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Abstract. Detecting similarity between non-rigid shapes is one of the fundamental

problems in computer vision. In order to measure the similarity the shapes must first be

aligned. As opposite to rigid alignment that can be parameterized using a small number

of unknowns representing rotations, reflections and translations, non-rigid alignment is

not easily parameterized. Majority of the methods addressing this problem boil down to

a minimization of a certain distortion measure. The complexity of a matching process is

exponential by nature, but it can be heuristically reduced to a quadratic or even linear

for shapes which are smooth two-manifolds. Here we model the shapes using both lo-

cal and global structures, employ these to construct a quadratic dissimilarity measure,

and provide a hierarchical framework for minimizing it to obtain sparse set of corre-

sponding points. These correspondences may serve as an initialization for dense linear

correspondence search.
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Key words: Shape correspondence, Laplace-Beltrami, diffusion geometry, local signatures.

1. Introduction

Knowing correspondence between shapes is required for various applications, such

as shape retrieval, registration, deformation, shape morphing, symmetry, self-similarity

detection, etc. Detecting accurate correspondence between non-rigid shapes is a hard

problem, since in general it cannot be parameterized by a finite number of unknowns. It

can be cast as an assignment problem, and as such is NP-hard. A common approach for

detecting correspondence between shapes differing by a certain class of transformations

consists of employing shape properties that remain invariant under these transformations.

These invariant surface properties are used to formulate a measure of dissimilarity between

the shapes. By minimizing it one finds the correct matching. Here we use a matching

scheme based on local and global surface properties, namely, local surface descriptors and

global metric structures. The proposed method is demonstrated with two different types of
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metrics - geodesic and diffusion, and different surface descriptors that include histograms

of geodesic and diffusion distances, heat kernel signatures [39], and related descriptors

based on the Laplace-Beltrami operator [12].

The main issue addressed in this paper is the complexity of the matching. Direct com-

parison of their pointwise surface descriptors and metric structures of two shape given by

sampled surfaces is combinatorial in nature (the metric comparison problem was addressed

in [25]). The main contribution of this work is a multi-resolution matching algorithm

that can handle large number of points, and is able to produce correspondence consistent

in terms of both pointwise and pairwise surface properties. According to the proposed

scheme, at the lowest resolution the algorithm solves the correspondence problem exactly.

The correspondence information is then propagated to a higher resolution, and refined

using small neighborhoods of the matched points - thus we effectively reduce the size of

the matching problem. The algorithm iterates between correspondence propagation and

refinement, until a desired number of matches is found.

The rest of the paper is organized as follows: a brief review of the previous work is

presented in the next section. Section 3 presents the correspondence problem formulation,

followed by Section 4 where we present the hierarchical framework. In Section 5 we

elaborate on distances and descriptors, and in Section 6 we discuss the numerical aspects.

Section 7 contains the matching results, and comparison to the state-of-art algorithms,

followed by Section 8 that concludes the paper.

2. Previous work

A wide range of methods were suggested in recent years for matching non-rigid shapes.

Zigelman et al. [44], and Elad and Kimmel [15] suggested a method for matching isometric

shapes by embedding them into a Euclidian space using multidimensional scaling (MDS),

thus obtaining isometry invariant representations, followed by rigid shape matching in

that space. Bronstein et al. [5] showed that for some surfaces, such as faces, a spher-

ical domain better captures intrinsic properties. Mapping onto a sphere was also used

for cortex alignment in medical imaging, for instance by Glaunès et. al. [16], Tosun et.

al. [40] and Durrleman et. al. [13]. Since it is generally impossible to embed a non-flat

2D manifold into a flat Euclidean domain without introducing some errors, the inherited

embedding error affects the matching accuracy of all methods of this type. In order to

eliminate this embedding error, Memoli and Sapiro [25] introduced the Gromov-Hausdorf

distance [8] into the shape matching arena. Soon after, Bronstein et al. [6] formulized the

Gromov-Hausdorf distance as a solution of a continuous optimization problem, which they

called the generalized multi-dimensional scaling (GMDS). It performs a direct embedding

between two non-rigid shapes, which does not suffer from the unbounded distortion of

an intermediate ambient space. Lipman and Funkhouser [23] used the fact that isometric

transformation between two shapes is equivalent to a Möbius transformation between their

conformal mappings, and obtained this transformation by comparing the respective con-

formal factors. However, there is no guarantee that this result minimizes the cumulative

difference between geodesic distances measure between pairs of matched points.
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A different approach was suggested by Berard et. al. [2], who considered embedding

of Riemannian manifolds into an infinite dimensional Euclidean space defined by their

heat kernels. Coifman and Lafon [9] introduced diffusion maps, also related to diffusion

processes on manifolds. In the past several years we witness a dramatic prosperity in this

