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Abstract. The numerical solution of the harmonic heat map flow problems with blowup

in finite or infinite time is considered using an adaptive moving mesh method. A prop-

erly chosen monitor function is derived so that the moving mesh method can be used to

simulate blowup and produce accurate blowup profiles which agree with formal asymp-

totic analysis. Moreover, the moving mesh method has finite time blowup when the un-

derlying continuous problem does. In situations where the continuous problem has in-

finite time blowup, the moving mesh method exhibits finite time blowup with a blowup

time tending to infinity as the number of mesh points increases. The inadequacy of a

uniform mesh solution is clearly demonstrated.
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1. Introduction

We are concerned with the numerical solution of the harmonic map heat flow into the

unit sphere. In particular, we consider the initial-boundary value problem (IBVP)

θt = θr r +
1

r
θr −

sin(2θ)

2 r2
, 0< r < 1 (1.1)

θ(0, t) = 0, θ(1, t) = θ1, (1.2)

θ(r, 0) = θ0(r), 0< r < 1, (1.3)

where θ0 ∈ C[0,1] is a given function satisfying θ0(0) = 0 and θ0(1) = θ1. It is known

[12, 17, 18] that the solution of the IBVP (a) exists for all time if |θ0(r)| < π for all
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r ∈ [0,1], (b) blows up in a finite time and at infinity if |θ1| > π and |θ1|= π, respectively,

and (c) may blow up in a finite time if |θ1| < π but |θ0(r)| rises above π for some r ∈ (0,1).

Here, a solution is said to blow up in a finite time or at infinity (denoted by T ∈ (0,+∞])
if

lim sup
t↑T
‖θr(·, t)‖∞ = +∞. (1.4)

This is different from the widely studied blowup phenomenon associated with semilinear

parabolic equations where the solution itself, instead of the spatial derivative of the solu-

tion, becomes unbounded in a finite time (e.g., see Friedman and Mcleod [25]). Moreover,

via formal asymptotical analysis van den Berg et al. [35] show that for θ1 > π, the blowup

behavior of IBVP (1.1)-(1.3) is given by

lim
t↑T
θ

�

µκ (T − t)

| ln(T − t)|2
, t

�

= 2 arctan(µ), for all fixed µ > 0, (1.5)

where κ > 0 is a constant and µ is called the kernel coordinate in the literature.

PDE (1.1) is a special case of the harmonic map heat flow

ut =∆u+ |∇u|2u, (1.6)

where u(·, t) : D2 → S2, D2 is the unit disk in two dimensions and S2 is the unit sphere

in three dimensions. Indeed, it is easy to verify that (1.6) reduces to (1.1) for the radially

symmetric solution

u(r,φ, t) =







cos(φ) sin(θ(r, t))

sin(φ) sin(θ(r, t))

sin(θ(r, t))





 , (1.7)

where (r,φ) are the polar coordinates for D2 and θ(r, t) satisfies (1.1). PDE (1.6) is the

gradient flow associated with the energy E = 1

2

∫

D2 |∇u|2dV and its steady solution is a

harmonic map from D2 to S2. It is known [16,32] that IBVP (1.1)-(1.3) admits a classical

solution for a sufficiently smooth initial solution with small energy and a global weak

solution for a sufficiently smooth initial solution with finite energy. Such a weak solution is

unique if the energy is non-increasing along the flow [24] and is smooth except for at most

finitely many singular space-time points where non-constant harmonic maps “separate”

and a downward jump in the energy and blowup in the spatial derivative of the solution

occur. Finite time blowup in the harmonic map heat flow has been a topic of extensive

research; e.g., see [12,18,20,21,26,35].

