑
k=1

c(2)
ik

Xnk

−
(nπ

b

)

ν12

Nx

∑
k=1

cik
(1)Ynk

)

]

+(G12b+G12e)
(

−
(nπ

b

)2
Uni−

nπ

b

Nx

∑
k=1

c(1)
ik

Vnk

)

+(G12c+G12 f )
((nπ

b

)2
Xni−

nπ

b

Nx

∑
k=1

c(1)
ik

Ynk

)

−k(G12a+G12d)
( Nx

∑
k=1

c(1)
ik

Wnk+Xni

)

=(ρb+ρe)ω
2Uni+(ρc+ρ f )ω

2Xni, (3.5d)
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1

1−ν12
2

[

(E2b+E2e)
(

−
(nπ

b

)2
Vni+ν12

nπ

b

Nx

∑
k=1

c(1)
ik

Unk

)

+(E2c+E2 f )
(

−
(nπ

b

)2
Yni

+ν12
nπ

b

Nx

∑
k=1

c(1)
ik

Xnk

)

]

+(G12b+G12e)
(nπ

b

Nx

∑
k=1

c(1)
ik

Unk+
Nx

∑
k=1

c(2)
ik

Vnk

)

+(G12c+G12 f )
(nπ

b

Nx

∑
k=1

c(1)
ik

Xnk+
Nx

∑
k=1

c(2)
ik

Ynk

)

−k(G12a+G12d)
(

− nπ

b
Wni+Yni

)

=(ρb+ρe)ω
2Vni+(ρc+ρ f )ω

2Yni, (3.5e)

where

(ρa,ρb,ρc)=
∫ 0

− h
2

ρ(1,z,z2)dz, (ρd,ρe,ρ f )=
∫ h

2

0
ρ(1,z,z2)dz. (3.6)

In Eqs. (3.5a)-(3.5e), c
(1)
ik and c

(2)
ik are the weighting coefficients of the first and second

order derivatives. In a similar manner, at each boundary grid points, the boundary con-
ditions (2.23a) are discretized.

Rearranging the GDQ analogs of field equations and boundary conditions within the
framework of a generalized eigenvalue problem yields [40]

[

[Kdd] [Kdb]
[Kbd] [Kbb]

]{

δd

δb

}

=

{{ω2}[M]{δd}
{0}

}

, (3.7)

in which the subscripts b and d refer to the boundary and domain grid points, respec-
tively. [Kdd], [Kdb], [Kbd] and [Kbb] are the stiffness matrices. The matrix [M] corresponds
to inertia terms. The displacement vectors δd and δb are defined by:

{δd}=
[

{Γ(1)
d } {Γ

(2)
d } ··· {Γ

(N)
d }

]T
, {Γ(i)

d }=
[

U(i)
d

Y(i)
d

W(i)
d

X(i)
d

Y(i)
d

]T
(3.8)

with i=1,2,··· ,Nx and

{δb}=
[

{Γ(1)
b } {Γ

(2)
b } ··· {Γ

(N)
b }

]T
, {Γ(i)

b }=
[

U
(i)
b Y(i)

b
W(i)

b
X

(i)
b Y(i)

b

]T
(3.9)

with i=1,2,··· ,Nx.

Eliminating the boundary degrees of freedom [40, 41], Eq. (3.7) can be recast into the
standard form of:

[M]−1[Kdd]−[Kdb][Kbb]
−1[Kbd]{δd}−ω2[I]{δd}=0, (3.10)

where [I] is identity matrix. The above eigenvalue system of equations can be solved to
find the natural frequencies of the FGCNTR rectangular plate.
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4 Numerical results and discussions

4.1 Comparison study and convergence behavior

In order to validate the presented approach and to examine its computational efficiency,
its convergence and accuracy is demonstrated via different examples. As a first example
to validate the presented formulations, the obtained natural frequencies of an isotropic
plate based on the presented method are compared with the FSDT with and without
rotary inertia by Reddy [39] in Table 1. The results are prepared for different values of
the length to thickness ratio. From this table, one could observe that the present GDQ
results for the isotropic square plate are in good agreement with those of FSDT with
rotary inertia. The difference between without rotary inertia and present results increases
as a/h is decreased. This is due to the fact that the transverse shear and rotary inertia will
have more effect on a thicker plate.

