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Abstract. Two algorithms for constructing a class of compactly supported conjugate

symmetric complex tight wavelet frames Ψ = {ψ1,ψ2} are derived. Firstly, a necessary

and sufficient condition for constructing the conjugate symmetric complex tight wavelet

frames is established. Secondly, based on a given conjugate symmetric low pass filter,

a description of a family of complex wavelet frame solutions is provided when the low

pass filter is of even length. When one wavelet is conjugate symmetric and the other

is conjugate antisymmetric, the two wavelet filters can be obtained by matching the

roots of associated polynomials. Finally, two examples are given to illustrate how to use

our method to construct conjugate symmetric complex tight wavelet frames which have

some vanishing moments.
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1. Introduction

Recently, research on wavelets mainly concerns conventional real-valued wavelet bases

and filter banks (see [1–8]). However, complex-valued wavelet bases also have been

successfully studied and they offer a number of potential advantageous properties (see

[9–14]). For example, in Radar and Sonar applications, the complex I/Q orthogonal sig-

nals can be processed with complex filter banks rather than processing the I/Q channels

separately. Additionally, it is shown in [9–11] that the complex Daubechies wavelet can be

symmetric and orthogonal, whereas the real-valued wavelet cannot. Another advantage of
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complex wavelets compared to real-valued wavelets is that they provide both magnitude

and phase information. It is well known that linear phase is desirable for reasons of both

computational complexity and image quality, which is usually important in image and au-

dio sinal analysis (see [14]). As we know, real-valued symmetric wavelets and complex

conjugate symmetric wavelets can have the linear phase (see [9]). The (conjugate) sym-

metry of linear phase filters leads to a lower complexity hardware implementation because

the multiplies involving origin (conjugate) symmetric coefficient pairs can be combined.

In the real-valued wavelets case, in order to achieve symmetry in a wavelet system, many

generalizations of wavelet frames have been proposed and investigated in the literature

(see [1–7]).

In this paper, we are interested in complex conjugate symmetric wavelet frames which

have a linear phase. As a generalization of an orthonormal wavelet basis, a tight wavelet

frame is an overcomplete wavelet system that preserves many desirable properties of an

orthonormal wavelet basis. Based on the real wavelet frames, researchers study a class

of complex tight wavelet frames with three conjugate symmetric generators and give an

explicit parametric formula for the construction in [15]. Though by increasing the number

of generators in a tight wavelet frame one has a great deal of freedom to construct them

from refinable functions, in many applications, for various purposes such as computational

and storage costs, one prefers a tight wavelet frame with as small as possible number of

generators. This motivates us to consider the construction of complex tight wavelet frames

with two conjugate (anti) symmetric generators. Furthermore, we give a criterion for the

existence of the two generators and provide a description of a family of solutions when the

low pass filter is of even length.

2. Construction of conjugate symmetric complex wavelet frames

Let us recall that a frame in a Hibert space H is a family of its elements { fk} k∈Z such

that, for any f ∈H , ∃ 0< A≤ B <∞,

A ‖ f ‖2≤
∑

k∈Z
| 〈 f , fk〉 |2 ≤ B ‖ f ‖2,

where optimal A and B are called frame constants. If A = B, the frame is called a tight

frame.

The frame {ψs; j,k}ns=1, where ψs; j,k(x) = 2 j/2ψs(2
j x − k), j, k ∈ Z, generated by trans-

lations and dilations of finite number of functions, is called an affine or wavelet frame. In

this case, ψ1, · · · ,ψn are called the generators or framelets.

As in [1–3], following the multiresolution framework, we suppose that the refinable

function and wavelets satisfy the refinement equation

φ = 2
∑

k∈Z
h0(k)φ(2 · −k), h0(k) ∈ C, (2.1a)

ψs = 2
∑

k∈Z
hs(k)φ(2 · −k), s = 1,2, · · · , n, hs(k) ∈ C. (2.1b)
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By taking the Fourier transform on both sides of (2.1a) and (2.1b), respectively, we get

φ̂(ω) = m0(ω/2)φ̂(ω/2), ψ̂s(ω) = ms(ω/2)φ̂(ω/2),

where m0(ω) =
∑

k∈Z h0(k)e
−ikω and ms(ω) =

∑

k∈Z hs(k)e
−ikω are called the mask sym-

bols of the refinable function φ and the wavelet function ψs, respectively. In addition,

m0(ω) and ms(ω) are also called the low-pass filter and high-pass filter in engineering,

respectively.