PDEs (1.1) and (1.6) also arise in several other applications. For example, in the

study of the evolution of the director field in nematic liquid crystals (LCs) [36], u in (1.6)

models the mean orientation of the long axis of the molecules comprising the LC, and (1.1)

is obtained by considering LCs in a cylindrical tube. PDE (1.6) appears in the study of soft

ferromagnets mechanically at rest [13, 22] where u represents the magnetization of the

deformable body. The harmonic map heat flow is also used in the study of color image

enhancement or denoising; e.g., see [33,38].
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The numerical solution of IBVP (1.1)-(1.3) has been considered by a number of re-

searchers. In [4,5,7], Bartels and his coworkers propose a fully discrete scheme for solving

(1.6) and show the convergence to weak solutions of the continuous problem. They also

give some computational evidence of blowup behavior, but no comparison to known analy-

ses of the solution as the blowup time is approached. Their work is extended in [10] to har-

monic map heat flow into non-constant target manifolds. Generalizations to p-harmonic

heat flow and the Maxwell-Landau-Lifshitz-Gilbert equations are given in [3,9] and [1,8],

respectively. The related problem of wave map into sphere, which has applications to gen-

eral relativity, is considered in [6, 7]. An adaptive finite element method is proposed by

van der Schans [37] for solving a smoothed version of IBVP (1.1)-(1.3) (cf. Section 4.4).

We are interested in the numerical simulation of the blowup in the solution of IBVP

(1.1)-(1.3) using a moving mesh method based on so-called moving mesh PDEs (MM-

PDEs) [28, 29]. MMPDEs have been successfully used for the numerical simulation of

blowup such as in semilinear parabolic equations [14, 15, 19, 27], Cahn-Hilliard equa-

tions [23], and integro-differential equations [31]. In those situations, the solution be-

comes unbounded and the numerical computation typically stops at a finite time despite

the use of a uniform or an adaptive mesh [2, 11]. On the other hand, the blowup with

(1.1) is different, occurring in the spatial derivative instead of the solution itself. This may

make its numerical simulation more difficult. Indeed, proper mesh adaptation is necessary

so that the minimal mesh spacing can become infinitesimal and the corresponding spa-

tial derivative of the solution can become infinitely large. As we shall see in Section 4, a

uniform mesh will not lead to an infinitely large spatial derivative and the computation

typically takes a small time step for a while and then continues to reach a steady state

solution.

A main objective of this paper is to investigate how well MMPDEs work for the numer-

ical simulation of the blowup in IBVP (1.1)-(1.3). We restrict our attention to MMPDE5

(cf. (2.3)), a commonly used MMPDE. Using the blowup behavior (1.5) and a properly

chosen monitor function, we show that MMPDE5 defines a coordinate transformation (or

equivalently an adaptive mesh) under which the blowup profile of the solution can be ac-

curately represented. Moreover, we establish asymptotic forms as t → T for the coordinate

transformation and the solution and its spatial derivative. These asymptotics are verified

by the numerical results obtained with the MMPDE5-based moving mesh method which is

truly adaptive and makes no use of the blowup behavior (1.5). The agreement between the

theoretical prediction and the numerics in turn provides confidence in the moving mesh

method. The method is then used for the study of the blowup of (1.1) for various initial

conditions and that of the degree-m equivariant map generalization of (1.1). Numerical

results show that the method leads to finite time blowup when the underlying continuous

problem does. In situations where the continuous problem has infinite time blowup, the

method exhibits finite time blowup with the blowup time tending to infinity as the number

of mesh points increases.

The paper is arranged as follows. MMPDE5 and the related moving mesh method for

solving (1.1)-(1.3) are described in Section 2. An asymptotic analysis is given in Section 3

for MMPDE5 with a properly chosen monitor function and blowup behavior (1.5). In Sec-
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tion 4 the method is applied to the study of the blowup in IBVP (1.1)-(1.3) for various

initial conditions. The extension of the numerical study to the degree-m equivariant har-

monic map generalization of (1.1) is given in Section 5. We conclude in Section 6 with a

summary and some comments.