field [19,24,35]. The Global Point Signature (GPS) suggested by Rustamov [35] for shape

comparison employs the discrete Laplace-Beltrami operator, which, at least theoretically,

captures the shape’s geometry more faithfully than graph Laplacian. It was followed by the

works of Sun et. al. [39], and Ovsjanikov et. al. [28], that suggested surface descriptors

named Heat Kernel Signature (HKS) and Heat Kernel Maps (HKM), respectively, and used

them for correspondence search. These and other methods, such as [43], employ linear

matching problem formulations, which produces good matching results for near-isometric

shapes. Once distortions start to appear, the descriptors become less discriminative and the

matching accuracy deteriorates, thus alternative matching problem formulations should be

thought of. On the other hand, the GMDS algorithm [6], uses a quadratic matching prob-

lem formulation, and results in a non-convex optimization problem. Therefore it requires

good initializations in order to obtain meaningful solutions. It can be used as a refinement

step for other shape matching algorithms.

Matching shapes by combining the surface descriptor information and geodesic dis-

tance in a quadratic optimization formulation of the matching problem was proposed by

Hu and Hua [18], who used the Laplace-Beltrami operator for matching using prominent

features, and by Dubrovina and Kimmel [12], who suggested employing surface descrip-

tors based on the Laplace-Beltrami operator eigendecomposition together with geodesic

distances. The above methods, incorporating pairwise constraints, tend to be slow due

to high computational complexity, and efficient algorithms are required to match. Bron-

stein et al. [6] solved a relaxed problem in continuous domain. Wang et al. [42] used a

graph labeling scheme at different scales, and thus were able to obtain large number of

correspondences. The framework we discuss in this paper solves the quadratic matching

problem posed by Dubrovina and Kimmel [12], by applying to it a hierarchical match-

ing scheme, motivated by Wang et al. [42], that speeds up the optimization and allows

detection of significantly higher number of correspondences.

Other important instances of non-rigid matching are self-similarity and symmetry de-

tection. Instead of detecting the non-rigid mapping between two shapes, [29,30,32] search

for a mapping from the shape to itself, and thus are able to detect intrinsic symmetries. The

problem of non-rigid shape alignment also occurs in medical imaging. Work in that area

was performed by Miller et al. [26], Leow et. al. [22], Lai et al. [21], and Shi et al. [36], to

mention a few. Specifically, Lai et al. [21] showed how the previously mentioned diffusion

geometry-based signatures can be used for analysis of cortical surfaces.

3. Problem formulation

The problem formulation used in this work is based on comparison of pointwise and

pairwise surface properties that remain approximately invariant under non-rigid ε-isometric

transformations. Given a shape X , represented by a sampled surface, we assume that it
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is endowed with a metric dX : X × X → R+ ∪ {0}, and a set of pointwise d-dimensional

descriptors denoted fX : X → Rd .

Given two shapes X and Y , endowed with metrics dX , dY and descriptors fX , fY , the

correspondence between the shapes should preserve these properties. Formally, let us

denote the correspondence between X and Y by a mapping C : X × Y → {0,1} such that

C (x , y) =

¨

1, x ∈ X corresponds to y ∈ Y ,

0, otherwise.
(3.1)

In order to measure how well the correspondence C preserves the above geometric prop-

erties of the shapes we use the following dissimilarity function

dis (C ) = disl in (C ) +λ · disquad (C ) . (3.2)

The first term, disl in (C ), measures the dissimilarity between the pointwise descriptors of

the two shapes

disl in (C ) =
∑

x∈X ,y∈Y

dF

�

fX (x), fY (y)
�C (x , y), (3.3)

where dF is some metric in the descriptor space. Here, disl in (C ) is a linear function of the

correspondence C . The second term, disquad (C ), measures the dissimilarity between the

metric structures of the two shapes

disquad (C ) =
∑

x , x̃∈X
y, ỹ∈Y

�

dX (x , x̃)− dY (y, ỹ)
�2C (x , y)C ( x̃, ỹ), (3.4)

and it is a quadratic function of C . The parameter λ ≥ 0 (Eq. (3.2)) determines the

relative weight of the linear and the quadratic terms in the total dissimilarity measure.

The optimal matching, denoted here by C ∗, is obtained by minimizing the dissimilarity

measure dis (C ). Note that by changing λ to be 0 or ≫ 1, we can transform the problem

into a pure linear matching form, or into a pure quadratic programming problem, similar

to these in [6,25].

