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Abstract. Goal of this paper is to suitably combine a model with an anisotropic mesh
adaptation for the numerical simulation of nonlinear advection-diffusion-reaction sys-
tems and incompressible flows in ecological and environmental applications. Using the
reduced-basis method terminology, the proposed approach leads to a noticeable compu-
tational saving of the online phase with respect to the resolution of the reference model
on nonadapted grids. The search of a suitable adapted model/mesh pair is to be meant,
instead, in an offline fashion.
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1. Introduction and motivations

Many physical phenomena are characterized by the coexistence of different scales in
space and time. The most complex phenomena, however, often take place only over small
parts of the whole spatial configuration. For example, in some fluid dynamics applications,
the peculiar geometry of the configuration triggers some complex flow features: water
in a backward-facing step channel shows complex patterns only past the step, where re-
circulations on small scales and detachment of the flow occur; blood in an artery with
an aneurysm exhibits intricated recirculation patterns in the aneurysmal sac. It is clear
that a monolithic approach to these intrinsically complex problems is, in general, pro-
hibitive from a computational viewpoint, whereas a more tailor-made approach seems
more feasible. This justifies the increasing interest in reduced-order modeling techniques,
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such as, reduced-basis method [21], proper generalized decomposition [8], model reduc-
tion [3,7,31], compressed sensing [6], etc.

The approach that we propose to contain the computational cost relies on a combi-
nation of model with mesh adaptation. This was investigated preliminarly in [11]. In
particular, if we are given a reduced model as well as an adapted grid, both capturing the
essential and complex features of the problem at hand, we can show that an online com-
putation based on this adapted model/mesh leads to an appreciable computational saving
over the employment of the monolithic model on a uniform, sufficiently fine, mesh. Of
course, the offline phase required to build up the "database" of adapted model/mesh, is a
costly overhead which is, for this reason, confined to a preliminary step.

Concerning the model adaptation, the idea is to devise an adapted model which is
derived from the monolithic model by dropping the terms which are more computationally
expensive [3, 4, 30]: to fix ideas, in the backward-facing step configuration, we expect
that the nonlinear term in the momentum equation of the Navier-Stokes system can be
neglected in some parts of the domain. Which actual parts, however, cannot be determined
a priori; only an a posteriori adaptation method can predict where the nonlinear term can
be actually dropped.

As far as the mesh adaptation is concerned, we employ anisotropically adapted grids,
that is, where both the size, shape and orientation of the triangles are adjusted to mate the
strong directional features as well as the small-scale patterns exhibited by the flow at hand.
The computational benefits of anisotropic mesh adaptation over isotropic adaptativity are
already well established in the literature [12,13,15,16,18,22–24,32].

Both model and mesh adaptations are driven by suitable a posteriori error estima-
tors. In particular, we exploit the potentiality of a goal-oriented approach to control in
a straightforward way quantities which are of some importance in diverse physical con-
texts [2,17,28].

The outline of the paper is the following. In Section 2, we focus on the model adap-
tation. Section 3 deals with mesh adaptation: first, the anisotropic setting is introduced,
and then the goal-oriented a posteriori analysis is provided. In Section 4, model and mesh
adaptivities are merged. In the last section, the proposed approach is applied to the Navier-
Stokes equations for incompressible flows.

2. A goal-oriented a posteriori model analysis for nonlinear problems

The standard mathematical approach to a goal-oriented analysis in a nonlinear frame-
work is based on a reformulation of the problem at hand as a constrained minimization
problem, hinging on a suitable Lagrangian functional [2, 17]. Critical issues to be tackled
in the definition of the Lagrangian are the treatment of nonhomogeneous Dirichlet bound-
ary data as well as the inclusion of possible stabilization terms in the discrete variational
formulation. In particular, concerning the first issue, we resort to a penalty method (see,
e.g., [1,9]).

Let V and W be two real Hilbert function spaces associated with the computational
domain Ω ⊂ R2, and consider the general weak formulation of the differential problem at
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hand:
find u1 ∈ V : a(u1)(w) + d(u1)(w) = F(w), ∀w ∈W, (2.1)

where a(·)(·) and d(·)(·) are semilinear forms (i.e., nonlinear in the first argument and
linear with respect to the second one) and F : W → R is a linear functional. Throughout
the paper, we refer to (2.1) as to the fine primal problem. We point out that (2.1) is a
Petrov-Galerkin formulation, since different function spaces are employed for the trial and
the test function.

The purpose of the numerical computation is the estimation of J(u1), where J : V → R

is a continuous functional of interest, possibly nonlinear, identifying a certain physically
meaningful quantity. It is understood, however, that the computation of u1 is beyond reach.
Thus, we have to replace the fine primal problem with a suitable reduced model, that is
computationally affordable. In particular, we shall deal with physical problems where,
roughly speaking, the influence of the form d(·)(·) on the estimate of J(u1) is confined to
a small portion, Ω1, of Ω. Then we solve everywhere the problem represented only by the
form a(·)(·) (the so-called coarse problem), enriched locally (in Ω1) with the form d(·)(·).
For this purpose, we introduce the adapted primal problem, depending on α:

find uα ∈ V : a(uα)(w) + d(uα)(αw) = F(w), ∀w ∈W, (2.2)

where α ∈ L∞(Ω) takes on only the values 0 or 1. When α = 0 everywhere, we get the
coarse model, whereas we recover (2.1) for α = 1 on the whole Ω. On the contrary, the
choice α = χΩ1

yields a possible adapted model, χω denoting the characteristic function of
ω⊂ R2. This represents the desired reduced model.

It is understood that in the term d(uα)(αw), function α is not involved in any differen-
tial operator. Moreover, the form d(·)(·) must not change the differential nature (elliptic,
hyperbolic, etc.) of the coarse problem associated with the form a(·)(·).

It is clear that the region Ω1 cannot be detected, in general, by means of a priori in-
formation only. We then propose an automatic computational tool able to detect this area.
This tool is based on a computable a posteriori error estimator, ηα, of the output model
error J(u1)−J(uα). For this purpose, we introduce the following (trivial) constrained min-
imization problem [2], assuming the existence and the uniqueness of the solution uα to
(2.2) in V :

find uα ∈ V : inf
v∈Mα

J(v) = J(uα), (2.3)

where Mα = {v ∈ V : a(v)(ξ) + d(v)(αξ) = F(ξ),∀ξ ∈W}. This trick allows us to resort
to the standard Lagrangian theory to enforce the constraint. We introduce the adapted
Lagrangian Lα : V ×W → R

Lα(uα, zα) = J(uα) + F(zα)− a(uα)(zα)− d(uα)(αzα), (2.4)

zα being the Lagrange multiplier associated with the constraint in Mα.
The solution to (2.3) is equivalent to finding the saddle-point of (2.4), such that

L ′α(uα, zα)(ψ,φ) = 0, ∀(ψ,φ) ∈ V ×W,
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with L ′α(uα, zα)(ψ,φ) the Fréchet derivative ofLα(uα, zα) with respect to uα, evaluated at
ψ, and with respect to zα, evaluated at φ. We are consequently led to solve problem (2.2)
together with the adapted dual problem

find zα ∈W : a′(uα)(zα,ψ) + d ′(uα)(αzα,ψ) = J ′(uα)(ψ), ∀ψ ∈ V, (2.5)

where a′(uα)(·,ψ), d ′(uα)(·,ψ) and J ′(uα)(ψ) denote the Fréchet derivatives of a(uα)(·),
d(uα)(·) and J(uα) with respect to uα and evaluated at ψ.

The Lagrangian L1 associated with the fine problem (i.e., Lα, with α= 1 everywhere)
can be related to the adapted Lagrangian via relation

L1(u, z) =Lα(u, z)− d(u)((1−α)z), ∀(u, z) ∈ V ×W.

Let us introduce the primal, ρ(uα)(·) : W → R, and the dual, ρ∗(uα)(zα, ·) : V → R,
model residuals given by

ρ(uα)(·) = F(·)− a(uα)(·)− d(uα)(·),

ρ∗(uα)(zα, ·) = J ′(uα)(·)− a′(uα)(zα, ·)− d ′(uα)(zα, ·).

It is easy to obtain the identities

ρ(uα)(·) = −d(uα)((1−α)·), ρ∗(uα)(zα, ·) = −d ′(uα)((1−α)zα, ·).

We state now the main result about the a posteriori model output error control:

Proposition 2.1. For a(·)(·), d(·)(·) and J(·) smooth enough, we have

J(u1)− J(uα) = −d(uα)((1−α)zα) +
1

2

�
ρ(uα)(ez) +ρ

∗(uα)(zα, eu)
�
+R, (2.6)

where eu = u1 − uα and ez = z1 − zα are the primal and dual model error, respectively, while

R=
1

2

∫ 1

0

L ′′′1 (uα+ seu, zα + sez)({eu, ez}, {eu, ez}, {eu, ez})s(s− 1)ds

is the remainder, with z1 the fine dual solution to (2.5) for α identically equal to 1.