2. Moving mesh PDE method

A moving finite difference method based on a moving mesh PDE (MMPDE) [29,30] is

used for the numerical study of IBVP (1.1)-(1.3). With the method, a mesh of J +1 points,

r0(t) = 0< r1(t) < · · ·< rJ (t) = 1, (2.1)

is generated through a coordinate transformation r = r(ξ, t) from the computational do-

main Ωc = (0,1) to the physical domain Ω = (0,1); i.e.,

r j(t) = r(ξ j, t), j = 0, · · · , J , (2.2)

where ξ j = j/J , j = 0, · · · , J is a uniform mesh on Ωc. Such a coordinate transformation

r = r(ξ, t) is determined by an MMPDE and suitable boundary conditions. Here we use

the so-called MMPDE5 [29]

τṙ =
∂

∂ ξ

�

M
∂ r

∂ ξ

�

, ξ ∈ (0,1) (2.3)

subject to the boundary conditions

r(0, t) = 0, r(1, t) = 1, (2.4)

where “ · ” denotes the time derivative in the new coordinates ξ and t, M = M(θ , r, t) is a

suitably chosen monitor function, depending on the solution θ and used to control mesh

concentration, and τ > 0 is a constant parameter used to tune the response of the mesh

movement to the changes in M . The choice of M and τ has been discussed extensively in

the literature, e.g., see [30,34]. In our computation, we take τ = 10−2 and

M = (1+ (θr)
2)
γ

2 (2.5)

for some constant γ > 1; see the analysis in the next section which motivates this choice of

γ.

Once M has been chosen, the unknown variable θ(ξ, t) and the coordinate transforma-

tion r(ξ, t) can be obtained by numerically solving PDE (1.1) and moving mesh PDE (2.3)

simultaneously. To this end, we employ the method of lines approach and use central finite

differences for spatial discretization. Specifically, a central finite difference discretization

of (2.3) reads as

τ ṙ j =
1

∆ξ2

�

M j+1/2(r j+1 − r j)−M j−1/2(r j − r j−1)
�

, j = 1, · · · , J − 1, (2.6)
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where ∆ξ = 1/J and M j+1/2 is a finite difference approximation of M in (2.5) at r =

r j+1/2 = (r j + r j+1)/2. Since the so-computed monitor function is typically non-smooth, it

is common practice in the context of moving mesh methods to smooth M for a smoother

mesh and easier integration of the moving mesh PDE. In our computation, the monitor

function is smoothed using ten sweeps of a low-pass filter (cf. [30]).

For the discretization of PDE (1.1), we first transform from the physical coordinate r

to the computational coordinate ξ. Using the chain rule, we have

θt = θ̇ − ṙθr , θr =
θξ

rξ
.

Then we rewrite (1.1) as

θ̇ −
ṙ

rξ
θξ =

1

rξ

�

θξ

rξ

�

ξ

+
θξ

r rξ
−

sin(2θ)

2 r2
. (2.7)

Letting θ j ≈ θ(r j(t), t) and discretizing the above PDE using central finite differences, we

get

θ̇ j − ṙ j

θ j+1 − θ j−1

r j+1 − r j−1

=
2

r j+1 − r j−1

�

θ j+1 − θ j

r j+1 − r j

−
θ j − θ j−1

r j − r j−1

�

+
θ j+1 − θ j−1

r j(r j+1 − r j−1)
−

sin(2θ j)

2 r2
j

, j = 1, · · · , J − 1. (2.8)

Eqs. (2.6) and (2.8) and suitable approximations of boundary conditions (1.2) and

(2.4) form a system of differential-algebraic equations (DAE) which is solved using the

Matlab DAE solver ode15i. In our computation, the relative and absolute tolerances for the

adaptive time integration (used in ode15i) are taken to be rel tol = 10−8 and abstol =

10−6.

3. An asymptotic analysis for MMPDE5

In this section we give a formal analysis of the moving mesh method described in the

previous section. We want to identify the values of γ for which MMPDE5 (2.6) works

satisfactorily with the monitor function defined as

M = (θr)
γ. (3.1)

This monitor function is essentially the same as that in (2.5) especially for r ≈ 0 since

θr(0, t) becomes very large as t → T . We follow the approach of [15, 27] to solve the

MMPDE analytically using the exact form (1.5) for the solution. Note that this approach is

not practical in general since the physical solution is what is sought by the computation.

Nevertheless, the analysis determines the “optimal” mesh for our particular problem, which

can be used to verify our numerical results. Moreover, the approach is for theoretical
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analysis only. In actual computation, the monitor function is calculated using the computed

solution and the resulting mesh is thus truly adaptive. The numerical results obtained this

way in Section 4 will be compared to the theoretical findings obtained in this section.