In order to avoid a trivial solution C ∗(x , y) = 0,∀x , y, we constraint the optimal

solution. The constraints are determined by the type of the correspondence we are looking

for. For example, when a bijective mapping from X to Y is required, the appropriate

constraints on C are
∑

x∈X

C (x , y) = 1, ∀y ∈ Y,
∑

y∈Y

C (x , y) = 1, ∀x ∈ X . (3.5)

The resulting optimization problem can be written as

minC
¦

disl in (C ) +λ · disquad (C )
©

s.t. (3.5). (3.6)

In [12], it was shown how to formulate (3.6) as a quadratic programming (QP) problem

with binary variables C (x , y). A general QP problem is an optimization problem with

quadratic objective function and affine constraint functions

minz
1

2
zT Ez + qT z + r s.t. Gz � h, Az = b. (3.7)
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The above problem is called convex when the matrix E is positive semi-definite. The Inte-

ger Quadratic Programming (IQP) has similar form, with the additional constraint on the

variables x : x i ∈ {0,1} (binary variables). While convex QP has one global minimum and

can be solved efficiently, IQP is an NP-Hard problem. Two common methods are used to

solve QAP problems [3]. The first is a heuristic approach based on a search procedure. For

example, [12] used a branch-and-bound procedure to solve the optimization problem in

Eq. (3.6). This approach usually provides good results assuming the local structures are

both robust and unique, and there is no intrinsic symmetry. The second approach is based

on relaxation. It is a three step solution, consisting of relaxing the integer constraints, solv-

ing a continuous optimization problem and projecting the solution back into integers. As

expected, this procedure is highly influenced by the initial conditions. As for complexity,

the relaxed IQP problem remains NP-Hard. While matching points using local structures

alone (by setting λ = 0, for instance) is a linear problem, and thus can be solved effi-

ciently, it can not guarantee global invariance in the presence of noise and symmetries. A

better solution can be found by considering global structures. Unfortunately, solving the

quadratic assignment problem for a large number of variables is almost infeasible, even

after relaxation. In the next section we introduce a hierarchical approach for calculating

an approximate solution of the above optimization problem. We use branch-and-bound for

initial alignment, and then refine it using a continuous optimization technique.

4. Hierarchical formulation

Solving (3.6) reveals the main drawback of the quadratic problem formulation. As

noted in [12], the dimensionality of the problem allows us to handle up to several dozens

of points. Let us assume that X and Y have N and M vertices, respectively. The number

of possible correspondences between X and Y is therefore N M , and thus, the dimension

of the matrix E in the quadratic problem (3.7) is N M × N M . Even for a small number of

points, e.g. 30, the problem becomes almost infeasible.

Since the problem is not strictly combinatorial by nature, but it is derived from a

smooth geometric measure, the latter can be exploited to reduce the complexity of the

problem. We suggest using in the following iterative scheme. At the first step we fol-

low [12] and solve (3.6) using a branch-and-bound procedure [1], to obtain a small num-

ber of correspondences. Each point x ∈ X is now matched to a point c(x) ∈ Y by the

mapping c. We denote y = c(x) if C (x , y) = 1. In each iteration we search for the best

correspondence between x and c(x) neighborhood, instead of all points y ∈ Y , in a man-

ner similar to [42]. Between iterations we add points x ∈ X and y ∈ Y using the 2-optimal

Farthest Point Sampling (FPS) strategy [17], evaluate the neighborhood in Y of the new

points, reevaluate the neighborhood of the old points, and continue until convergence. As

already mentioned, the parameter λ controls the relation between the linear and quadratic

parts of the dissimilarity function. In our implementation, to obtain the initial small num-

ber of corresponding points we used a small λ (0.1), giving more weight to the descriptor

dissimilarity. In the consecutive iterations, we increased the value of λ, thus giving more

weight to the quadratic part of the dissimilarity measure, based on distances.
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Let us further analyze the complexity of the proposed method. We consider the first

step to be O (N + M) as we use a constant number of points (usually around 20) from

each mesh, sampled using the farthest point sampling in a linear time. At every con-

secutive iteration, we match N j points sampled from X and KN j points sampled from Y

(K is constant), such that N j is linear in the number of iterations. Thus, the size of the

problem we solve is KN2
j (as the size of the distance dissimilarity matrix in the quadratic

term). To solve it and obtain the N j correspondences one can use the branch-and-bound

algorithm from the first stage. Note that, in contrast to [12] who solved one problem of

size O (N2M2), in the proposed formulation we solve a set of problems of size O (K2) to