As another attempt to validate the presented formulations, in Table 2 the first three
non-dimensional natural frequency parameters of the FGM plate are compared with
those of 3-D elasticity theory of Yas and Sobhani Aragh [40] and 2-D higher order the-
ory of Matsunaga [41]. The fast rate of convergence of the method is evident. It should

Table 1: Comparison of the fundamental natural frequencies of an isotropic square plate.

a/h
100 50 20 10

FSDT- with rotary inertia [39] 5.883 5.877 5.835 5.694

FSDT- without rotary inertia [39] 5.883 5.879 5.847 5.736

Present 5.8831 5.8770 5.8351 5.6939

Table 2: Convergence behavior and accuracy of the non-dimensional natural frequency parameters of simply
supported FGM plate against the number of GDQ grid points (b/h=2).

Mode(n,l)

p (1,1) (1,0) (2,0) (1,2)
0 Nx =5 0.55727 0.94006 1.5093 1.7408

Nx =7 0.55723 0.94004 1.5092 1.7407

Nx =9 0.55722 0.94003 1.5091 1.7406

Nx =13 0.55722 0.94003 1.5091 1.7406

3-D Elasticity [40] 0.55724 0.94004 1.5089 1.7406

2-D higher order theory [41] 0.5572 0.94 1.509 1.7406

1 Nx =5 0.43759 0.74780 1.2166 1.4081

Nx =7 0.43758 0.74779 1.2164 1.4077

Nx =9 0.43757 0.74778 1.2162 1.4076

Nx =13 0.43757 0.74778 1.2162 1.4076

3-D Elasticity [40] 0.43739 0.74751 1.2160 1.4074

2-D higher order theory [41] 0.4375 0.7477 1.2163 1.4078
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be mentioned that only nine GDQ grid points in the x direction is sufficient to obtain
results with sufficient accuracy.

4.2 Parametric studies

In this section, new numerical results for the free vibration analysis of rectangular
Mindlin nanocomposite plates reinforced by single-walled CNT are presented. Poly
(methyl methacrylate), referred to as PMMA, is selected for the matrix, and the mate-
rial properties of which are assumed to be ρm = 1.15g/cm3, vm = 0.34, Em = 2.5GPa at
room temperature (300K) [13, 14]. The (10,10) SWCNTs are selected as reinforcements.
The key issue for successful application of the extended rule of mixture to CNTRCs is
to determine the CNT efficiency parameter ηi. There are no experiments conducted to
determine the value of ηi for CNTRCs. Shen [13, 14] determined the CNT efficiency pa-
rameters η1, η2 and η3 by matching the Young’s moduli E11 and E22 and shear modulus
G12 of CNTRCs predicted from the extended rule of mixture to those from the MD simu-
lations given by Han and Elliott [42]. For example, η1=0.137, η2=1.022 and η3=0.715 for
the case of V∗CN =0.12 and η1 =0.142, η2 =1.626 and η3 =1.138 for the case of V∗CN =0.17
and η1 = 0.141, η2 = 1.585 and η3 = 1.109 for the case of V∗CN = 0.28. These values will
be used in all the following examples, in which taking η3 : η2 = 0.7 : 1 and G13 =G12 and
G23=1.2G12 [14]. In this paper, natural frequencies of the FGCNTR plate are obtained and
considered to be dimensionless as Ωnl =ωnlh

√

ρm/Em (called the frequency parameter).

4.2.1 Effect of profiles of CNTs volume fractions on frequency parameters

Fig. 4 shows the first three frequency parameters versus thickness to length ratio h/a
with different profiles of CNTs volume fractions and various types of CNT volume frac-
tion profiles. It can be seen that the plates with Type I FGCNTR and Type II FGCNTR
have highest and lowest frequency parameter, respectively. This means that the FGCNTR
plates with symmetric profiles of the CNTs volume fraction can likely be designed accord-
ing to the actual requirement and it is a potential alternative to the CNTRc plates with
uniformly distributed CNTs. Moreover, with increasing wave number n, the discrep-
ancies between the frequency parameters of the various types of CNTs volume fraction
profiles become lower.

4.2.2 Influence of geometrical parameters on frequency parameters

Fig. 5 depicts the effect of thickness to length ratio on the fundamental frequency param-
eter of the FGCNTR plate for different values of b/a ratio with V∗CN = 0.12. The results
in Fig. 5 indicate that the fundamental frequency parameter increases with the increas-
ing values of the h/a ratio. Fundamental frequency parameter ratio of the CNTRc plate
for various h/a and b/a ratio is calculated and plotted in Fig. 6. It is worthy to men-
tion that frequency parameter ratio decreases rapidly with the increase of the b/a ratio
for different values of the h/a ratio and then approach a constant value for higher b/a
ratio. It is interesting to note that the effect of the h/a ratio on the Type II FGCNRT to
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0.12 0.28 (a b

0.12 0.28 (a b

Figure 4: Variation of the frequency pa-
rameters versus thickness to length ra-
tio with different profiles of CNTs volume
fractions (- - - - - V∗

C N
=0.12, −·−·−V∗CN=

0.28) (a/b=1).

b a 0.12)

FG UD

Figure 5: Effect of thickness to length on the fundamental frequency parameter of the FGCNTR plate for
different values of b/a ratio (V∗CN =0.12).