We start the analysis by rewriting (1.5) as

θ
�

µR(t), t
�

= 2 arctan(µ) + o(1), as t → T, (3.2)

where

R(t) =
κ(T − t)

| ln(T − t)|2
. (3.3)

Noticing that the blowup profile is characterized in (3.2) in the kernel coordinate µ =

r/R(t), we would expect that it can be accurately represented in a computational coor-

dinate ξ which is a smooth function of µ. Thus, we seek a coordinate transformation

r = r(ξ, t) in the form

r(ξ, t) = R(t) z(ξ, t), (3.4)

with the property

z(ξ, t) = z0(ξ) +O(τ)+ o(1), as t → T, (3.5)

where o(1) denotes terms tending to zero as t → T and z0(ξ) is to be determined. The

existence of such a coordinate transformation is used to judge whether or not MMPDE5

(2.3) works satisfactorily for the current problem.

Differentiating (3.4) with respect to t and ξ, we have

ṙ = R(t)ż + Ṙ(t) z, (3.6)

rξ = R(t)zξ, (3.7)

rξξ = R(t)zξξ, (3.8)

where

Ṙ(t) = −
κ

| ln(T − t)|2
+

2κ

(ln(T − t))3
. (3.9)

Moreover, differentiating (3.2) with respect to µ gives

θr

�

µR(t), t
�

R(t) =
2

1+µ2
+ o(1), as t → T

or

θr

�

µR(t), t
�

=
2

1+µ2

1

R(t)
+ o

�

1

R(t)

�

, as t → T. (3.10)

Using (3.1) and (3.10), we get

M =

�

2

1+ z2

�γ 1

R(t)γ
+ o

�

1

R(t)γ

�

, (3.11)

from which we find

Mξ =
−2γ+1γ

(1+ z2)γ+1

zzξ

R(t)γ
+ o

�

1

R(t)γ

�

. (3.12)
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Substituting the above results into MMPDE (2.3) leads to

τ
�

R(t)ż + Ṙ(t)z
�

=
2γzξξ

(1+ z2)γ

1

R(t)γ−1
+

2γ(−2γ)zz2
ξ

(1+ z2)γ+1

1

R(t)γ−1
+ o

�

1

R(t)γ−1

�

,

or, after some simplification,

τ
�

R(t)γż + R(t)γ−1Ṙ(t)z
�

=

�

zξξ−
2γzzξ

1+ z2

�

2γ

(1+ z2)γ
+ o (1) . (3.13)

From (3.3) and (3.9), it is easy to see that, for γ > 1,

R(t)γ−1Ṙ(t)→ 0, as t → T. (3.14)

When γ > 1, the right-hand-side terms of (3.13) dominate over the left-hand-side terms

as t → T . Since these terms correspond to the right-hand-side or equidistribution term

of (2.3), the MMPDE is said to have dominance of equidistribution when they dominate.

MMPDEs with the property of equidistribution dominance are shown in [27] to admit a

coordinate transformation in the form of (3.4) with property (3.5) for semilinear parabolic

PDEs. For the current situation, it is easy to see that z0(ξ) satisfies

z′′0 −
2γz0(z

′
0)

2

1+ z2
0

= 0. (3.15)

This equation is supplemented with the boundary conditions

z0(0) = 0, lim
ξ→1−

z0(ξ) =∞, (3.16)

which correspond to the boundary conditions r(0, t) = 0 and r(1, t) = 1 for r = r(ξ, t)

(cf. (2.4)). Notice that the second condition corresponds to the limit of large z0 (or z) for

r = r(ξ, t) in the form (3.4); the interested reader is referred to a more detailed discussion

on the boundary conditions in [15,27].

It is interesting to point out that (3.15) is similar to the corresponding equation (cf.

Eq. (32) of [27]) for blowup of semilinear parabolic equations. This is because the monitor

function M , defined in (3.1), has an asymptotic form (3.11) which is similar to that (cf.

Eq. (28) of [27]) of semilinear parabolic equations where M is defined as a power of the

physical solution.