O (N2K2) where K ≪ M , thus effectively reducing the complexity of the problem. A dif-

ferent approach to solving the quadratic optimization problem (3.6) in the j’th iteration

is to solve its relaxed version. That is, instead of searching for a binary solution in {0,1},
use a continuous optimization technique (for instance, the quasi-Newton method) to find a

solution in range [0,1], and project it back to {0,1}, using thresholding, for instance. The

overall complexity of the problem: in the j’th iteration the number of unknowns are KN j

which leads to O (K2N2
j
) complexity, and for the entire iterative procedure the complexity

is O (Σ jN
2
j K2) = O (N3K2). In Fig. 1 we show a diagram of the process, and summarize

the framework in Algorithm 4.1.Algorithm 4.1: Hierar
hi
al mat
hing algorithm1: Find a 
oarse mat
hing for a small number of points on X and Y , using bran
h-and-boundalgorithm.2: Add pairs of potential 
orresponden
es: add points from X using the farthest point sampling,and 
al
ulate their 
orresponding points on Y using the previously obtained 
oarse mat
hing.3: For every potential mat
h (x i , yi), x i ∈ X , yi ∈ Y , also use K nearest neighbors of yi in Y aspossible mat
hes for x i.4: Formulate the quadrati
 optimization problem (3.6) in terms of the potential 
orrespon-den
es obtained above (N j points in X and KN j points in Y ).5: Solve the quadrati
 problem using bran
h-and-bound, or solve its relaxed version usingquasi-Newton method and proje
t the solution ba
k into integers.6: Adjust λ if needed.7: Stop when obtain the desired number of 
orresponden
es; otherwise, return to step 2.
5. Distances and descriptors

5.1. Choice of metric

Differential geometry: Smooth surfaces, also known as Riemannian manifolds, are dif-

ferential manifolds equipped with an inner product in the tangent space, which provides

geometric notions such as angels, lengths, areas and curvatures without resorting to the

ambient space, and are referred to as intrinsic measures. We further assume that X is em-

bedded into E = R3 by means of a regular map x : U ⊆ R2→ R3, so that the metric tensor
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Figure 1: In the �rst step (left) we 
onstru
t a quadrati
 
orresponden
e matrix from all points in Xinto all points in Y . In ea
h iteration (right) we sear
h for possible mat
hes between points in X fromthe previous iteration (blue 
ir
le) and new sampled points in X (green Xs) and their 
orrespondingneighborhoods (bla
k 
ir
les) in Y .
can be expressed in coordinates as

gi j =

®

∂ x

∂ ui

,
∂ x

∂ u j

¸

, (5.1)

where ui are the coordinates of U , which yields the infinitesimal displacement dp

dp2 = g11du1
2 + 2g12du1du2+ g22du2

2. (5.2)

The simplest example of an intrinsic metric is the geodesic metric, defined by the length

of the shortest path on the surface of a shape,

dX (x , x ′) = inf
γ∈Γ(x ,x ′)

ℓ(γ), (5.3)

where Γ(x , x ′) is the set of all admissible paths between the points x and x ′ on the surface

X ,and ℓ(γ) is the length of the path γ. There exist several numerical methods to evaluate

(5.3) [4,20,37]. We use fast marching method, that simulates a wavefront propagation on

a triangular mesh, associating the time of arrival of the front with the distance it traveled.

While a naive implementation of one-to-many has the complexity of O (N log N), it was

shown that linear complexity can be achieved for the same accuracy [41]. On parametric

surfaces, the fast marching can be carried out by means of a raster scan and efficiently

parallelized, which makes it especially attractive for GPU-based computation [4,38].

Diffusion geometry: Heat diffusion on the surface X is described by the heat equation,

�

∆g +
∂

∂ t

�

u(t, x) = 0, (5.4)

where a scalar field u : X × [0,∞)→ R is the heat profile at location x and time t, and ∆g

is the Laplace-Beltrami Operator given a metric g.

Laplace Beltrami Operator (LBO), named after Eugenio Beltrami, is the generalization

of the Laplace operator. It is a linear operator, defined as the divergence of the gradient of

a function on a manifold

∆g f = divg gradg f , (5.5)
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where f : X → R is a scalar function.

A well known formulation of (5.5) in local coordinates u is

∆g f =
1
Æ

�

�g
�

�

∂

∂ uα

�

Æ

�

�g
�

�gαβ
∂

∂ uβ
f

�

, (5.6)

where X (u1,u2, · · · ,un) =
�

X 1, X 2, ·, X n
�

is an n dimensional manifold.

Since our focus will be on two dimensional affine invariants, we constrain ourself to

two dimensions

X (u1,u2) =
�

x(u1,u2), y(u1,u2), z(u1,u2)
�

. (5.7)

For compact manifolds, the Laplace-Beltrami Operator has a discrete eigendecomposi-

tion of the form

∆Xφi = λiφi , (5.8)

where λ0,λ1, · · · are eigenvalues and φ0,φ1, · · · are the corresponding eigenfunctions,

which construct the heat kernel

ht(x , z) =

∞
∑

i=0

e−λi tφi(x)φi(z). (5.9)

The diffusion distance is defined as a cross-talk between two heat kernels [7]

d2
X ,t(x , y) = ‖ht(x , ·)− ht(y, ·)‖2

L2(X )
=

∫

X

|ht(x , z)− ht(y, z)|2dz

=

∞
∑

i=0

e−2λi t
�

φi(x)−φi(y)
�2

. (5.10)

Since diffusion distances are derived from the Laplace Beltrami operator, they are also

intrinsic properties, and, according to [2,10,11], also fulfill the metric axioms.