UDCNRT frequency parameter ratio is more significant than that of the Type I FGCNRT
to UDCNRT frequency parameter ratio. Also it is seen that the discrepancies between the
frequency parameters of the Type I FGCNRT and UDCNTR are lower than those of Type
II FGCNRT and UDCNTR.
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FG UD
h a

Figure 6: Variation of the ΩFG
11

/ΩUD
11

ratio versus width to length ratio with for various h/a ratio (→← Type
I FGCNTR to UDCNTR frequency parameter ratio, −⋄− Type II FGCNTR to UDCNTR frequency parameter
ratio).

4.2.3 Influence of wave number n on frequency parameters

Fig. 7 shows the variation of the Type I FGCNTR to UDCNTR frequency parameter ratio
with wave number n for different values of h/a ratio. It can be seen that Type I FGCNTR
to UDCNTR frequency parameter ratio decreases rapidly as the wave number n and h/a
ratio increases. The influence of CNTs volume fraction on the frequency parameter of the
Type II FGCNTR plate for various wave number n and b/a ratio is shown in Fig. 8. From
this figure it is apparent that the effect of the CNTs volume fraction is more prominent
at high wave number n. In Fig. 9, the variation of the Type II FGCNTR to UDCNTR
frequency parameter ratio with wave number n for various b/a ratios is shown. It is
worthwhile to mention that with decrease in the b/a ratio, frequency parameter of the
FGCNTR plates are very close to those of UDCNTR plates.

h a 0.75)

0.5 1b a 2b a

Figure 7: Variation of the Type I FGCNTR to UDCNTR frequency parameter ratio with wave number n for
different values of h/a ratio (b/a=0.75).
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0.5 1b a 2b a

Figure 8: Influence of CNTs volume fraction on the frequency parameter of the Type II FGCNTR plate for
various wave number n (→← b/a=0.5, −⋄− b/a=1, −◦− b/a=2).

b a 0.05)

b a 0.1)(

Figure 9: The Type II FGCNTR to UDCNTR frequency parameter ratio of the CNTR plate for different values
of b/a ratio and wave number n (h/a=0.05).

4.2.4 Effect of the CNTs volume fraction on frequency parameter

The effect of the CNTs volume fraction V∗CN on the frequency parameter of the FGCNTR
plate for various b/a ratio is shown in Fig. 10. It is found that the frequency parameter of
the FGCNTR plate is increased with increase in CNTs volume fraction. It should be noted
that the frequency parameter decreases rapidly with the increase of the b/a ratio and
then remains almost unaltered for b/a> 0.5. The effect of b/a ratio on the fundamental
frequency parameter of the Type I FGCNTR plate for various CNTs volume fraction is
presented in Fig. 11. It can be concluded that the influence of the CNTs volume fraction on
the fundamental frequency parameter of the Type I FGCNTR plate is generally significant
at low b/a ratio.
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b a 0.1)(

Figure 10: Effect of CNTs volume fraction on the frequency parameter of the FGCNTR plate for various b/a
ratio (h/a=0.1).

b a

0.5 0.75

b a

0.5 0.75

b a

0.5 0.75

Figure 11: Effect of b/a ratio on the fun-
damental frequency parameter of the Type
I FGCNTR plate for various CNTs volume
fraction ((a): b/a= 0.5, (b): b/a= 0.75,
(c): b/a=1).

4.2.5 Impact of prediction models of material properties on frequency parameter

In order to investigate the prediction methods of the mechanical properties of nanocom-
posites, the frequency parameters obtained from extended rule of mixture are compared



S. J. Mehrabadi, B. Sobhaniaragh and V. Pourdonya / Adv. Appl. Math. Mech., 5 (2013), pp. 90-112 109

Table 3: Non-dimensional natural frequency parameters of nanocomposite square plate with prediction methods
of the mechanical properties of nanocomposites.