Boundary value problem (3.15) and (3.16) can be solved by letting v = dz0/dξ and

separating variables. This yields

ξ =

∫ z0(ξ)

0
(1+ s2)−γ ds

∫∞

0
(1+ s2)−γ ds

. (3.17)

The integrals in the above equation can be expressed in terms of the Gauss hypergeometric

function for general γ. For γ= 3/2, they have analytical expressions
∫ z0

0

(1+ s2)−
3

2 ds =
z0

p

1+ z2
0

,

∫ ∞

0

(1+ s2)−
3

2 ds = 1,
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and z0 can be found as

z0(ξ) =
ξ

p

1− ξ2
. (3.18)

For this value of γ, the coordinate transformation can be written as

r(ξ, t) = R(t)





ξ
p

1− ξ2
+O(τ)+ o(1)



 , as t → T (3.19)

and the blowup profile of the solution can be expressed in the computational coordinate

as

θ(ξ, t) = 2 arctan
ξ

p

1− ξ2
+O(τ)+ o(1), as t → T. (3.20)

Moreover, from (3.10) we can see

‖θr(·, t)‖∞ = |θr(0, t)| =
2

R(t)
, as t → T. (3.21)

Thus, using ‖θr(·, t)‖∞ we can rewrite θr(ξ, t) and r(ξ, t) as

|θr(ξ, t)|

‖θr(·, t)‖∞
= 1−ξ2 +O(τ)+ o(1), as t → T, (3.22)

r(ξ, t) =
2

‖θr(·, t)‖∞





ξ
p

1− ξ2
+O(τ)+ o(1)



 , as t → T. (3.23)

The asymptotic behavior (3.20), (3.22), and (3.23) will be verified in the next section

through numerical examples.

4. Numerical experiments

In this section, we present numerical results for the blowup in the solution of IBVP

(1.1)-(1.3) for various initial conditions. We are interested in the formation, time, and

profile of the blowup and if they can be correctly simulated numerically. Both uniform and

adaptive moving meshes are used. For mesh adaptation, we employ the moving mesh PDE

method described in Section 2 along with MMPDE5 (2.3), τ = 10−2, and monitor function

(2.5) with γ = 3/2. It is emphasized that the derivative needed in (2.5) is approximated

by a divided finite difference of the computed solution and the computational procedure is

truly adaptive.

4.1. Finite time blowup case: θ1 > π

We begin by considering an initial condition

θ0(r) = 4.25πr2, (4.1)
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(b) ∆t vs. t , uniform mesh J = 128
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(c) θ vs. r, uniform mesh J = 512
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(d) ∆t vs. t , uniform mesh J = 512Figure 1: IBVP (1.1)-(1.3) with the initial solution (4.1) on uniform meshes. The bla
k 
urves in (a)and (
) are the initial solution.
with θ1 = 4.25π > π. Theoretically, we expect finite time blowup in θr . Snapshots of the

solution at a sequence of time instants obtained with a uniform mesh of points J = 128

and J = 512 are shown in Fig. 1. They show that the computation takes a small time step

(∆t ≈ 3 × 10−5) near t = 0.08 while the computational solution is developing a large

spatial derivative at r = 0. However, after a while, the apparent development of blowup

stops and the integration continues with a much larger step size and finally the solution

seems to reach a steady state. The same phenomenon occurs when a larger number of

mesh points is used (a solution with J = 512 is shown) although a much smaller time step

size (∆t ≈ 3×10−6, corresponding to a larger spatial derivative) is used for the finer mesh.

These results indicate that the central finite difference scheme on a uniform mesh fails to

reproduce the theoretically predicted finite time blowup.

Results obtained on a moving mesh of J = 128 points are shown in Fig. 2 and 4.