Definition 2.1. We say that the refinable function φ(x) is even after an appropriate whole

integer (l is even) or half-integer (l is odd) shift if its mask symbol satisfies

m0(ω) = eilωm0(ω), l ∈ Z. (2.2)

We also say that φ(x) is conjugate symmetric. Similarly, we say that the framelet ψs(x) is

conjugate symmetric (antisymmetric) if its mask symbol satisfies

ms(ω) = ±eilωms(ω), s = 1,2, · · · , n, l ∈ Z. (2.3)

Remark 2.1. The refinable function φ(x) satisfying the condition (2.2) is generally called

symmetric when h0(k) ∈ R. In such case, there is no difference between symmetric and

conjugate symmetric since h0(k) = h0(k).

Denote

M(ω) =

�

m0(ω) m1(ω) · · · mn(ω)

m0(ω+π) m1(ω+π) · · · mn(ω+π)

�

.

It is shown in [1] that if

M(ω)M∗(ω) = I , (2.4)

then ψs, s = 1, · · · , n, generate a tight wavelet frame of L2(R).

Lemma 2.1 ([1]). Let a 2π-periodic function m0(ω) satisfy |m0(ω)|2 + |m0(ω+π)|2 ≤ 1.

Then there exists a pair of 2π-periodic measurable functions m1(ω), m2(ω) which satisfy

(2.4) for n = 2. Furthermore, any solution of (2.4), which is {m1, m2} can be represented in

the form of the first row of the matrix

Mψ(ω) = P(ω)D(ω)Q(ω), (2.5)

where

P(ω) =









(
eiωm0(ω+π)

β(ω)
)

m0(ω)

β(ω)

−( eiωm0(ω)

β(ω)
)

m0(ω+π)

β(ω)









, (2.6a)

Λ(ω) =

�

1 0

0 1− |m0(ω)|2− |m0(ω+π)|2
�

, (2.6b)

|β(ω)|2 = |m0(ω)|2 + |m0(ω+ π)|2, D(ω) is a diagonal matrix, D(ω)D(ω) = Λ(ω), and

Q(ω) is an arbitrary unitary (a.e.) matrix with π-periodic measurable components.
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Lemma 2.2 (Riesz Lemma [16]). Let a(0), · · · , a(N) ∈ R and a(N) 6= 0, such that

A (ω) :=
a(0)

2
+

N
∑

k=1

a(k) cos kω≥ 0, ω ∈ R.

Then there exists a polynomial α(z) =
∑N

k=1 b(k)zk with real coefficients that satisfies

|α(z)|2 =A (ω), z = e−iω. (2.7)

In what follows, the Laurent polynomial ps(z) is specified by the z-transform of the

symbol ms(ω), i.e., ps(e
−iω) := ms(ω), s = 0,1, · · · , n.

Theorem 2.1. Let p0(z) be a conjugate symmetric complex (non-real) coefficients Laurent

polynomial. Define p(z) = |p0(z)|2 + |p0(−z)|2, such that p(z) satisfies:

1− p(z) ≥ 0, | z |= 1. (2.8)

Then there exist two conjugate (anti) symmetric complex (non-real) coefficients polynomials

solutions to (2.4) if and only if all roots of the Laurent polynomial 1− p(z) have even multi-

plicity.

Proof. The proof can be shown by referring to the proof of Theorem 1 in [2]. The main

distinction from the proof in [2] is the two solutions to (2.4) depending on the conjugate

(anti) symmetric complex polynomials. Then in the proof of the sufficiency, we start by

substituting λB(ω) for B(ω) in [2] to get the complex (non-real) coefficients polynomials

solutions to (2.4), where λ ∈ C\R, |B(ω)|2 = p(z) = |m0(ω)|2 + |m0(ω+ π)|2. Next we

take the way which is the same as the proof in [2] but not in detail. Compared to the proof

in [2], we need to substitute f (z) and conjugate (anti) symmetric for f (1/z) and (anti)

symmetric, respectively, where f (z) is an arbitrary complex polynomial. Finally, the proof

of the sufficiency and necessity can be established. �

Corollary 2.1. Let p0(z) be a conjugate symmetric complex (non-real) coefficients Laurent

polynomial. The conjugate symmetric complex (non-real) refinable functionφ with the symbol

p0(z) does not exist if p0(z) satisfies deg(p0) = 1,2,3.