Proof. We refer to the appendix in [30]. �

Relation (2.6) provides us with an exact representation of the model error J(u1) −

J(uα). However, this is not explicitly computable as the fine solutions u1 and z1 are in-
volved. Thus we adopt as model error estimator ηα the only computable term in (2.6),
namely

ηα = −d(uα)((1−α)zα)
�
≡ ρ(uα)(zα)
�
. (2.7)

In [3] some theoretical assumptions are supplied to justify the dropping of the two resid-
uals ρ(uα)(ez) and ρ∗(uα)(zα, eu) and of the remainder R in (2.6), while in [30] these
hypotheses are numerically corroborated in the unsteady shallow water setting.
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2.1. The model adaptation procedure

We aim at devising a reliable iterative procedure, referred to as model adaptation pro-

cedure, able to convert the error estimator ηα in (2.7) into a practical tool for selecting the
fine (Ω1) and coarse (Ω0 ≡ Ω\Ω1) areas in Ω. The outcome of this procedure is thus a
suitable function α = χΩ1

, so that |J(u1)− J(uα)| ≤ τm, with τm a user-defined tolerance,
and such that the measure of Ω1 be as small as possible.

To actually solve the adapted problems (2.2) and (2.5), we introduce a conformal
partition Th = {K} of Ω into Nh triangles K [9]. At this stage, we assume that Th is
sufficiently fine so that the discretization error is negligible.

To initiate the iterative procedure, we select reference primal and dual solutions com-
putationally cheap, i.e., we let uα = u0 and zα = z0. This leads to η0 = −d(u0)(z0),
according to definition (2.7).

The main steps of the model adaptation algorithm are listed in the following α-adaptivepro
edure:

Algorithm 2.1. α-adaptive procedure.

1. set α|K = 0, ∀K ∈ Th;

2. solve (2.2) and (2.5);

3. compute ηα via (2.7);

4. if |ηα| ≤ τm break

5. for i = 1, Nmax

6. for K ∈ Th

7. compute ηα,K = ηα
��
K

;
8. if |ηα,K |> δiτm/Nh, α

��
K
← 1;

end
9. solve (2.2) and (2.5);

10. compute ηα via (2.7);
11. if |ηα| ≤ τm break

end

The localization in Step 7 simply relies on the additive property of the integrals defining
the bilinear form d(·)(·). The check at Step 8 aims at equidistributing the total model error
over the triangles. This mimics what is typically done in a mesh adaptivity framework.
Through the parameter δi, we limit the model refinement only to the "worst" elements. In
practice, we set δi = δ021−i, with δ0 ∈ R, so that, at each iteration, the model refinement
criterion gets more severe†.

Steps 4 and 11 check the reliability of the estimator (2.7). Indeed, ηα neglects the
model residuals, ρ(uα, ez) and ρ∗(uα)(zα, eu). Moreover, since Step 8 predicts a new dis-
tribution of the function α, we need to check the reliability of such a prediction via Steps
9-11.

†The choice for δi avoids the continuous switching on/off between coarse and fine model on the same element.
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Finally, to ensure the termination of the adaptive procedure, we fix a maximum num-
ber, Nmax, of iterations.

We point out that the α-adaptive pro
edure is not a priori guaranteed to be ef-
ficient, i.e., the area returned for Ω1 is not necessarily a minimum, and only a model
refinement is allowed. However, we expect that the choices made for both the initial guess
(α = 0 everywhere) and the model equidistribution criterion will improve the efficiency of
the procedure.

The α-adaptive pro
edure ensures a nondecreasing sequence of {Ω1} (see the ta-
bles below). In this respect, we are constructing somehow a hierarchy of reduced models,
differing for the size of Ω1, and such that Ωi1 ⊆ Ω

i+1
1 , with i= 1, · · · ,Nmax − 1.

2.2. Numerical assessment

The model estimator (2.7) and the α-adaptive pro
edure are here applied to a
scalar and a vector test case, as examples of interest in bioscience.

2.2.1. A logistic population problem

As an instance of a nonlinear scalar problem, we consider a model of population dynamics
(see, e.g., [26,27]). We are interested in the study of diffusion mechanisms, modeling the
movement of many individuals in an environment or media. The individuals can be very
tiny (e.g., bacteria, molecules, cells) or large objects (e.g., animals, plants). In particular,
we deal with the stationary case by assuming that the spatial distribution of the individual
density has reached the steady state. The reference adapted model is





−µ∆uα + b · ∇uα −σuα +αγu2
α
= f in Ω,

uα = 0 on ΓD,

µ
∂ uα

∂ n
= c2 on ΓN ,

(2.8)

where µ ∈ R+, σ,γ ∈ L∞(Ω) with σ,γ > 0 a.e. in Ω, b ∈ [L∞(Ω)]2 with ∇ · b ∈ L∞(Ω)

and b ·n≥ 0 on ΓN , c2 ∈ L2(ΓN ) and f ∈ L2(Ω) are given functions; µ∂ uα/∂ n= µ∇uα ·n

is the co-normal derivative of uα, n being the unit outward normal vector to the boundary
∂Ω of the domain. Moreover, ΓD and ΓN denote two portions of the boundary ∂Ω such
that ΓD ∪ΓN = ∂Ω and ΓD ∩ΓN = ;.

Here and throughout the paper we use a standard notation to denote both the Lebesgue
and the Sobolev spaces of functions and the corresponding norms [19]. In general, to guar-
antee the well-posedness of the weak form associated with (2.8), some further conditions
have to be demanded on the data. In particular, we refer to [29] and [33] for a theoretical
investigation of (2.8) and of variants thereof.

The positiveness of σ and γ instills the logistic growth feature to the considered popu-
lation, since the global reactive term −σuα+γu2

α in (2.8)1 can be rewritten in the standard
form−σuα
�
1−αγ/σuα
�
, with σ the linear reproduction rate andσ/γ the carrying capac-

ity of the environment [26,27]. The diffusive term in (2.8) models the random dispersion
of the species; the advective term takes into account some possible transport phenomenon;
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f describes an external injection or withdrawal. The boundary ΓD mimics a hostile portion
of the borders, while the Neumann data specifies an immigration or emigration flux.

As a reasonable choice, through αwe give up the computationally most expensive term,
that is, the nonlinear contribution γu2

α. This amounts to allowing for a simple Malthusian
growth [26,27].

The weak form of (2.8) matches (2.2), where V = W = H1(Ω), and where the forms
a(·)(·), d(·)(·) and F(·) are defined by

a(uα)(w) =

∫

Ω

µ∇uα · ∇wdΩ+

∫

Ω

(b · ∇uα)wdΩ−

∫

Ω

σuαwdΩ+
1

ǫ

∫

ΓD

uαwds, (2.9a)

d(uα)(αw) =

∫

Ω

αγu2
αwdΩ, F(w) =

∫

Ω

f wdΩ+

∫

ΓN

c2wds, (2.9b)

after introducing a family of real numbers ǫ > 0 to enforce weakly the Dirichlet data.
Notice that, with a view to the discrete counterpart of (2.2), ǫ = ǫ(h), and limh→0 ǫ(h) = 0.
In particular, we resort to the recipe provided in [1] for the case of convex polygonal
domains, and choose ǫ(h) = ǫ0h2, where h=maxK∈Th

diam(K), and ǫ0 ∈ R
+.

We employ the logistic model (2.8) for describing the motion of a school of fishes in a
small area off sea. This is a reasonable model under the assumption that the vertical motion
of the fishes is negligible and that the portion of the sea is sufficiently large compared to
the dimension of the fishes. In particular, the domain Ω coincides with the square (−1,1)2.
The other data are µ = 10−3, b = (x2 − 0.1x1, 3(−x1 − 0.1x2))

T , with ∇ · b = −0.4,
σ = 10−2, γ= 2 · 10−2, f = 100χE, with E = (0.45,0.55)× (0.45,0.55) (see Fig. 1 (left)).
Full homogeneous Dirichlet boundary conditions are assigned on ∂Ω. The fine primal
solution is heavily dominated by the spiral-shaped field b, as evident in Fig. 1 (center).
The damping of the solution towards the center of the domain is due to diffusion, to the
negative divergence of b and to the logistic term.

We are interested in measuring the fish flux across a rectangular creel, Cr =

(−0.05,0.05)× (−1,0) (see Fig. 1 (left)); thus we identify the functional J as J(u1) =

−
∫

Cr
b1u1dCr , where b1 is the first component of b. The reference value of J(u1) is
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Figure 1: Logisti
 population (model adaptation): domain, adve
tive �eld, 
reel, and emission region(left); �ne primal (middle) and dual (right) solutions.
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7.3972 · 10−2. According to the general recipe (2.7), the model error estimator for the
logistic population model (2.8) is

ηα = −d(uα, (1−α)zα) =
∑

K∈Th

ηα,K with ηα,K = −

∫

K

(1−α)γu2
αzαdK , (2.10)

zα being the solution to the adapted dual problem



−µ∆zα−∇ · (bzα)−σzα + 2αγuαzα = −b1χCr

in Ω,
zα = 0 on ΓD,
(µ∇zα+ bzα) · n= 0 on ΓN .