Unlike the uniform mesh situation, the blowup develops near t = 0.08238, where the

spatial derivative at the origin increases dramatically and reaches 109. Near this time, the

minimal spacing of the mesh and the time step size for the ODE integrator are getting

smaller and finally reach around 10−11 and 10−16, respectively. Note that the integration

cannot be carried passing the blowup time; it stops because the allowed minimum time step

(about the size of machine epsilon) is reached (cf. Fig. 4(d)). The solution θ is plotted as a
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(b) close up near r = 0Figure 2: IBVP (1.1)-(1.3) with the initial solution (4.1) on a moving mesh of J = 128. The solution θis plotted as a fun
tion of r for a number of time instants. The bla
k 
urve is the initial solution.
function of r in Fig. 2 for various time instants. It can be seen that the solution has a very

sharp gradient at r = 0 especially when t is close to the blowup time. A moving mesh of

41 points is shown in Fig. 3.

Figs. 4 (a) and (b) show θ(ξ, t) and θr(ξ, t)/‖θr (·, t)‖∞ as functions of ξ for various

time instants. The green lines are the corresponding asymptotic values for the quantities

given in (3.20) and (3.22). The figures show that the computational approximations of

these quantities are approaching their asymptotics as t → T . They can be made closer

with finer meshes, see Fig. 5. These agreements consolidate our theoretical analysis in the

previous section and also provide confidence in our numerical results. To further demon-

strate the ability of the moving mesh method to represent the blowup profile accurately in

the computational coordinate ξ, we choose ξ = ξ j in (3.23) and take the logarithm of the

both sides of the resulting equation. We have

ln r j ≈ − ln(‖θr(·, t)‖∞) + ln

�

2ξ j
Æ

1− ξ2
j

�

, as t → T. (4.2)
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Figure 3: An adaptive moving mesh of 41 points is shown for IBVP (1.1)-(1.3) with the initial solution.The x and y axes are r and t, respe
tively.
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(b) θr/‖θr (·, t)‖∞ vs. ξFigure 5: IBVP (1.1)-(1.3) with the initial solution (4.1) on a moving mesh of J = 1024. The green
urves in (a) and (b) are the 
orresponding asymptoti
 values (3.20) and (3.22), respe
tively.
This implies that for a given j, ln r j is a linear function of ln(‖θr(·, t)‖∞) as t → T and

for r j close to the origin. This is verified in Fig. 4(c) where ln r j is shown as a function of

ln(‖θr(·, t)‖∞) for j = 2, · · · , 40.

The blowup time is plotted as a function of J in Fig. 6. One can see that the blowup
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Figure 6: IBVP (1.1)-(1.3) with the initial solution (4.1) on moving meshes. Blowup time T is plottedas a fun
tion of J .
time is converging to a finite time as J → ∞. This suggests that the continuous problem

has finite time blowup, consistent with the formal analysis of [35].

Finally, we consider an initial condition with two peaks,

θ0(r) = π sin(2πr)+ 2πr. (4.3)

Results obtained with the moving mesh method are shown in Fig. 7. As in the case with

initial condition (4.1), the computational solution develops blowup at a finite time and is

approaching to the asymptotic described in (3.22) for the blowup region (near the origin).

For the remote region (near the outside boundary), the solution tends to match the outside

boundary condition while maintaining the two-peak shape of the initial condition.
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(b) θ vs. ξFigure 7: IBVP (1.1)-(1.3) with the initial solution (4.3) on a moving mesh of J = 128. The bla
k 
urvein (a) is the initial solution. The green 
urve in (b) is the asymptoti
 value (3.20).
4.2. Borderline case: θ1 = π

For this borderline case, it is known theoretically that blowup occurs at infinity. To

study this situation, we consider the initial solution

θ0(r) = πr2. (4.4)
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Figure 9: IBVP (1.1)-(1.3) with the initial solution (4.4) on moving meshes. Blowup time T is plottedas a fun
tion of J .
Results obtained with the moving mesh method are shown in Fig. 8. Surprisingly, the

computational solution for a fixed J = 128 does not blow up at infinity. Instead, it blows

up at a finite time (T ≈ 2.284) and exhibits almost the same behavior as the case discussed

in Section 4.1; see and compare Figs. 8 and 4. The same phenomenon holds for larger J

(results not shown here). However, the blowup time does not seem to converge to a finite

value as J increases; instead, it seems to converge to infinity, see Fig. 9. This can be viewed

as a reflection of the infinity time blowup of the underlying continuous problem.
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4.3. Initial conditions with θ1 < π and θ 0(r) rising above π for some r ∈ (0, 1)

For this type of initial condition, the solution may or may not blow up (at a finite time).