Extended rule of mixture Eshelby-Mori-Tanaka approach

V∗CN h/a Type I UD Type II Type I UD Type II

0.12

0.01 0.002168 0.001797 0.001321 0.002157 0.001770 0.001304

0.05 0.046574 0.040326 0.031155 0.046316 0.040160 0.030945

0.1 0.138998 0.127824 0.107776 0.138154 0.124965 0.106101

0.15 0.239550 0.227818 0.204612 0.237812 0.224701 0.202019

0.2 0.342507 0.331268 0.309019 0.340802 0.330018 0.307549

0.17

0.01 0.002536 0.002095 0.001526 0.002522 0.002073 0.001507

0.05 0.052363 0.045605 0.035409 0.052259 0.045468 0.035198

0.1 0.149456 0.138447 0.118676 0.147904 0.136195 0.115931

0.15 0.252229 0.240654 0.219649 0.250821 0.389605 0.218164

0.2 0.357232 0.345423 0.326300 0.355096 0.342901 0.325134

0.28

0.01 0.003179 0.002616 0.001890 0.003155 0.002601 0.001838

0.05 0.062227 0.05432 0.042818 0.062079 0.054134 0.042256

0.1 0.168995 0.155834 0.137657 0.166601 0.153361 0.133259

0.15 0.279679 0.263376 0.247275 0.277491 0.261496 0.243801

0.2 0.393079 0.373005 0.360713 0.391132 0.369814 0.358924

in Tables 3 and 4 with those of Eshelby-Mori-Tanaka method for various types of CNT
volume fraction profiles and different values of h/a and b/a ratio. It can be concluded
from Tables 3 and 4 that prediction methods of effective material properties have an in-
significant influence of the variation of the frequency parameters with h/a and b/a ratio.
It should be noted that the extended rule of mixture has higher frequency parameter than
that of the Eshelby-Mori-Tanaka approach.

5 Conclusion remarks

Based on the first-order shear deformation theory (FSDT) and generalized differential
quadrature (GDQ), a comprehensive study of the free vibration analysis of the simply
supported functionally graded carbon nanotube-reinforced (FGCNTR) plates was inves-
tigated. The FGCNTR plate was assumed to be made from a mixture of aligned and
straight SWCNT, graded distribution in the thickness direction, and matrix which was
assumed to be isotropic. The material properties of SWCNT were determined accord-
ing to molecular dynamics (MD) and then the effective material properties of CNTRCs
were estimated through the rule of mixture in which the CNT efficiency parameters were
introduced to account for the scale-dependence of the resulting nanostructures. Further-
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Table 4: Comparison of the natural frequency parameters obtained by extended rule of mixture and Eshelby-
Mori-Tanaka method for different values of b/a ratio (h/a=0.05).

h/a=0.05 Extended rule of mixture Eshelby-Mori-Tanaka approach

V∗CN b/a Type I UD Type II Type I UD Type II

0.12

0.2 0.182781 0.176030 0.169707 0.180258 0.173855 0.167720

0.5 0.057302 0.051543 0.043897 0.057124 0.051268 0.043675

1 0.046574 0.040326 0.031155 0.046349 0.040109 0.031019

1.5 0.045553 0.039246 0.029877 0.045285 0.039035 0.029482

2 0.045286 0.038964 0.029545 0.044994 0.038799 0.029350

0.17

0.2 0.191026 0.180989 0.172456 0.189501 0.178558 0.171105

0.5 0.062688 0.056063 0.047136 0.062352 0.055799 0.045990

1 0.052363 0.045605 0.035409 0.052174 0.045375 0.035291

1.5 0.051426 0.044644 0.034290 0.051224 0.044415 0.034134

2 0.051187 0.044398 0.034004 0.051008 0.044260 0.033862

0.28

0.2 0.214772 0.193184 0.179656 0.213001 0.191950 0.178509

0.5 0.073081 0.064184 0.053337 0.072916 0.064073 0.053183

1 0.062227 0.054321 0.042818 0.062095 0.054150 0.042566

1.5 0.061298 0.053466 0.041873 0.061128 0.053209 0.041644

2 0.061069 0.053254 0.041636 0.060793 0.053076 0.040061

more, the material properties of SWCNT can be used to calculate the elastic properties of
nanocomposites using the Mori-Tanaka modified approach that utilizes Eshelby tensors.
The following conclusions can be drawn from the present:

• The achieved results show that the FGCNTR plates with symmetric profiles of the
CNTs volume fraction can likely be designed according to the actual requirement
and it is a potential alternative to the CNTRc plates with uniformly distributed
CNTs.

• Results indicate the prediction methods (extended rule of mixture and Eshelby-
Mori-Tanaka method) of effective material properties have an insignificant influ-
ence of the variation of the frequency parameters with h/a and b/a ratio.

• The extended rule of mixture has higher frequency parameter than that of the
Eshelby-Mori-Tanaka method.

• It is observed that the effect of the h/a ratio on the Type II FGCNRT to UDCNRT
frequency parameter ratio is more significant than that of the Type I FGCNRT to
UDCNRT frequency parameter ratio.
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