The adapted dual problem is linear. It entails a Malthusian growth provided by the linear
reproduction rate, σ − 2αγuα. The corresponding fine dual solution is shown in Fig. 1
(right).

The α-adaptive pro
edure is run with a global tolerance τm = 10−3, δ0 = 100,
Nmax = 10 and a uniform unstructured mesh consisting of Nh = 6800 elements. The
procedure stops after 6 iterations.

To deal with the nonlinear term in (2.8), we resort to a fixed-point strategy where,
at the (k+ 1)-iteration, γu2

α is replaced by the linearized term γu(k)α u(k+1)α . The stopping
criterion is ‖u(k+1)α − u(k)α ‖∞ ≤ 10−6.

Fig. 2 collects the distribution of the fine and coarse areas (first column), the corre-
sponding adapted primal solution (middle column) and the distribution of estimator ηα,K

in (2.10) at the second (first row), fourth (second row), and sixth (third row) iteration.
The fine regions gradually crowd around the streamlines stemming from the release area
E. A portion of the central region of Ω contributes to the fine model too, though to a lesser
extent, as the density of the fishes moving inward decreases (compare the area distribu-
tion at the fourth and sixth iteration). The distribution of ηα,K keeps up with this gradual
updating of the fine regions and takes on a maximum absolute value of about 10−7 on the
last adapted model. No macroscopic difference can be appreciated on comparing the three
adapted primal solutions in Fig. 2.

The good performance of both the error estimator and the α-adaptive pro
edure
are confirmed by the values reported in Table 1, where the percentage of the fine area,
the estimator of the relative error, the actual relative error, the model effectivity index,Table 1: Logisti
 population (model adaptation).

# it |Ω1|%
|ηα|

|J(u1)|

|J(u1)−J(uα)|

|J(u1)|
E.I.α CPU time

1 0.00 1.48 · 10−01 1.21 · 10−01 1.23 1.105
2 3.14 7.61 · 10−02 6.25 · 10−02 1.22 2.764
3 4.98 5.36 · 10−02 4.37 · 10−02 1.23 2.777
4 9.93 3.03 · 10−02 2.54 · 10−02 1.20 2.757
5 15.72 1.49 · 10−02 1.25 · 10−02 1.19 2.744
6 21.39 7.14 · 10−03 6.01 · 10−03 1.19 2.755
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Figure 2: Logisti
 population (model adaptation): distribution of Ω1 and Ω0 (left 
olumn); adaptedprimal solution (middle 
olumn) and distribution of ηα,K (right 
olumn), at the se
ond (�rst row),fourth (se
ond row) and sixth (third row) iteration.
E.I.α = |ηα|/|J(u1)− J(uα)|, are summarized throughout all the six iterations. Notice that
about 22% of fine model suffices to guarantee a relative accuracy on the goal functional
less than 10−2. The last column in the table shows the CPU time in seconds‡ required by
the fixed-point iteration to solve the adapted primal problem (2.8). The reference time to
solve the fine problem is 3.854 seconds. The CPU times in the table are always smaller
than this reference value (of about 30% at least!).

Finally, Fig. 3 shows the histograms of the model error estimator into ten equally spaced
containers, by returning the number of mesh elements for each container. As expected, the
mesh element distribution shifts leftward as the iterations go by. At the sixth iteration,
most of the elements is clustered in the first bin. Moreover, a halving of the maximum

‡Throughout the paper, all the computations have been carried out on a notebook with an Intel®Core™2 Duo
Processor P8600 @ 2.40 GHz, and 4 GB RAM.
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Figure 3: Logisti
 population (model adaptation): histograms of the model error estimator in 
orre-sponden
e with the se
ond, fourth and sixth iteration (left-right).
value of the model error estimator occurs at each successive iteration (the value of the
rightmost bin is divided by four).

2.2.2. A predator-prey model

Different species interact in ecological problems (foxes and rabbits, lions and gazelles, etc.)
as well as different substances react and produce new compounds in chemical reactions. In
all these events, systems of differential equations are used to model the phenomena (e.g.,
predator-prey, Gierer-Meinhordt, Gray-Scott models, see [26, 27]). In the following, we
analyze the adapted system





−µu∆uα + b · ∇uα −σuuα+αγuαvα = fu in Ω,

−µv∆vα + b · ∇vα +σv vα −ακγuαvα = fv in Ω,

uα = hu on ΓD,

vα = hv on ΓD,

µu

∂ uα

∂ n
= gu on ΓN ,

µv

∂ vα

∂ n
= gv on ΓN ,

(2.11)

i.e., a variant of the standard Lotka-Volterra predator-prey model, enriched with convective
and source terms. As in the previous section, we are still interested in the steady solution.
In particular, uα and vα stand for the prey and the predator density, respectively; the
coefficients µu, µv ∈ R

+ are the corresponding species diffusion constants; σu,σv ,γ ∈
L∞(Ω) are positive functions a.e. in Ω and represent the prey growth rate, the predator
death rate, and the death rate per encounter of preys due to predation, respectively; the
constant κ measures the efficiency of turning the preys into predators; fu, fv ∈ L2(Ω)

model possible sources external to the system at hand; b ∈ [L∞(Ω)]2, with ∇ · b ∈ L∞(Ω),
introduces an advection (for instance, a flow in a chemical reactor); ΓD is the portion of
the ecological system border where Dirichlet data (hu,hv ∈ H1/2(ΓD)) are assigned, while
gu, gv ∈ L2(ΓN ) describe inward/outward random walks of the two species. All these
parameters are tuned so that a unique (weak) solution to (2.11) is guaranteed.
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With a view to the model adaptation, both the nonlinear terms in (2.11) are switched
on/off. To cope with the vector feature of the problem, we introduce the following nota-
tion: let Uα = (uα, vα) ∈ V = W = [H1(Ω)]2 be the pair of adapted primal solutions. The
weak form of the adapted primal problem is given by

find Uα ∈ V : a(Uα)(Φ)+ d(Uα)(αΦ) = F(Φ), ∀Φ = (φ1,φ2) ∈W, (2.12)

where

a(Uα)(Φ) =

∫

Ω

µu∇uα · ∇φ1dΩ+

∫

Ω

(b · ∇uα)φ1dΩ−

∫

Ω

σuuαφ1dΩ+

∫

Ω

µv∇vα · ∇φ2dΩ

+

∫

Ω

(b · ∇vα)φ2dΩ+

∫

Ω

σv vαφ2dΩ+
1

ǫ

∫

ΓD

uαφ1ds+
1

ǫ

∫

ΓD

vαφ2ds,

d(Uα)(αΦ) =

∫

Ω

αγuαvα(φ1− κφ2)dΩ,

F(Φ) =

∫

Ω

( fuφ1 + fvφ2)dΩ+

∫

ΓN

(guφ1 + gvφ2)ds+
1

ǫ

∫

ΓD

huφ1ds+
1

ǫ

∫

ΓD

hvφ2ds.

The penalty parameter ǫ = ǫ(h) is chosen as in the previous section.
We consider a square domain Ω = (0,1)2 where two species of interest are released.

The first species (prey) is able to sustain itself with other natural resources, while the
second is a species of predators and survives eating the prey. The concentration of the
two populations takes on the values uα = 1 and vα = 0 on {(0, x2) : 0.6 < x2 < 0.65} ∪
{(0, x2) : 0.75 < x2 < 0.8}, and uα = 0 and vα = 0.1 on {(0, x2) : 0.65 < x2 < 0.75} ∪
{(1, x2) : 0.7 < x2 < 0.8}. Moreover, homogeneous Neumann conditions are enforced on
ΓN = {(x1, 0) : 0.4 < x1 < 0.6}, while homogeneous Dirichlet conditions are assigned
elsewhere. Both species move in the domain by a random diffusion motion (µu = µv =

5 · 10−4) and are drifted by the advective field b in Fig. 4 (left), which represents the
solution to the Navier-Stokes equations characterized by a Reynolds number Re = 20 and
completed with the following boundary data: parabolic profiles with average value 1 and
2 are enforced at the inflow boundaries {(0, x2) : 0.6< x2 < 0.8} and {(1, x2) : 0.7< x2 <

0.8}, respectively; a zero-traction condition is assigned at the outflow ΓN , while no slip
conditions hold elsewhere. The Reynolds number is based on the average velocity profile
on the left inflow, the corresponding section and the kinematic viscosity equal to 0.01.

Concerning the other data in (2.11), we have: σu = 10−2, σv = 10−1, γ = 1, κ = 0.1,
fu = 0 and fv = 0. Both the solutions are affected by the downward main stream and
by four lateral vortices. Fig. 4 (middle) collects the fine solutions u1 and v1 to (2.11),
with α = 1 everywhere. Notice the different distribution of the preys (top) and predators
(bottom), strongly influenced by the boundary conditions and by the field b.