To see this, we consider the initial condition

θ0(r) = απ

�

(1− r) sin(2πr)+
1

2
r

�

, (4.5)

where α is a parameter. Results are shown in Fig. 10 for α = 1.5 and α = 1.6. Finite time

blowup occurs for α= 1.6 but not with α = 1.5. Interestingly, from Fig. 10(c) and (d) one

can see that the solution for α = 1.5 develops a sharp gradient and appears to approach

the asymptotics, however, this development eventually ceases and the solution converges

to a steady state which is a monotone function connecting boundary conditions θ(0) = 0

and θ(1) = π.
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(d) θ vs. ξ, α = 1.5Figure 10: IBVP (1.1)-(1.3) with the initial solution (4.5) on a moving mesh of J = 128. The bla
k
urves in (a) and (
) are the initial solutions while the green 
urves in (b) and (d) are the asymptoti
value (3.20).
4.4. A smoothed problem

Recall that PDE (1.1) is singular at r = 0. A regularization method is used by van

der Schans [37] for the finite element solution of IBVP (1.1)-(1.3). The regularization is
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achieved by modifying the physical domain from (0,1) to (ε, 1) for some small ε > 0. The

smoothed IBVP reads as











θt = θr r +
1

r
θr −

sin(2θ)

2r2
, ε < r < 1,

θ(ε, t) = 0, θ(1, t) = θ1,

θ(r, 0) = θ0(r), ε < r < 1.

(4.6)

Following [37], we consider an initial condition

θ0(r) = π
�

2 sin(π(r − ε))+ 0.2(r − ε)
�

, (4.7)

for which θ1 < π but θ0(r) arises above π for some r ∈ (ε, 1). Note that the original IBVP

(without smoothing) with this initial condition has a finite time blowup around t = 0.0162.

Numerical solutions obtained with the moving mesh method for IBVP (4.6) with ε= 10−5

are shown in Fig. 11. One can see that the computational solution develops a large gradient

and appears to initially approach the asymptotic solution (3.20) but instead ultimately

reaches a steady state. This phenomenon is similar to what observed in [37]. Our results

seem to suggest that the regularization can change the dynamics of the underlying problem

dramatically.
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urve in (a) is the initial solutionand the green 
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 solution (3.20).
5. Degree-m equivariant harmonic maps

PDE (1.1) belongs to a family of so-called degree-m equivariant maps (e.g., see [26])

governed by

θt = θr r +
1

r
θr −m2

sin(2θ)

2 r2
, 0< r < 1, (5.1)
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where m is a positive number. The above PDE is obtained by seeking radially symmetric

solutions of the form

u(r,φ, t) =







cos(mφ) sin(θ(r, t))

sin(mφ) sin(θ(r, t))

sin(θ(r, t))





 , (5.2)

in PDE (1.6). The dynamics of (5.1) are very different from those of (1.1) especially for

m ≥ 2. In particular, it is known [35] that PDE (5.1) can only have infinity time blowup

when m ≥ 2.

The blowup behavior for IBVP (5.1), (1.2), and (1.3) is given by

lim sup
t↑T

θ(R(t)µ, t) = 2 arctan(µm), for all fixed µ > 0, (5.3)

where T can be finite or infinity and R(t) is defined such that

R(t)mθ(r, t) ∼ 2 rm, as r → 0 and as t → T. (5.4)

(The interested reader is referred to [35] for the expression of R(t) for all different cases

of m.) The above relation suggests that we can choose the monitor function in the form

M(r, t) =

 

∂ θ
1

m

∂ r

!γ

(5.5)

for some γ > 0. With this choice of the monitor function, ‖M(·, t)‖∞ ∼ R(t)−γ and analysis

can be done as in Section 3 for MMPDE5 (2.3). Indeed, using the properties

R(t)→ 0, R(t)γ−1Ṙ(t)→ 0, as t → T, (5.6)

we can show that MMPDE5 has the dominance of equidistribution when γ > 1. In the case,

a coordinate transformation in the form (3.4) and (3.5) exists, with z0(ξ) determined by






z′′0 + γ(z
′
0)

2

�

(m− 1)zm−1
0

arctan(zm
0 )
+

m− 1− (m+ 1)z2m
0

(1+ z2m
0 )z0

�

= 0,

z0(0) = 0, lim
ξ→1−

z0(ξ) =∞.