Proof. It is easy to check that the case deg(p0) = 1 corresponds to the Haar wavelets

which have no complex (non-real) coefficients. If deg(p0) = 2, we assume that p0(z) =

h0(0) + h0(1)z + h0(2)z
2. From p0(1) = 1, p0(−1) = 0 and h0(0) = h0(2), we get that

p0(z) =
1

4
+ ci + 1

2
z + (1

4
− ci)z2, ∀ c ∈ R. Then

1− p(z) = 1− |p0(z)|2− |p0(−z)|2

= −z−2

�

2
�1

4
− ci

�2

z4 −
�1

4
− 4c2

�

z2 + 2
�1

4
+ ci

�2
�

.

We can prove that all roots of 1 − p(z) have even multiplicity if and only if c = 0. This

implies that the complex (non-real) coefficients polynomial p0(z) does not exist. Similarly,

the case from deg(p0) = 3 can also be proved to have the same result. �



Conjugate Symmetric Complex Tight Wavelet Frames with Two Generators 357

3. Solutions of conjugate symmetric complex wavelet frames

In the above argumentation, we provide a necessary and sufficient condition that the

refinable function satisfies so that there exist the complex tight wavelet frames with two

conjugate (anti) symmetric framelets (generators). Consider the problem: given a refin-

able function satisfying Theorem 2.1, how to find a simple way to obtain the two framelets

associated with the refinable function?

Let φ be a complex refinable function, and ψ1, ψ2 generate a complex tight wavelet

frame corresponding to φ; p0(z), p1(z) and p2(z), respectively, be the mask symbols of φ,

ψ1 and ψ2. In this section, we describe how two conjugate (anti) symmetric framelets can

be obtained by matching the roots of associated polynomials.

In the following, we deal exclusively with the case of even length filters. Let the filters

{p0(z), p1(z), p2(z)} satisfy (2.4) and

h0(n) = h0(N − 1− n), h2(n) = h1(N − 1− n). (3.1)

Define

hnew
1 (n) =

1p
2

�

h1(n) + h2(n− 2d)
�

, (3.2a)

hnew
2 (n) =

1p
2

�

h1(n)− h2(n− 2d)
�

. (3.2b)

Write pnew
s (z) =

∑

k∈Z hnew
s (k)zk, s = 1,2. It is easy to check that {p0(z), pnew

1 (z), pnew
2 (z)}

also satisfy (2.4), and

hnew
1 (n) = hnew

1 (N2− 1− n), hnew
2 (n) = −hnew

2 (N2− 1− n),

where N2 = N + 2d , d ∈ Z. Then, to obtain the two conjugate (anti) symmetric high-pass

filters pnew
1 (z) and pnew

2 (z), we just need to find p1(z) and p2(z).

By (2.1a) and (2.1b), we get the filters ps(z) =
∑

k∈Z hs(k)z
k, s = 0,1,2, z = e−iω.

Write

ps(z) =
∑

hs(2k)z2k +
�∑

hs(2k+ 1)z2k
�

z

=

p
2

2
ps0(z

2) +

p
2

2
ps1(z

2)z.

Define

S(z) :=

�

p00(z) p10(z) p20(z)

p01(z) p11(z) p21(z)

�

.

It is easy to check that (2.4) holds if and only if S(z)S∗(z) = I . Equivalently,

�

p10(z) p20(z)

p11(z) p21(z)

�
 

p10(z) p11(z)

p20(z) p21(z)

!

=

 

1− |p00(z)|2 −p00(z)p01(z)

−p01(z)p00(z) 1− |p01(z)|2
!

. (3.3)
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According to (3.1), we obtain

p01(z) = z−(
N

2
−1)p00(z), p20(z) = z−(

N

2
−1)p11(z), p21(z) = z−(

N

2
−1)p10(z). (3.4)

Substituting (3.4) into (3.3), we get

 

p10(z) z−(
N

2
−1)p11(z)

p11(z) z−(
N

2
−1)p10(z)

! 

p10(z) p11(z)

z(
N

2
−1)p11(z) z(

N

2
−1)p10(z)

!