Our purpose is to measure the average concentration of the preys in an area of inter-
est OA = (0.4,0.6)× (0.1,0.2) (see Fig. 4 (left)). This amounts to selecting as a target
functional

J(u1) =
1

|OA|

∫

OA

u1dOA. (2.13)
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OAFigure 4: Predator-prey system (model adaptation): domain, adve
tive �eld and observation area (left);�ne primal solution (middle), u1 (top) and v1 (bottom); �ne dual solution (right), z1,1 (top) and z1,2(bottom).
The reference value of J(u1) is 9.7316 · 10−2.

The model error estimator for system (2.11) is

ηα = −d(Uα, (1−α)Zα) =
∑

K∈Th

ηα,K with ηα,K = −

∫

K

(1−α)γuαvα(zα,1−κzα,2)dK , (2.14)

Zα = (zα,1, zα,2) being the solution to the adapted dual problem





−µu∆zα,1−∇ · (bzα,1)−σuzα,1 +αγvα(zα,1−κzα,2) =
1

|OA|
χOA

in Ω,

−µv∆zα,2−∇ · (bzα,2) +σvzα,2+αγuα(zα,1−κzα,2) = 0 in Ω,

zα,1 = zα,2 = 0 on ΓD,

(µu∇zα,1+ bzα,1) · n= 0 on ΓN ,

(µv∇zα,2+ bzα,2) · n = 0 on ΓN .

(2.15)

The corresponding fine dual solution is displayed in Fig. 4 (right). Qualitatively, the func-
tional J seems more sensitive to the first dual component.

The α-adaptive pro
edure is tested on this configuration with a global tolerance
τm = 10−4, δ0 = 100, Nmax = 10 and on a uniform mesh comprising 22528 elements. The
procedure converges after 4 iterations. The nonlinear system (2.11) is numerically solved
by Newton’s method with stopping criterion ‖U (k+1)α − U (k)α ‖∞ ≤ 10−13.

Fig. 5 shows the distribution of Ω1 and Ω0 at the second and fourth iteration. In
the end, about one fourth of the whole domain is associated with the fine model. This
information is essentially detected already at the second iteration. As expected, the first
component, z1, of the dual solution is most affecting the selection of the fine model. In
Fig. 6, we gather the prey (left) and predator (center) concentration at the second (top),
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Figure 5: Predator-prey system (model adaptation): distribution of Ω1 and Ω0 at the se
ond (left) andfourth (right) iteration.

Figure 6: Predator-prey system (model adaptation): adapted prey (left) and predator (middle) density,and distribution of ηα,K (right) at the se
ond (top) and fourth (bottom) iteration.Table 2: Predator-prey system (model adaptation).
# it |Ω1|%

|ηα|

|J(u1)|

|J(u1)−J(uα)|

|J(u1)|
E.I.α

1 0.00 9.51 · 10−02 1.07 · 10−01 0.99
2 22.47 3.29 · 10−03 3.46 · 10−03 0.95
3 24.84 1.59 · 10−03 1.72 · 10−03 0.93
4 26.83 9.20 · 10−04 1.04 · 10−03 0.89

and at the last (bottom) α-adaptive iteration. The values ηα,K in Fig. 6 (right)
reduce of one order of magnitude, from the second to the fourth iteration.
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Analogously to Table 1, Table 2 provides us with some quantitative information. Both
the quantities, |ηα|/|J(u1)| and |J(u1)−J(uα)|/|J(u1)|, decrease throughout the iterations;
the values of the effectivity index confirm the good robustness of ηα, even though slightly
under estimating.

3. A discretization anisotropic goal-oriented a posteriori analysis

In this section we relax the assumption of dealing with a sufficiently fine mesh. Thus
the discretization error is no longer negligible. In particular, in Section 3.1 we introduce the
anisotropic framework, founding the goal-oriented error analysis in the later Section 3.2.

3.1. The anisotropic framework

We resort to the anisotropic setting in [14]. Let TK : bK → K be the invertible affine
map from the reference triangle bK to the general one K , where bK is the equilateral triangle
inscribed in the unit circle centered at the origin. The map TK is defined as x = (x1, x2)

T =

TK(bx) = MKbx+ tK , ∀x ∈ K , where MK ∈ R
2×2 and tK ∈ R

2 denote the Jacobian of TK and
a shift, respectively. The map TK strains the unit circle into an ellipse circumscribing K ,
centered at the barycenter of K .

We exploit the spectral properties of TK to describe the size, orientation, and shape of
each K . With this aim, we factorize MK by a polar decomposition as MK = BK ZK , where
BK is symmetric positive definite and ZK is orthogonal. Then, we further factorize BK

in terms of its eigenvalues, λ1,K ,λ2,K (with λ1,K ≥ λ2,K), and eigenvectors, r1,K , r2,K , as
BK = RT

KΛKRK , with ΛK = diag(λ1,K ,λ2,K) and RT
K = [r1,K , r2,K].

The geometric features of each element K are thus completely characterized by the
eigenvectors {ri,K} and the eigenvalues {λi,K}, with i = 1,2: as a matter of fact, they
identify the directions and the lengths of the semi-axes of the ellipse circumscribing K ,
respectively (see Fig. 7). We measure the deformation of K with respect to bK by the so-
called aspe
t ratio sK = λ1,K/λ2,K ≥ 1, with sK = 1 whenever K is an equilateral
triangle.

Figure 7: Geometri
al interpretation of the map TK and main anisotropi
 quantities.
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Starting from these decompositions, anisotropic interpolation error estimates were de-
rived for both the Lagrange and the Clèment interpolants [14, 15]. In particular, the
Clément operator in [10] is suited to the a posteriori analysis below. In the case of
the affine finite element space, X 1

h
= span{ϕ j}, the Clément quasi-interpolant operator,

I1
h

: L2(Ω) → X 1
h
, is given by I1

h
v(x) =
∑

N j∈Nh
Pj v(N j)ϕ j(x), for any v ∈ L2(Ω), where

ϕ j is the Lagrangian basis function associated with the node N j, while Pj denotes the L2-
projection onto the affine functions associated with the patch ∆ j of the elements sharing
node N j, defined by the relations

∫

∆ j

(Pj v − v)ψ d∆ j = 0 with ψ= 1, x1, x2.

The sum runs on the set Nh of the vertices of Th except those where Dirichlet data are
enforced strongly.

Now, for any function v ∈ H1(Ω), let GK(v) ∈ R
2×2 be the symmetric positive semi-

definite matrix given by

�
GK(v)
�

i, j =

∫

∆K

∂ v

∂ x i

∂ v

∂ x j

d∆K with i, j = 1,2,

where ∆K is the union (patch) of all the elements sharing at least a vertex with K . Then
as proved in [14,15], we have:

Lemma 3.1. Let v ∈ H1(Ω). Then, under the assumptions that, for any K in Th, card(∆K)≤

M and diam(∆bK)≤ bC, with ∆bK = T−1
K (∆K), it holds

‖v − I1
h

v‖L2(K) ≤ C1

� 2∑

i=1

λ2
i,K

�
rT

i,K GK(v)ri,K
��1/2

, (3.1a)

|v − I1
h

v|H1(K) ≤ C2

�
hK

λ1,Kλ2,K

�� 2∑

i=1

λ2
i,K

�
rT

i,K GK(v)ri,K
��1/2

, (3.1b)

‖v − I1
h

v‖L2(e) ≤ C2

�
he

λ1,Kλ2,K

�1/2� 2∑

i=1

λ2
i,K

�
rT

i,K GK(v)ri,K
��1/2

, (3.1c)

where Ci = Ci(M , bC), for i = 1,2,3, hK = diam(K), while he measures the length of the edge

e ∈ ∂ K.

Notice the explicit dependence of these estimates on the anisotropic quantities high-
lighted in Fig. 7. In particular, when λ1,K ≃ λ2,K ≃ hK , that is, when the triangle is
equilateral, estimates (3.1a)-(3.1c) reduce to the corresponding isotropic results in [10].

The reference patch∆bK is obtained by mapping back all the elements T ∈∆K by means
of the same transformation, T−1

K . The hypotheses in Lemma 3.1 essentially rule out too
distorted patches in the reference framework. However, the anisotropic features (aspect
ratio and orientation) of each T ∈∆K are not constrained by these requirements; only the
variation over ∆K of the anisotropic quantities is affected (see [25] for more details).
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With a view to the a posteriori analysis of the last section, we also introduce the
anisotropic quantities

L
i, j
K (v) =

∫

K

�
rT

i,KHK(v)r j,K
�2

dK with i, j = 1,2,

for any function v such that v
��
K
∈ H2(K), where HK(v) ∈ [L

2(K)]2×2 is the Hessian matrix
of v
��
K

, with [HK(v)]i, j = ∂
2v/∂ x i∂ x j with i, j = 1,2 [15].

3.2. The anisotropic goal-oriented error estimator

Since the main objective of the present work is model adaptation and its interplay with
mesh adaptivity, we limit the analysis below to highlighting the principal modifications to
the goal-oriented framework in an anisotropic context. As a crucial observation, notice
that the model involved in the anisotropic investigation is the adapted one.