5.2. Choice of descriptors

Distance histograms: Given two surfaces X and Y and their metrics dX and dY respect-

fully, we can evaluate the distances between any two points on each one of the shapes

using either choices of metrics. For isometries, a good candidate that matches point x ∈ X

to y ∈ Y will have similar distances to all other corresponding points. Assuming the sur-

face is well sampled, the distance histograms of corresponding points x ∈ X and y ∈ Y

have to be similar. Comparison of histograms is a well studied operation. While straight

forward bin-to-bin comparison may work, we refer the reader to more robust algorithms

such as the earth moving distance (EMD) [34].

Heat kernel signatures: Another local descriptor based on the heat equation, was pre-

sented by Sun et al. [39]. They proposed using the diagonal of the heat kernel kt(x , x)
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(5.9) at multiple scales as a local descriptor. It was employed by Bronstein et al. [27] for

shape retrieval, and was recently adapted to volumes by Raviv et al. [31]. The HKS re-

mains invariant under isometric deformations of X , and it is insensitive to topological noise

at small scales. It is also informative in the sense that under certain assumptions one could

reconstruct the surface (up to an isometry) from it. Furthermore, the HKS descriptor can

be efficiently computed from the eigenfunctions and eigenvalues of the Laplace-Beltrami

operator.

Intrinsic symmetry-aware descriptors: Another possible choice for a surface descriptor

is one based on the eigendecomposition of the Laplace-Beltrami operator, as suggested

in [12] where the focus was on matching intrinsically symmetric non-rigid shapes. The

solution proposed in [12] consists of defining distinct sets of descriptors for several pos-

sible correspondences, and minimizing the distortion dis(C ) separately for each of them,

to obtain distinct matchings. Thus, when using these descriptors within an hierarchical

framework, we can also find more than a single matching of the two shapes, while obtain-

ing denser correspondence.

6. Numerical considerations

As we are interested in the eigendecomposition of the Laplace Beltrami Operator, we

followed [33], and used the FEM numerical scheme [14]. For that purpose, we consider

the weak form of ∆φ = λφ

∫

ψk∆φ da = λ

∫

ψkφ da (6.1)

with respect to some basis {ψk} functions. Specifically, we choose the ψk’s to be the first-

order finite element function obtaining the value of one at a vertex k and decaying linearly

to zero in its 1-ring. Substituting these functions into (6.1), we obtain

∫

ψk∆φ da =

∫

〈∇ψk,∇φ〉x da

=

∫

g i j(∂iφ)(∂ jψk) da = λ

∫

ψkφ da, (6.2)

for vanishing boundary conditions. Next, we approximate the eigenfunction φ in the finite

element basis by φ =
∑

l=1αlψl , which yields

∫

g i j(∂i

∑

l

αlψl)(∂ jψk) da = λ

∫

ψk

∑

l

αlψl da,

or, equivalently,

∑

l

αl

∫

g i j(∂iψl)(∂ jψk) da = λ
∑

l

αl

∫

ψkψl da.
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The last equation can be rewritten in matrix form as a generalized eigendecomposition

problem Aα= λBα solved for the coefficients αl , where

akl =

∫

g i j(∂iψl)(∂ jψk) da, bkl =

∫

ψkψl da,

and the local surface area is expressed in parametrization coordinates as da =
p

gdu1du2.

The eigenfunctions and the eigenvalues of the discretized Laplace-Beltrami operator

obtained by solving the generalized eigenvalue problem are used to calculate the diffu-

sion distances (see Eq. (5.10)), and the surface descriptors – HKS, histograms of diffusion

distances, and the intrinsic symmetry-aware descriptors.

7. Results

In this section we provide several matching results obtained using our hierarchical

procedure. Figs. 2 and 3 show the matching obtained with the proposed framework, com-

bined with different descriptors and metrics, at several hierarchies. The correspondences

are shown by Voronoi cells of the matched points, with corresponding patches having the

same color. The matching was performed using 10 points at the coarse scale, and 30-64

points at the finest scale. Figs. 2(a), 2(b) show the result of matching shapes using geodesic

distance histogram descriptors and geodesic distance metric. Fig. 2(c) shows the matching

result obtained using diffusion distances instead of geodesic ones, and Fig. 2(d) – the re-

sult obtained using Heat Kernel Signatures [39] and diffusion distances. Note that the last

two matchings are in fact reflected ones (follows from the intrinsically symmetric shape

matching ambiguity described in [12]). Fig. 3 shows the result of matching shapes using

the Laplace-Beltrami operator-based descriptors [12] and geodesic distances. There we

were able to obtain the both possible correspondences between two cat shapes – the true

correspondence and the reflected one. As can be seen, all setups provide good results, and

we can conclude that the proposed hierarchical framework is independent of the choice of

descriptors.