(5.7)

Fig. 12 shows the results obtained with the moving mesh method with monitor function

(5.5) (γ = 3/2) for PDE (5.1) with m= 4 and the initial solution

θ0(r) = 1.5πr2. (5.8)

As for the borderline case discussed in Section 4.2, the computational solution for a fixed

J also shows a finite time blowup behavior but the blowup time, as shown in Fig. 13, is

tending to infinity as J →∞. The latter suggests that the continuous problem has blowup

at infinity, which is consistent with the theoretical analysis.

Finally, we point out that solving (5.1) with a uniform mesh does not lead to blowup

at a finite time or infinity. Moreover, the maximal derivative of the computational solution

does not occur at the origin but instead at a small distance from the origin; cf. Fig. 14(a).

The distance decreases as J increases, see Fig. 14(b).
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(d) ∆t vs. tFigure 12: IBVP (5.1) (m = 4), (1.2), and (1.3) with the initial solution (5.8) on a moving mesh of
J = 128. The bla
k 
urve in (a) is the initial solution.

Figure 13: IBVP (5.1) (m = 4), (1.2), and (1.3) with the initial solution (5.8) on moving meshes.Blowup time T is plotted as a fun
tion of J .
6. Conclusions and comments

In the previous sections we have studied the moving mesh simulation of the blowup in

the harmonic map heat flow (1.1) or more generally (5.1) with m > 0. Using the blowup
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profile (1.5) or (5.3), we have shown that MMPDE5 (2.3), together with monitor function

(3.1) or (5.5), admits a coordinate transformation in the form (3.4) and (3.5) with z0(ξ)

satisfying (3.15) or (5.7). For the special case with m = 1 and γ = 3/2, the coordinate

transformation is found to have the form (3.19) and the solution θ and its derivative θr

are given in (3.20) and (3.23) in the computational coordinate ξ. These asymptotics have

been used to verify the moving mesh method described in Section 2 and in turn verified by

numerical results obtained with the method.

Numerical results presented in Sections 4 and 5 have demonstrated that with a properly

chosen monitor function, the moving mesh method can be used to simulate the blowup in

the harmonic map heat flow and produce accurate blowup profiles. More specifically, the

computational solution has a finite time blowup and the blowup time converges to a finite

value for the situation where the continuous problem has finite time blowup. On the other

hand, for the situation when the continuous problem has blowup at infinity, the moving

mesh scheme for a fixed number (J) of mesh points exhibits a finite time blowup but the

blowup time tends to infinity as J tends to infinity. For both situations, the numerical

approximations can be made closer to their asymptotics by using a larger J .

Numerical results also show that uniform meshes cannot produce “real” blowup. In-

deed, for cases where the continuous problem has finite time blowup or blowup at infinity,

the solutions on a uniform mesh first develop sharp gradient at or near the origin and then

this development stops and finally tend to steady state solutions. The phenomenon holds

when a finer mesh is used. Moreover, for the degree-m equivariant map case with m ≥ 2,

the maximal derivative of the computed solution does not occur at the origin but instead

at a small distance from the origin. This distance decreases as a finer mesh is used.

It should be pointed out that the analysis and the moving mesh computation presented

in the previous sections do not rely on the explicit knowledge of R(t), the scaling factor

defined in (5.4). On one hand, this indicates that the MMPDE moving mesh method is

robust for use in numerical simulation of different types of blowup. On the other hand,

it also implies that our numerical results may not be very useful in predicting or verifying
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R(t). Numerical prediction or verification of R(t) is certainly a topic deserving further

investigations. It is also worth mentioning that applications of the current work to actual

problems in liquid crystals, ferromagnetism and image processing and the extension to 2D

harmonic map heat flow are currently under investigation.
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