To fix ideas, we consider the adapted logistic population problem. Before stating the
desired result, some notation is in order. We denote by uα,h the finite element approxima-
tion of (2.8), solution to the following variational problem: find uα,h ∈ Vh ≡ X 1

h
⊂ V :

a(uα,h)(wh) + d(uα,h)(αwh) + sα,h(uα,h, f )(wh) = F(wh), ∀wh ∈ Vh, (3.2)

where the forms a(·)(·), d(·)(·) and F(·) are defined as in (2.9a)-(2.9b), while sα,h(·, f )(·)

identifies a consistent stabilization term with a view to strongly advective problems. Then,
we define the internal and boundary residuals given by

ρK(uα,h) = ( f +µ∆uα,h− b · ∇uα,h+σuα,h−αγu2
α,h)|K (3.3)

and

je(uα,h) =





2
�1
ǫ

uα,h+µ
∂ uα,h

∂ n

�
, ∀e ∈ ΓD,

2
�
− c2 +µ

∂ uα,h

∂ n

�
, ∀e ∈ ΓN ,

h
µ
∂ uα,h

∂ n

i
e
, ∀e ∈ Eh,

(3.4)

respectively, with Eh the skeleton of triangulation Th, and [·]e the jump across the edge e.
The main result of this section can thus be stated.

Proposition 3.1. Let uα ∈ V be the weak solution to the adapted primal problem (2.8) and

zα ∈ V be the dual solution associated with the goal functional J. Let uα,h and zα,h ∈ Vh be

the corresponding finite element approximations associated with a SUPG stabilization scheme.

Then it holds

|J(uα)− J(uα,h)| ≤ C
∑

K∈Th

νKRK(uα,h)ωK(e
z
α,h), (3.5)



Model and Anisotropic Mesh Adaptation for Nonlinear Equations 463

where C = C(M , bC), νK = (λ1,Kλ2,K)
3/2,

RK(uα,h) =
1

(λ1,Kλ2,K)
1/2

�
‖ρK (uα,h)‖L2(K)

�
1+

τKhK‖b‖L∞(K)

λ1,Kλ2,K

�

+
∑

e∈∂ K

‖ je(uα,h)‖L2(e)

2

� he

λ1,Kλ2,K

�1/2�
, (3.6a)

ωK(e
z
α,h) =

1

(λ1,Kλ2,K)
1/2

�
sK (r

T
1,K GK(e

z
α,h)r1,K) + s−1

K
(rT

2,K GK(e
z
α,h)r2,K)
�1/2

, (3.6b)

with ez
α,h = zα − zα,h the adapted dual discretization error,

τK =
λ2,K

2

ξ(PeK)

‖b‖L∞(K)

the anisotropic stability parameter proposed in [25], where

ξ(PeK) =

¨
PeK , if PeK < 1,
1, if PeK ≥ 1,

and the Péclet number is given by PeK = λ2,K‖b‖L∞(K)/6µ (see [25] for further details).

Proof. Starting point is Proposition 2.6 in [2]: the discretization error on the output
functional coincides with

J(uα)− J(uα,h) = min
φh∈Vh

ρ̌h(uα,h)(zα−φh) + Rh, (3.7)

where

ρ̌h(uα,h)(·) = F(·)− a(uα,h)(·)− d(uα,h)(α·)− sα,h(uα,h, f )(·),

Rh = es′α,h(uα, f )(zα, eu
α,h)− s′α,h(uα, f )(zα, eu

α,h) +

∫ 1

0

n
a′′(uα,h+ seu

α,h)(zα, eu
α,h, eu

α,h)

+ d ′′(uα,h+ seu
α,h)(αzα, eu

α,h, eu
α,h) + s′′α,h(uα,h+ seu

α,h, f )(zα, eu
α,h, eu

α,h)

− J ′′goal(uα,h+ seu
α,h)(e

u
α,h, eu

α,h)
o

sds,

eu
α,h = uα − uα,h is the adapted primal discretization error and es′

α,h(uα, f )(·, ·) is the sta-
bilization term associated with the adapted dual problem, possibly coinciding only with
a part of s′

α,h(uα, f )(·, ·). By neglecting the remainder term Rh (quadratic with respect to

eu
α,h) and by choosing φh = zα,h+ I1

h
(zα−zα,h), we derive from (3.7) the following estimate

J(uα)− J(uα,h)≃ ρ̌h(uα,h)(e
z
α,h− I1

h ez
α,h).
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Now, let us suitably rewrite the truncation error ρ̌h(uα,h)(φ), with φ a generic function in
V . Definitions (2.9a)-(2.9b) combined with a SUPG stabilization (see [5]) yield

ρ̌h(uα,h) =
∑

K∈Th

�∫

K

�
f φ − µ∇uα,h · ∇φ − b · ∇uα,hφ +σuα,hφ −αγu2

α,hφ
�
dK

−
1

ǫ

∫

∂ K∩ΓD

uα,hφds−τK

∫

K

( f +µ∆uα,h− b · ∇uα,h+σuα,h−αγu2
α,h)(b · ∇φ)dK

+

∫

∂ K∩ΓN

c2φ ds

�
,

which, thanks to an elementwise integration by parts and to (3.3) and (3.4), becomes

ρ̌h(uα,h) =
∑

K∈Th

�∫

K

ρK(uα,h)(φ −τKb · ∇φ)dK −
1

2

∫

∂ K

je(uα,h)φds

�
.

The choice φ = ez
α,h− I1

h
ez
α,h together with the anisotropic estimates in Lemma 3.1 imme-

diately provide us with result (3.5). �

The right-hand side of (3.5) still involves, via ez
α,h, the exact adapted dual solution, and

thus it is not computable. To make such a quantity practical with a view to the mesh adap-
tation, we resort to a suitable recovery procedure. As the weights ωK(e

z
α,h) depend on the

first order partial derivative of zα via the matrix GK , we exploit the standard area-weighted
Zienkiewicz-Zhu gradient recovery procedure [34, 35]. Hence, the matrix GK(e

z
α,h) is re-

placed by G∗K(e
z
α,h), where

�
G∗K(e

z
α,h)
�

i, j =

∫

∆K

�
∇ZZ ,izα,h−

∂ zα,h

∂ x i

��
∇ZZ , jzα,h−

∂ zα,h

∂ x j

�
d∆K with i, j = 1,2,

and ∇ZZ zα,h = (∇
ZZ ,1zα,h,∇ZZ ,2zα,h)

T ∈ [Vh]
2 stands for the recovered gradient of zα,h.

The global estimator of the output functional discretization error, |J(uα) − J(uα,h)|,
supplied from Proposition 3.1, is consequently ηh =

∑
K∈Th

ηh,K , where ηh,K =

νKRK(uα,h)ω
∗
K(e

z
α,h) is the corresponding local contribution, with

ω∗K(e
z
α,h) =

1

(λ1,Kλ2,K)
1/2

�
sKrT

1,K G∗K(e
z
α,h)r1,K + sK

−1rT
2,K G∗K(e

z
α,h)r2,K

�1/2
.

The local estimator, ηh,K , enjoys the typical structure of the goal-oriented analysis, con-
sisting of a residual associated with the primal framework and a weight depending on the
dual problem (i.e., on the target functional). The additional multiplicative coefficient, νK ,
gathers essentially all the area information, since |K |= λ1,Kλ2,K |bK |.

We point out that when λ1,K ≃ λ2,K ≃ hK , estimator ηh reduces to the standard
isotropic a posteriori error estimator (see, e.g., [2, 17, 28]). The strength of result (3.5)
with respect to the isotropic analysis is the presence of anisotropic information, mostly
lumped in the weights.
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As an alternative, it is possible to derive an a posteriori error estimator with the struc-
ture

ηh =
1

2

∑

K∈Th

νK

�
RK(uα,h)ω

∗
K(e

z
α,h) +
eRK(zα,h) eω∗K(eu

α,h)
�

,

where eRK(zα,h) is the residual associated with the dual problem and with eω∗K(eu
α,h) the

anisotropic weight associated with the primal solution. We refer to [22] for an example in
the case of the Navier-Stokes equations (see also Section 5).

Finally, the constant C in (3.5) does not appear in the definition of ηh. It may be taken
into account by a suitable tuning, since C depends only on quantities associated with the
reference framework. In the numerical validation below we take C = 1.

3.2.1. The mesh adaptation procedure

We apply a metric-based adaptive procedure. The leading idea of this algorithm is to employ
in a predictive fashion the estimator ηh in order to identify the new adapted mesh. In more
detail, at the j-th iteration of such a procedure, we follow this three-step algorithm: let
T
( j)

h
be the previous (background) mesh. Then:

1. solve the adapted discrete primal and dual problems on T ( j)
h

;

2. build up the new metric M ( j+1) induced by the estimator ηh;

3. construct the new mesh T ( j+1)
h

matching the metric M ( j+1).