We compared the hierarchical method to [12]’s quadratic matching and [6]’s GMDS

framework. Both are based on global structures. Since we followed [12] formulation as

our first step, our initial matchings are the same. But, since the complexity of [12] rises

rapidly, it can not be used to match more then a few dozen points. In addition, even for

a low number of points we have a major quality advantage over [12], since the matched

points on the second mesh can move, and are not restricted to the initial sampling. In Fig. 4

we see that the ear and the nose of the cat were matched using 10 points, and relocated

after several iterations.

In the following test we compared the integer quadratic matching and the proposed hi-

erarchical matching calculation times. We used the two pairs of shapes shown in Figs. 3(a)

and (b), each consisting of 3400 vertices. The hierarchical scheme was tested with geodesic

distances and the symmetry-aware descriptors of [12]. We used pre-computed distances

and descriptors, as we were primarily interested in the matching calculation times. Evalu-

ation of different metric and descriptor calculation times is beyond the scope of this work.
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(a) Geodesic distance histogram descriptors and geodesic distance metric

(b) Geodesic distance histogram descriptors and geodesic distance metric

(c) Diffusion distance histogram and diffusion distance metric

(d) Heat Kernel Signatures and diffusion distance metricFigure 2: Mat
hing results obtained with the proposed framework 
ombined with di�erent des
riptorsand metri
s, at several hierar
hies. The hierar
hi
al framework works well with all setups, and it performsequally well with all types of des
riptors.
For the hierarchical matching, we used both branch-and-bound and quasi-Newton meth-

ods, in order to obtain the correspondence at each hierarchy level. The results are shown in

Figs. 5 and 7, for different numbers of matched points. All the calculations were performed

on desktop computer with Intel Core i7 2.93 GHz CPU and 8 GB RAM. The descriptors and

distance calculation times were incorporated in the total calculation times.
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(a)

(b)Figure 3: Mat
hing results obtained with the proposed framework 
ombined with the intrinsi
 symmetry-aware surfa
e des
riptors and geodesi
 distan
e metri
. (a), (b) The upper row � same orientation
orresponden
e; the lower row � the re�e
ted one.
Figure 4: Using geodesi
 distan
es as a global stru
ture, and geodesi
 based histograms as a lo
al one,the wrong ear-to-nose mat
h gets 
loser to the 
orre
t one during subsequent iterations.
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(a) (b)Figure 5: The total mat
hing 
al
ulation time as a fun
tion of the number of mat
hed points, for theinteger quadrati
 mat
hing of [12℄, and the proposed hierar
hi
al s
heme, used with geodesi
 distan
esand symmetry-aware des
riptors [12℄, and tested on the 
at shapes given in Fig. 3(a). The distan
eand des
riptor 
al
ulation time was 17.33 se
onds. (a) Up to 200 mat
hed points. (b) Zoom into theprevious graph, up to 120 mat
hed points.
In Fig. 5(a) we show the calculation times for up to 210 matches. In Fig. 5(b) we show

a zoom on the previous graph, for better comparison of the proposed method and the direct

matching of [12]. We see that the proposed hierarchical method, with both branch-and-

bound and quasi-Newton solvers, was able to obtain approximately 120 correspondences,

while the integer quadratic matching calculated only 25 correspondences during the same

amount of time. Also, for higher number of correspondences we can no longer use the

branch-and-bound optimization within the proposed hierarchical framework, because of

its high complexity, while using the proposed relaxation with quasi-Newton minimization

they can still be processed in a reasonable time.

Figure 6: Mean square geodesi
 distan
e error, 
al
ulated between the 
orresponden
es obtained withthe integer quadrati
 mat
hing and the proposed method, and the ground truth 
orresponden
es; 
or-responds to the 
al
ulation times given in Fig. 5.



258 D. Raviv, A. Dubrovina and R. Kimmel

(a) (b)Figure 7: The total mat
hing 
al
ulation time as a fun
tion of the number of mat
hed points, for theinteger quadrati
 mat
hing of [12℄, and the proposed hierar
hi
al s
heme, used with geodesi
 distan
esand symmetry-aware des
riptors [12℄, and tested on the horse shapes given in Fig. 3(b). The distan
eand des
riptor 
al
ulation time was 19.10 se
onds. (a) Up to 200 mat
hed points. (b) Zoom into theprevious graph, up to 120 mat
hed points.
In order to evaluate the accuracy of the matching obtained using each one of the meth-

ods above, we calculated the mean square geodesic distance error (MSE) between the

positions of the detected matchings and the ground-truth correspondences. The results are

shown in Fig. 6. We see that adding correspondences reduces the matching error, and that

the matching problem relaxation has little or no effect on the matching accuracy, compared

to the solution obtained using branch-and-bound. Fig. 7 shows similar results obtained for

a pair of the horse shapes from Fig. 3(b).