=

 

1− |p00(z)|2 −z(
N

2
−1)p2

00(z)

−z−(
N

2
−1)p2

00(z) 1− |p00(z)|2

!

. (3.5)

Taking the determinant of both sides of (3.5) and simplifying, we obtain

U2(z) = 1− 2|p00(z)|2, (3.6)

where U(z) = |p10(z)|2−|p11(z)|2. From (3.6), it is clear that all the roots of 1−2|p00(z)|2
must be of even multiplicity. This is consistent with the condition of Theorem 2.1 that all

roots of 1− p(z) have even multiplicity.

In what follows, to obtain the two high-pass filters p1(z) and p2(z) by the low-pass

filter p0(z), some concrete conditions are added to the filters.

Theorem 3.1. Let the filters {p0(z), p1(z), p2(z)} satisfy (3.1) and their polyphase compo-

nents be of the form:

p00(z) = z−
1

2
( N

2
−1)
p

2x(z)y(z), p10(z) = x2(z), p11(z) = −y2(z), (3.7)

where |x(z)|2+ |y(z)|2 = 1. Then {p0(z), p1(z), p2(z)} satisfy (2.4), and p1(z), p2(z) can be

determined by p0(z).

Proof. By a direct calculation, it is easy to check that (3.7) satisfies (3.5). This means

that {p0(z), p1(z), p2(z)} satisfy (2.4). Substituting (3.7) into (3.6), we obtain

U(z) = |x2(z)|2 − |y2(z)|2
= 2|x(z)|2− 1

= 1− 2|y(z)|2.

So

|x(z)|2 = 0.5+ 0.5U(z), (3.8a)

|y(z)|2 = 0.5− 0.5U(z). (3.8b)

It follows from (3.7) and (3.8a) that x(z) is a common factor of both p00(z) and 0.5+

0.5U(z), so x(z) can be determined by identifying the common roots. Similarly, y(z) can
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also be determined by the common roots of p00(z) and 0.5− 0.5U(z). Then

p1(z) =

p
2

2
p10(z

2) +

p
2

2
p11(z

2)z

=

p
2

2
x2(z2)−

p
2

2
y2(z2)z,

and p2(z) can be derived from p1(z). �

Remark 3.1. As usual, it is convenient to normalize φ in (2.1a) such that φ̂(0) = 1. Then

p0(1) = 1. Since p00(1) = p01(1), we can take p00(1) = p01(1) =
p

2/2. Furthermore, it

follows from (3.7) that x(1)y(1) = 1/2. In addition, according to p1(1) = 0 and (3.7), it

requires that x2(1)− y2(1) = 0. Therefore, x(z) and y(z) can be normalized such that

x(1) = y(1) =
1p
2

. (3.9)

Remark 3.2. In this section, we do not impose any sum rules on the filters about the

smoothness. In fact, we can add L − 1 vanishing moments on the low-pass filter p0(z),

which satisfy the following equations (see [17,18]):

∑

n

(−1)nnkh0(1− n) = 0, k = 1,2, · · · , L − 2. (3.10)

In Section 4, we will give two examples about the filters which have 2 vanishing mo-

ments and 3 vanishing moments by applying (3.10).

4. Examples

Example 4.1. Let

p0(z) = 0.187500+ 0.000278i+ (0.312500− 0.000464i)z− 0.000742iz2

+ 0.000742iz3+ (0.312500+ 0.000464i)z4+ (0.187500− 0.000278i)z5.

It is easy to check that p0(1) = 1, p0(−1) = 0, and p0(z) satisfies (3.10) for L = 3, which

means the filter p0(z) has 2 vanishing moments. By a direct calculation, it follows that all

roots of 1− p(z) ≥ 0 have even multiplicity. Then according to Theorem 2.1, there exists

a complex tight wavelet frame with two conjugate (anti) symmetric framelets. In what

follows, we give a concrete algorithm to obtain the two high-pass filters p1(z) and p2(z).

First, we note that

p00(z) =
p

2
h

0.187500+ 0.000278i− 0.000742iz+ (0.312500+ 0.000464i)z2
i

.