Concerning Step 2, we pursue the two standard criteria of the mesh-optimization strategy,
based on: i) equidistributing the estimator (ηh,K = const, for any K ∈ T

( j+1)
h

), and ii)

minimizing the number of mesh elements for a fixed accuracy on ηh. With reference to the
structure of the element error estimator ηh,K , this essentially amounts to minimizing the
weights with respect to the anisotropic quantities, r1,K and sK , since the area information is
lumped in νK , while RK(uα,h) is just a pointwise value (at least for a sufficiently fine mesh).
We refer to [13,22] for the details of such an approach.

With reference to Step 3., we exploit the matching condition between a metric and a
mesh (see, e.g., Definition 5.1 in [22]).

4. Merging model and mesh adaptation

Our goal is to keep the global error |J(u1)− J(uα,h)| to within a given tolerance, τ, via
a combined model and mesh adaptation. We simply exploit the straightforward splitting

J(u1)− J(uα,h) = J(u1)− J(uα)︸ ︷︷ ︸
model error

+ J(uα)− J(uα,h)︸ ︷︷ ︸
discretization error

,

which suggests introducing the model-discretization estimator, ηα,h = |ηα|+ ηh, with ηα
and ηh the model and discretization error estimators defined above. We first split τ into
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two contributions, a model tolerance, τm, and a discretization tolerance, τd , so that

τ = τm+τd , (4.1)

and to meet the global tolerance, τ, we iterate until |ηα| ≤ τm and ηh ≤ τd .

Algorithm 4.1. (α,h)-adaptive pro
edure.

1. select an initial grid T (0)
h

, set j = 0, flag_grid = 0, and α
��
K
= 0, ∀K ∈ T

(0)
h

;

2. solve the coarse discrete primal and dual problems;

3. compute the estimators ηα, ηh and ηα,h;

4. if ηα,h ≤ τ break

5. for i=1, Nmax

6. if |ηα| > τm % model adaptation

7. on each K ∈ T
( j)

h
, compute ηα,K = ηα

��
K

;
8. if |ηα,K | > δiτm/N

( j)

h
, α
��
K
← 1;

9. if ηh > τd % mesh adaptation

10. set flag_grid = 1;
11. build up M ( j+1) induced by ηh, such that η( j+1)

h,K = τd/N
( j)

h
;

12. construct the new mesh T ( j+1)
h

matching the metric M ( j+1);

13. if flag_grid = 1 interpolate α on T ( j+1)
h

;
14. solve the adapted discrete primal and dual problems;
15. compute the estimators ηα, ηh and ηα,h;
16. if ηα,h ≤ τ break
17. j← j+ 1, flag_grid = 0

end

The (α,h)-adaptive algorithm tries to balance both sources of error through the
splitting (4.1). The quantities Nmax and δi have the same meaning as in the α-adaptivepro
edure, while N

( j)

h
denotes the cardinality of the mesh T ( j)

h
.

4.1. Numerical validation

We complete the test case in Section 2.2.1 by integrating the model with the mesh
adaptation. In Section 4.1.2 we assess the (α,h)-adaptive pro
edure on a new non-
linear vector problem.



Model and Anisotropic Mesh Adaptation for Nonlinear Equations 467

4.1.1. A logistic population problem: model and mesh adaptation

We make the following choices for the inputs of the (α,h)-adaptive pro
edure: τm =

7.4·10−4, τd = 3·10−3, Nmax = 10. The same uniform unstructured grid consisting of 6800
elements as in Section 2.2.1 is adopted as the initial mesh. Moreover, two different values
of parameter δ0 are used to probe the sensitivity of the procedure to model refinement,
i.e., δ0 = 50 and δ0 = 100. Five iterations suffice to guarantee the desired convergence
for both choices of δ0. Figs. 8 and 9 (left) show the distribution of Ω1 and Ω0 at the last
(α,h)-iteration. The fine area crowds around the streamlines leaving the release area E

in both cases. Essentially the same zones detected in Fig. 2 (bottom-left) are identified,
even though region Cr is not recognized by the (α,h)-procedure, due to the interplay
with mesh adaptivity (Figs. 8 and 9-center and right). As expected, the choice of a larger
parameter δ0 entails a reduced fine region (compare Fig. 8 (left) with Fig. 9 (left)). The
final anisotropic adapted grids detect the regions, upwind and downwind, more strongly
affecting the fish flux across the creel, as well as a portion of the boundary of the creel
itself. In particular, the choice δ0 = 50 refines essentially the vertical edges of the creel,
whereas, with δ0 = 100, the internal portion of the creel is refined too. The aspect ratio of
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Figure 8: Logisti
 population (model plus mesh adaptation): distribution of Ω1 and Ω0 (left), adaptedmesh (middle) and zoom in on the wake downwind the release area (right) for δ0 = 50.
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the elements in the circular internal layer on the right is really high: 80 for δ0 = 50 and
148 for δ0 = 100.

Tables 3 and 4 summarize some of the main quantities characterizing the (α,h)-itera-
tions. For each iteration, we provide the number of mesh elements, N

( j)

h
, in the second

column; the percentage of fine model area in the third column; the estimators of the
discretization and of the model relative error in the fourth and fifth column, respectively;
the actual model-grid relative error in the sixth column; the global effectivity index, E.I . =
ηα,h/|J(u1)− J(uα,h)|, in the last column.

For δ0 = 50, the mesh adaptation meets the corresponding tolerance τd first, just after
four iterations. On the other hand, a further step is required to guarantee the convergence
of the whole adaptation process. The fine area, Ω1, spans less than 20% of |Ω| at the
last iteration. The reliability and the efficiency of the estimator ηα,h becomes sharper and
sharper as the iterations go by.

More complex is the trend of the (α,h)-adaptive pro
edure for the choice δ0 =
100. Although the discretization error is below the tolerance τd at the second iteration
already, the successive update due to model adaptation makes ηh overshoot τd at the next
iteration. This consequently drives a further mesh adaptation, which yields a new adapted
mesh consisting of 9815 triangles. This trend explains the high value of E.I . at the third
iteration. On comparing Tables 3 and 4, we can appreciate a balance between model and
mesh adaptation: the finer the model, the coarser the grid, and vice versa.

The intrinsic nonlinearity of the problem at hand suggests investigating the possible
computational benefits due to a combined model and grid adaptation. In Tables 5 (for
δ0 = 50) and 6 (for δ0 = 100) we compare both the average CPU time (in seconds) com-
puted on twenty runs, and the relative error associated with the four possible combina-
tions of model and grid: adapted grid/adapted model (Th/Mα), adapted grid/fine model
(Th/M1), uniform grid/adapted model (Tu/Mα), uniform grid/fine model (Tu/M1). ForTable 3: Logisti
 population (model plus mesh adaptation) for δ0 = 50.

# it N
( j)

h
|Ω1|%

ηh

|J(u1)|

|ηα|

|J(u1)|

|J(u1)−J(uα,h)|

|J(u1)|
E.I.

1 6800 0.00 5.26 · 10+00 2.27 · 10−01 3.83 · 10−01 8.84
2 16052 4.04 4.04 · 10−02 5.16 · 10−02 1.11 · 10−02 8.20
3 8938 13.18 4.89 · 10−02 2.40 · 10−02 2.34 · 10−02 3.04
4 7039 14.67 3.08 · 10−02 1.94 · 10−02 1.15 · 10−02 4.33
5 7039 19.40 3.06 · 10−02 1.06 · 10−02 1.92 · 10−02 2.10Table 4: Logisti
 population (model plus mesh adaptation) for δ0 = 100.

# it N
( j)

h
|Ω1|%

ηh

|J(u1)|

|ηα|

|J(u1)|

|J(u1)−J(uα,h)|

|J(u1)|
E.I.

1 6800 0.00 5.26 · 10+00 2.27 · 10−01 3.83 · 10−01 8.84
2 16052 1.46 3.26 · 10−02 9.44 · 10−02 2.88 · 10−02 4.53
3 16052 6.17 4.58 · 10−02 6.46 · 10−02 2.85 · 10−03 38.89
4 9815 12.29 2.75 · 10−02 3.34 · 10−02 1.79 · 10−02 3.34
5 9815 13.61 2.67 · 10−02 2.01 · 10−02 3.03 · 10−02 1.50
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 population (model plus mesh adaptation) for δ0 = 50: CPU time and relative error fordi�erent 
ombinations of model and grid.
Th/Mα Th/M1 Tu/Mα Tu/M1

CPU time 3.30 3.88 3.23 3.78
errrel 1.92 · 10−02 2.89 · 10−02 4.81 · 10−01 4.99 · 10−01Table 6: Logisti
 population (model plus mesh adaptation) for δ0 = 100: CPU time and relative errorfor di�erent 
ombinations of model and grid.

Th/Mα Th/M1 Tu/Mα Tu/M1

CPU time 4.75 5.59 4.97 5.82
errrel 3.03 · 10−02 4.82 · 10−02 1.03 · 10−01 1.20 · 10−01

a fair comparison, the uniform grid matches the cardinality of the adapted one. The CPU
time measures the time required for solving the fixed-point iterations, for each column
starting from the same initial guess, coinciding with the coarse solution. The quantity
errrel denotes the model-grid relative error.