Bronstein et al. [6] proposed to minimize the Gromov-Hausdorf distance between

shapes, which in theory provides the best correspondence between approximate isome-

tries. Since their framework is based on non-convex optimization, the first alignment is

critical. We evaluated GMDS results using its own initializer and our quadratic first step,

which provided better results. We repeated the experiments shown in Fig. 2(a) and mea-

sured the geodesic distances between the corresponding points versus the ground truth

correspondence. We improved the L∞ error by 26% and the mean error by 6.25%. It is

not surprising, since usually the best correspondence can not be originated from a global

structure alone. One can think, for example, on a trivial experiment where only the head

rotates. The best correspondence will suffer a distortion in the neck alone, but GMDS will

suffer from a distortion in all points.

8. Conclusions

We presented a hierarchical framework, based on quadratic programming, to find

matching between non-rigid shapes. While the problem is NP-Hard in general, taking

into account the smooth structure of our shapes and using an iterative scheme allows us to

find large number of corresponding points in reasonable time. In order to evaluate the pro-
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posed scheme we combined it with different metrics and descriptors, tested it on various

non-rigid shapes, and compared the results to the state of art methods.

Acknowledgments This research was supported by European Community’s FP7-ERC

program, grant agreement no. 267414.

References

[1] A. Bemporad. Hybrid Toolbox - User’s Guide, 2004.

[2] P. Bérard, G. Besson, and S. Gallot. Embedding riemannian manifolds by their heat kernel.

Geometric and Functional Analysis, 4(4):373–398, 1994.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2006.

[4] A. M. Bronstein, M. M. Bronstein, Y. S. Devir, R. Kimmel, and O. Weber. Parallel algorithms

for approximation of distance maps on parametric surfaces. In Proc. ACM Transactions on

Graphics (SIGGRAPH), volume 27, 2008.

[5] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Expression-invariant face recognition via

spherical embedding. In Proc. Int’l Conf. Image Processing (ICIP), volume 3, pages 756–759,

2005.

[6] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Efficient computation of isometry-invariant

distances between surfaces. SIAM J. Scientific Computing, 28(5):1812–1836, 2006.

[7] M. M. Bronstein and A. M. Bronstein. Shape recognition with spectral distances. Trans. on

Pattern Analysis and Machine Intelligence (PAMI), 2010.

[8] D. Burago, Y. Burago, S. Ivanov, and American Mathematical Society. A course in metric

geometry. American Mathematical Society Providence, 2001.

[9] R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis,

21:5–30, July 2006.

[10] R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis,

21(1):5–30, 2006. Definition of diffusion distance.

[11] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker. Ge-

ometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion

maps. PNAS, 102(21):7426–7431, 2005.

[12] A. Dubrovina and R. Kimmel. Matching shapes by eigendecomposition of the laplace_belrami

operator. In Proc. Symposium on 3D Data Processing Visualization and Transmission (3DPVT),

2010.

[13] S. Durrleman, X. Pennec, A. Trouvè, and N. Ayache. Measuring brain variability via sulcal

lines registration: a diffeomorphic approach. In Proc. Medical Image Computing and Computer

Assisted Intervention (MICCAI), pages 675–682, 2007.

[14] G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. In S. Hildebrandt

and R. Leis, editors, Partial differential equations and calculus of variations, pages 142–155.

1988.

[15] A. Elad and R. Kimmel. On bending invariant signatures for surfaces. Trans. on Pattern

Analysis and Machine Intelligence (PAMI), 25(10):1285–1295, 2003.

[16] J. Glaunès, M. Vaillant, and M. I. Miller. Landmark matching via large deformation diffeo-

morphisms on the sphere. Journal of Mathematical Imaging and Vision, 20:179–200, 2004.

[17] D.S. Hochbaum and D.B. Shmoys. A best possible heuristic for the k-center problem. Mathe-

matics of Operations Research, pages 180–184, 1985.

[18] J. Hu and J. Hua. Salient spectral geometric features for shape matching and retrieval. Vis.

Comput., 25(5-7):667–675, 2009.



260 D. Raviv, A. Dubrovina and R. Kimmel

[19] V. Jain and H. Zhang. A spectral approach to shape-based retrieval of articulated 3D models.

Computer-Aided Design, 39:398–407, 2007.

[20] R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. Proc. National Academy

of Sciences (PNAS), 95(15):8431–8435, 1998.