It is easy to find the roots of p00(z) and p00(z) are approximately {1.292975i,−1.289017i}
and {0.773410i,−0.775785i}, respectively. Applying (3.6), it is not difficult to show that
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the roots of 0.5+0.5U(z) and 0.5−0.5U(z) are approximately {−1.289017i,−0.775785i}
and {1.292975i, 0.773410i}, respectively. Therefore, according to (3.7), (3.8a) and (3.8b),

the roots of x(z) and y(z) are {−1.289017i} and {0.773410i}, respectively. Using the

normalization (3.9), we obtain

x(z) = (0.265673− 0.342457i)(z+ 1.289017i),

y(z) = (0.442450+ 0.342195i)(z− 0.773410i).

Then we get that

p1(z) =

p
2

2

h

0.077586+ 0.302344i+ (0.047054+ 0.181129i)z

+ (0.469107− 0.120380i)z2− (0.468390− 0.121680i)z3

− (0.046695+ 0.181963i)z4− (0.078665+ 0.302808i)z5
i

,

p2(z) =

p
2

2

h

− 0.078665+ 0.302808i− (0.046695− 0.181963i)z

− (0.468390+ 0.121680i)z2+ (0.469107+ 0.120380i)z3

+ (0.047054− 0.181129i)z4+ (0.077586− 0.302344i)z5
i

.

Finally, applying (3.2a), (3.2b) and choosing d = 1, we obtain a wavelet frame with two

conjugate (anti) symmetric framelets whose symbols are:

pnew
1 (z) =

1

2

h

0.077586+ 0.302344i+ (0.047054+ 0.181129i)z

+ (0.390442+ 0.182428i)z2− (0.515085− 0.303643i)z3

− (0.515085+ 0.303643i)z4+ (0.390442− 0.182428i)z5

+ (0.047054− 0.181129i)z6+ (0.077586− 0.302344i)z7
i

,

pnew
2 (z) =

1

2

h

0.077586+ 0.302344i+ (0.047054+ 0.181129i)z

+ (0.547772− 0.423188i)z2− (0.421695+ 0.060283i)z3

+ (0.421695− 0.060283i)z4− (0.547772+ 0.423188i)z5

− (0.047054− 0.181129i)z6− (0.077586− 0.302344i)z7
i

.

Then we get the real part figures and imaginary part figures of the refinable function and

two framelets (see Figs. 1, 2 and 3, respectively).

Example 4.2. Let

p0(z) =− 0.06250000+ 0.00000010i+ (0.06250000+ 0.00000030i)z

+ (0.50000000+ 0.00000020i)z2+ (0.50000000− 0.00000020i)z3

+ (0.06250000− 0.00000030i)z4− (0.06250000+ 0.00000010i)z5.
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Figure 1: The re�nable funtion φ with 2 vanishing moments from Example 4.1.
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Figure 2: The framelet ψnew
1

from Example 4.1.
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Figure 3: The framelet ψnew
2

from Example 4.1.
By a direct calculation, it is easy to check that all the conditions in Theorem 2.1 are sat-

isfied and the filter p0(z) has 3 vanishing moments. Repeating the steps in Example 4.1,

we obtain another wavelet frame with two conjugate (anti) symmetric framelets whose

symbols are:

pnew
1 (z) =

1

2

h

0.00600737− 0.00000005i+ (0.00985442+ 0.00000004i)z

− (0.55264553+ 0.00000006i)z2+ (0.55649267− 0.00000004i)z3

+ (0.55649267+ 0.00000004i)z4− (0.55264553− 0.00000006i)z5

+ (0.00985442− 0.00000004i)z6+ (0.00600737+ 0.00000005i)z7
i

,
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Figure 4: The re�nable funtion φ with 3 vanishing moments from Example 4.2.
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Figure 5: The framelet ψnew
1

from Example 4.2.
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Figure 6: The framelet ψnew
2

from Example 4.2.
pnew

2 (z) =
1

2

h

0.00600737− 0.00000005i+ (0.00985442+ 0.00000004i)z

+ (0.7474783963− 0.00000007i)z2− (0.23629867− 0.00000072i)z3

+ (0.23629867+ 0.00000072i)z4− (0.7474783963+ 0.00000007i)z5

− (0.00985442− 0.00000004i)z6− (0.00600737+ 0.00000005i)z7
i

.

Then we get the real part figures and imaginary part figures of the refinable function and

two framelets (see Figs. 4, 5 and 6, respectively).
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