In particular, Table 5 assumes as adapted model and grid the ones associated with the
last row in Table 3 and employs a uniform mesh of 6800 elements. Table 6 adopts as Th

and Mα the grid and model returned on the last row of Table 4 and a uniform mesh of
9920 triangles. The adapted distribution of α is interpolated onto the uniform grid.

The CPU times demanded by the procedures Th/Mα and Tu/Mα as well as by Th/M1

and Tu/M1 are comparable pairwise. Moreover, the former are smaller than the latter
due to the different percentage of fine model. For the same choice of model distribution,
the slight differences in CPU time are likely due to the small variations in mesh cardinal-
ities. Concerning the relative error behaviour, the best approximation is obtained when
employing the adapted grid. One order of magnitude is gained with respect to the uniform
grid. Of course, for a chosen grid (either uniform or adapted), the CPU time reduces when
dealing with the adaptive model.

4.1.2. A two-reagent chemical reaction

We focus on a variant on system (2.11). In particular, on the same domain Ω we assign:
a homogeneous Neumann condition for both uα and vα on {(0, x2) : 0.2 < x2 < 0.4} ∪
{(1, x2) : 0.6 < x2 < 0.8}; uα = 20(x2 − 0.6) on {(0, x2) : 0.6 < x2 < 0.65}, uα = 1
on {(0, x2) : 0.65 < x2 < 0.75}, uα = 20(0.8 − x2) on {(0, x2) : 0.75 < x2 < 0.8};
vα = 20(x2 − 0.2) on {(1, x2) : 0.2 < x2 < 0.25}, vα = 1 on {(1, x2) : 0.25 < x2 <

0.35}, vα = 20(0.4− x2) on {(1, x2) : 0.35 < x2 < 0.4}; homogeneous Dirichlet boundary
conditions elsewhere.

The species diffusion parameters are µu = µv = 10−2; the prey growth rate σu and
the predator death rate σv are set to 4 · 10−2 and 2 · 10−1, respectively; both the prey-
to-predator efficiency κ and death rate γ are equal to 10−1; fu = fv = 0; the advective
field b = (b1, 0)T , with b1 = 1 for 0.6 ≤ x2 ≤ 0.8, b1 = −1 for 0.2 ≤ x2 ≤ 0.4, b1 =

0 elsewhere (see Fig. 10 (left)). The fine primal solutions associated with these data
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Figure 10: A two-reagent 
hemi
al rea
tion (model plus mesh adaptation): domain, adve
tive �eldand observation area (left); �ne primal solution (middle), u1 (top) and v1 (bottom); �ne dual solution(right), z1,1 (top) and z1,2 (bottom).
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1

0.6

0.65

0.7

0.75

0.8

0 0.02 0.04
0.64

0.66

0.68

0.7

0.72

0.74

0.76

Figure 11: A two-reagent 
hemi
al rea
tion (model plus mesh adaptation): distribution of Ω1 and Ω0(left), adapted mesh (middle) and zooms in on the in�ow se
tion on the left side of Ω (right).
are shown in Fig. 10 (middle). This mathematical model may represent, for instance, a
coupled set of two autocatalytic chemical reactions between reagents in a countercurrent
flow configuration (see [20] for the inspiring mathematical model). The Newton method
has been employed to deal with the nonlinear coupling. The goal functional coincides
with the one in (2.13) with OA = (0.4,0.6)2. The reference value, J(u1) = 3.5162 ·10−1, is
computed on a uniform grid of about 1.26·106 elements. The corresponding dual solutions
are provided in Fig. 10 (right): even though the values of z1,1 and z1,2 are different, they
both identify the central region of Ω as the most critical for the functional at hand.
The adapted primal and dual problems as well as the model error estimator are defined
exactly as in (2.11), (2.15) and (2.14), respectively.

We initiate the (α,h)-adaptive pro
edure with the input data τm = 4.33 · 10−5,
τd = 3.43 · 10−4, δ0 = 10, Nmax = 10 and from an initial uniform unstructured grid
consisting of 1370 triangles. The procedure converges after four iterations. Fig. 11 collects
the outcome of the adaptive procedure. Model and mesh adaptations seem to be working in
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hemi
al rea
tion (model plus mesh adaptation).
# it N

( j)

h
|Ω1|%

ηh

|J(u1)|

|ηα|

|J(u1)|

|J(u1)−J(uα,h)|

|J(u1)|
E.I.

1 1370 0.00 3.36 · 10−02 1.07 · 10−03 3.03 · 10−02 1.18
2 6845 18.74 2.40 · 10−03 5.63 · 10−05 2.06 · 10−03 1.20
3 9988 18.69 1.12 · 10−03 5.95 · 10−05 7.73 · 10−04 1.53
4 9879 18.71 1.03 · 10−03 5.94 · 10−05 1.30 · 10−03 0.83Table 8: A two-reagent 
hemi
al rea
tion (model plus mesh adaptation): CPU time and relative errorfor di�erent 
ombinations of model and grid.

Th/Mα Th/M1 Tu/Mα Tu/M1

CPU time 2.66 3.15 2.50 3.01
errrel 1.30 · 10−03 1.97 · 10−03 1.22 · 10−02 1.31 · 10−02

a complementary manner: the model is refining the very central part of the domain around
OA, where most of the chemical reaction is taking place; on the contrary, the mesh is more
sensitive to the inflow region of the two chemicals (in particular, to the one associated with
the first component of the primal solution) and to the discontinuity lines characterizing b.

Table 7 collects the same quantitative information as in Tables 3 and 4. While the final
fine area is already detected at the second iteration, the mesh adaptivity takes one more
iteration to approach the final adapted grid. The required accuracy is guaranteed with less
than 19% of fine model. The robustness of the (α,h)-adaptive pro
edure is confirmed
by the values of E.I., which are close to 1 throughout all the iterations.

We check on the interaction between model and mesh adaptivity in this test case too.
Table 8 gathers the same quantities as in Tables 5 and 6. The adapted model and mesh are
those returned at the last iteration, whereas the uniform grid consists of 9340 elements,
comparable to the adapted one. Conclusions similar to the ones in Section 4.1.1 can be
drawn: Th/Mα and Tu/Mα as well as Tu/Mα and Tu/M1 exhibit comparable CPU times
pairwise; procedures Th/Mα and Th/M1 guarantee the best accuracy on the approximate
solution; the full adaptive approach (Th/Mα) allows us to gain about 20% in CPU time
with respect to the Th/M1 combination.

5. The Navier-Stokes equations

In this section, we apply the (α,h)-adaptive pro
edure to the Navier-Stokes equa-
tions for an incompressible flow in a backward-facing step. For the purpose of model
adaptation, the nonlinear term in the momentum equation is switched on/off. Thus, the
adapted model is





−∇·Σ(uα, pα) +α(uα · ∇)uα = 0 in Ω,
∇·uα = 0 in Ω,
Σ(uα, pα)n= 0 on ΓO,
uα = d on ΓI ,
uα = 0 on ΓW ,

(5.1)
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Figure 12: Navier-Stokes equations: sket
h of the ba
kward-fa
ing step Ω and boundary partition.
where uα = (uα,1,uα,2)

T and pα are the velocity and the pressure of the fluid, respectively.
Σ(uα, pα) = 2Re−1E (uα)− pαI is the rate stress tensor, with Re the Reynolds number and
E (uα) =
�
∇uα +∇uT

α

�
/2 the rate strain tensor, I being the identity tensor; the domain Ω

is sketched in Fig. 12 together with the partition ΓO ∪ ΓI ∪ ΓW = ∂Ω of the boundary ∂Ω;
n is the unit outward normal to ∂Ω; the extension d ∈ [H1(Ω)]2 of the boundary data is
assigned. In particular, we choose d|ΓI

as the parabolic profile (16(1− x2)(x2−0.5), 0)T ; a
traction-free boundary condition is enforced on ΓO; a no-slip condition holds on ΓW . The
weak form of (5.1) is

find Uα ∈ V : a(Uα)(Φ)+ d(Uα)(αΦ) = F(Φ), ∀Φ = (v,ϕ) ∈W, (5.2)

where Uα = (uα, pα) ∈ V =W = [H1(Ω)]2× L2(Ω),

a(Uα)(Φ) =

∫

Ω

Σ(uα, pα) : E (v)dΩ+

∫

Ω

∇ · uαϕdΩ+
1

ǫ

∫

ΓI

uα · vds,

d(Uα)(αΦ) =

∫

Ω

α(uα · ∇)uα · vdΩ,

F(Φ) =
1

ǫ

∫

ΓI

d · vds.

The penalty parameter ǫ = ǫ(h) is chosen according to [1].
We aim at monitoring the flow vorticity in the observation area, ΩO = (1,3)× (0,0.5),

for different values of Re, i.e., we pick the goal functional as

J(U1) =
1

2

∫

ΩO

|∇× u1|
2dΩO.