[21] R. Lai, Y. Shi, K. Scheibel, S. Fears, R. Woods, A. W. Toga, and T. F. Chan. Metric-induced opti-

mal embedding for intrinsic 3d shape analysis. In Proc. International Conference of Computer

Vision (CVPR), 2010.

[22] A. Leow, C. L. Yu, S. J. Lee, S. C. Huang, H. Protas, R. Nicolson, K. M. Hayashi, A. W. Toga, and

P. M. Thompson. Brain structural mapping using a novel hybrid implicit/explicit framework

based on the level-set method. NeuroImage, 24(3):910–927, 2005.

[23] Y. Lipman and T. Funkhouser. Mobius voting for surface correspondence. In Proc. ACM

Transactions on Graphics (SIGGRAPH), volume 28, 2009.

[24] D. Mateus, R. P. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer. Articulated shape match-

ing using laplacian eigenfunctions and unsupervised point registration. In Proc. of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[25] F. Mémoli and G. Sapiro. A theoretical and computational framework for isometry invari-

ant recognition of point cloud data. Foundations of Computational Mathematics, 5:313–346,

2005.

[26] M. I. Miller, M. Faisal Beg, C. Ceritoglu, and C. Stark. Increasing the power of functional

maps of the medial temporal lobe by using large deformation diffeomorphic metric mapping.

Proc. National Academy of Science (PNAS), 102(27):9685–9690, 2005.

[27] M. Ovsjanikov, A. M. Bronstein, M. M. Bronstein, and L. J. Guibas. Shape Google: a computer

vision approach to invariant shape retrieval. In Proc. Non-Rigid Shape Analysis and Deformable

Image Alignment (NORDIA), 2009.

[28] M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. J. Guibas. One point isometric matching with

the heat kernel. Proc. Symposium on Geometry Processing (SGP), 29(5):1555–1564, Jul 2010.

[29] M. Ovsjanikov, J. Sun, and L. J. Guibas. Global intrinsic symmetries of shapes. In Computer

Graphics Forum, volume 27, pages 1341–1348, 2008.

[30] D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Full and partial symmetries of

non-rigid shapes. International Journal of Computer Vision (IJCV), 2009.

[31] D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Volumetric heat kernel signatures.

In Proc. 3D Object recognition (3DOR), part of ACM Multimedia., 2010.

[32] D. Raviv, A. M. Bronstein, M. M. Bronstein, R. Kimmel, and G. Sapiro. Diffusion symmetries

of non-rigid shapes. In Proc. International Symposium on 3D Data Processing, Visualization

and Transmission (3DPVT), 2010.

[33] M. Reuter, S. Biasotti, D. Giorgi, G. Patanè, and M. Spagnuolo. Discrete Laplace–Beltrami

operators for shape analysis and segmentation. Computers & Graphics, 33(3):381–390, 2009.

[34] Y. Rubner, C. Tomasi, and L.J. Guibas. The earth mover’s distance as a metric for image

retrieval. IJCV, 40(2):99–121, 2000.

[35] R. M. Rustamov. Laplace-Beltrami eigenfunctions for deformation invariant shape represen-

tation. In Proc. Symposium on Geometry Processing (SGP), pages 225–233, 2007.

[36] Y. Shi, R. Lai, R. Gill, D. Pelletier, D. Mohr, N. Sicotte, and A. W. Toga. Conformal metric

optimization on surface (cmos) for deformation and mapping in laplace-beltrami embedding

space. In Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), 2011.

[37] A. Spira and R. Kimmel. An efficient solution to the eikonal equation on parametric mani-

folds. Interfaces and Free Boundaries, 6(4):315–327, 2004.

[38] A. Spira and R. Kimmel. An efficient solution to the eikonal equation on parametric mani-

folds. Interfaces and Free Boundaries, 6(3):315–327, 2004.



Hierarchical Framework for Shape Correspondence 261

[39] J. Sun, M. Ovsjanikov, and L. J. Guibas. A concise and provably informative multi-scale

signature based on heat diffusion. In Proc. Symposium on Geometry Processing (SGP), 2009.

[40] D. Tosun, M. E. Rettmann, and J. L. Prince. Mapping techniques for aligning sulci across

multiple brains. Medical Image Analysis, 8:295–309, 2004.

[41] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. Automatic

Control, 40(9):1528–1538, 1995.

[42] C. Wang, M. M. Bronstein, and N. Paragios. Discrete minimum distortion correspondence

problems for non-rigid shape matching. Research Report 7333, INRIA, 2010.

[43] A. Zaharescu, E. Boyer, K. Varanasi, and R Horaud. Surface feature detection and description

with applications to mesh matching. In Proc. Computer Vision and Pattern Recognition (CVPR),

2009.

[44] G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening via multi-

dimensional scaling. IEEE Trans. Visualization and Computer Graphics (TVCG), 9(2):198–207,

2002.