The reference values of J will be specified later, according to the choice of Re.
The α-adaptive pro
edure is driven by the a posteriori error estimator

ηα = −d(Uα, (1−α)Zα) =
∑

K∈Th

ηα,K with ηα,K = −

∫

K

(1−α)(uα · ∇)uα · zαdK ,
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where Zα = (zα, rα) ∈W solves the dual problem

∫

Ω

ΣD(zα, rα) : E (v)dΩ−

∫

Ω

∇·zαϕdΩ+

∫

Ω

α
�
(uα · ∇)v+ (v · ∇)uα

�
· zαdΩ

+
1

ǫ

∫

ΓI

zα · vds =

∫

ΩO

(∇× uα)(∇× v)dΩ, ∀Φ = (v,ϕ) ∈ V, (5.3)

with ΣD(zα, rα) = 2Re−1E (zα) + rαI the dual rate stress tensor. The weak form turns out
to be more handy for the problem and the functional at hand.

Concerning the mesh adaptation, following [22], we discretize the adapted problem via
the Galerkin Least-Squares stabilized P1/P1-pair, by employing anisotropic stabilization
parameters as in [25]. We denote by Uα,h = (uα,h, pα,h) and Zα,h = (zα,h, rα,h) the finite
element approximation to the adapted primal and dual system, respectively.

The anisotropic a posteriori error estimator driving the h-adaptive pro
edure is a
variant of the one proposed in [22]:

|J(Uα)− J(Uα,h)| ≃
1

2

∑

K∈Th

3∑

j=1

�
R

j

P,Kω
j

D,K + R
j

D,Kω
j

P,K

�
, (5.4)

where the primal and dual residuals R
j

P,K and R
j

D,K are defined as

Rs
Q,K = ‖ρ

s
1,Q,K‖L2(K) +

1

2

�
λ2

1,K +λ
2
2,K

λ3
2,K

�1/2
‖ρs

Q,e‖L2(∂ K), R3
Q,K = ‖ρ2,Q,K‖L2(K),

for s = 1,2 and Q = P, D, while

ωs
Q,K =
h 2∑

i, j=1

λ2
i,Kλ

2
j,K L

i, j
K (e

s
vQ
)
i1/2

, ω3
Q,K =

� 2∑

i=1

λ2
i,K

�
rT

i,K GK(epQ
)ri,K
��1/2

, (5.5)

for s = 1,2 and Q = P, D, are the weights, where evP
= [e1

vP
, e2

vP
] = uα − uα,h, evD

=

[e1
vD

, e2
vD
] = zα − zα,h, epP

= pα − pα,h, epD
= rα − rα,h are the discretization errors on the

primal/dual velocity and pressure, respectively, and where

ρ1,P,K = [ρ
1
1,P,K ,ρ2

1,P,K]
T =
�
∇·Σ(uα,h, pα,h)−α(uα,h · ∇)uα,h

���
K

,

ρ2,P,K =
�
−∇·uα,h
���

K
,

ρ1,D,K = [ρ
1
1,D,K ,ρ2

1,D,K]
T

=
�
j+∇·ΣD(zα,h, rα,h) +α

�
(∇ · uα,h)zα,h+ (uα,h · ∇)zα,h− (∇uα,h)

T zα,h
����

K
,

ρ2,D,K =
�
∇·zα,h
���

K
,
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are the primal (P) and dual (D) internal residuals associated with the adapted Navier-
Stokes equations, while

ρP,e = [ρ
1
P,e,ρ

2
P,e]

T =





−2Σ(uα,h, pα,h)n
��
e
, ∀e ∈ ΓO,

2
�1
ǫ

�
d− uα,h
�
−Σ(uα,h, pα,h)n

����
e
, ∀e ∈ ΓI ,

−
h
Σ(uα,h, pα,h)n
i

e
, ∀e ∈ Eh,

ρD,e = [ρ
1
D,e,ρ

2
D,e]

T =





−2
�
ΣD(zα,h, rα,h)n+

�
uα,h · n
�
zα,h
���

e
, ∀e ∈ ΓO,

−2
�1
ǫ

zα,h+ΣD(zα,h, rα,h)n+
�
uα,h · n
�
zα,h

����
e
, ∀e ∈ ΓI ,

−
h
ΣD(zα,h, rα,h)n+

�
uα,h · n
�
zα,h

i
e
, ∀e ∈ Eh.

are the corresponding boundary residuals, with j = −∇×
�
eχΩO
∇×uα
�

the density function
associated with the goal functional, eχΩO

being a suitable mollification of the characteristic
function of Ω0.

We apply the (α,h)-adaptive pro
edurewith the following input data: τm = 10−2,
τd = 4·10−2, δ0 = 50, Nmax = 10; we employ an initial uniform unstructured mesh consist-
ing of 2688 triangles, and we pick three values of the Reynolds number, Re = 30,50,100.
To deal with the nonlinear term in the momentum equation, we employ a fixed-point iter-
ation where, at the (k+ 1)-iteration, (uα · ∇)uα is replaced by the linearized Oseen term
(u(k)α · ∇)u

(k+1)
α . The stopping criterion is ‖u(k+1)α − u(k)α ‖L2(Ω) ≤ 10−10. As in the previous

sections, the initial guess corresponds to the coarse solution, i.e., to the Stokes flow. Five
iterations guarantee the termination of the procedure. Fig. 13 gathers the output of the
(α,h)-adaptive pro
edure for the three Reynolds numbers. Both the adaptive proce-
dures refine the area around the step. The model adaptation detects essentially the region
around the corner (1,0.5), extending towards the observation area, ΩO, as the Reynolds
number gets larger and larger. On the other hand, the mesh adaptation identifies a broader
area also beyond ΩO. Moreover, the inflow channel seems to become more relevant as Re

increases.
Table 9 shows some quantitative information about the (α,h)-adaptive pro
edure

for the three values of Re: the percentage of the fine area; the cardinality of the last adapted
mesh and the corresponding maximum aspect ratio over the elements; the reference value
of the goal functional; the effectivity index. The maximum extension of Ω1 is contained
even for Re = 100. Moreover, both |Ω1|% and Nh are roughly proportional to the Reynolds
number, whereas the anisotropic features of the adapted meshes are not too sensitive to Re.
Finally, the effectivity index corroborates the robustness of the overall adaptive procedure.Table 9: The Navier-Stokes equations (model plus mesh adaptation).

|Ω1|% Nh max sK J(U1) E.I.
Re = 30 5.55 5019 15 7.02097 · 10−1 7.31
Re = 50 8.50 6641 16 7.55677 · 10−1 3.37
Re = 100 17.02 13290 18 9.23952 · 10−1 4.22
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Figure 13: The Navier-Stokes equations (model plus mesh adaptation): distribution of Ω1 and Ω0overlapped with the �nal adapted mesh for Re = 30, 50, 100 (top-bottom).
Table 10 is meant to assess the computational saving due the combined model and

mesh adaptation. In particular, the column Th/M1 records the number of fixed-point
iterations when dealing with the fine model on the last adapted mesh; the next columns
keep track of this number for each (α,h)-adaptive iteration. For a fixed Re, the number
of iterations in the Th/Mα column decreases as the adaptive procedure is converging. A
comparison between adapted grid/fine model (Th/M1) and adapted grid/adapted model
(last column in Th/Mα) highlights that the number of fixed-point iterations required by
the full adaptive procedure is always smaller when compared with the choice Th/M1. This
discrepancy increases with larger Reynolds number.Table 10: The Navier-Stokes equations (model plus mesh adaptation): �xed-point iterations for the �neand the adapted model on the last adapted grid.

Th/M1 Th/Mα

Re = 30 12 10 | 10 | 09 | 09 | 09
Re = 50 15 14 | 12 | 11 | 10 | 10
Re = 100 25 22 | 20 | 18 | 15 | 14

6. Some concluding remarks

The investigation carried out about the interplay between model and mesh adaptation
allows us to draw some preliminary conclusions. The mesh adaptation seems to affect
more strongly the accuracy of the numerical solution with respect to model adaptation.
However, combining mesh with model adaptation leads to a further accuracy improvement
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as well as to a reduction of the CPU time. In more detail, in Section 4.1, we show that, for
a fixed model (either adapted or fine), the adapted grid yields an order of magnitude gain
in terms of accuracy, with respect to a uniform mesh comparable in the number of degrees
of freedom. On the other hand, for a fixed grid (either adapted or uniform), the adapted
model provides a 20% reduction of the CPU time with respect to the fine model solved on
the same grid.

The Navier-Stokes test case corroborates these results on a more complex problem.
In particular, by measuring the computational cost in terms of fixed-point iterations, it
turns out that the adapted model yields a computational saving of even 44% for the
higher Reynolds number. This means that, in the same spirit as in the reduced-basis ap-
proach [21], if one could compute the appropriate model/mesh distribution offline, then
the online phase would be very cheap.
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