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Abstract. We show that the zeros of a trigonometric polynomial of degree N with the

usual (2N + 1) terms can be calculated by computing the eigenvalues of a matrix of

dimension 2N with real-valued elements M jk. This matrix ~~M is a multiplication matrix

in the sense that, after first defining a vector ~φ whose elements are the first 2N basis

functions, ~~M ~φ = 2cos(t) ~φ. This relationship is the eigenproblem; the zeros tk are the

arccosine function of λk/2 where the λk are the eigenvalues of ~~M . We dub this the

“Fourier Division Companion Matrix”, or FDCM for short, because it is derived using

trigonometric polynomial division. We show through examples that the algorithm com-

putes both real and complex-valued roots, even double roots, to near machine precision

accuracy.
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1. Introduction

More than a century ago, Frobenius showed that the roots of a polynomial could be

found as the eigenvalues of a so-called "companion matrix" whose elements are trivial

functions of the coefficients of the polynomial in the monomial basis. Similar companion

matrices are now known to find the zeros of truncated series of Chebyshev, Legendre,

Gegenbauer, Hermite and Bernstein polynomials as reviewed in [2].

A trigonometric polynomial of degree N is a truncated Fourier series of the form

fN (t) ≡
∑N

j=0 a j cos( j t) +
∑N

j=1 b j sin( j t). It is known that such a trigonometric poly-

nomial can always be converted by the change of coordinate z = exp(i t) into an ordinary
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polynomial in z with complex-valued coefficients. The zeros can then be computed by find-

ing eigenvalues zk of the Frobenius companion matrix with complex-valued coefficients

and applying tk = −i log(zk).

In this note, we show that it is possible to obtain a companion matrix for a truncated

Fourier series directly. This provides a simple way to find the zeros of a function rep-

resented by its Fourier expansion. The determination of the maxima and minima and

inflection points of a function are also problems in rootfinding because these points are the

zeros of the first or second derivative of the function, and these derivatives can easily be

found in Fourier form by term-by-term differentiation of the Fourier expansion for f (t).

Trigonometric root finding problems arise in many applications. For example, comput-

ing the intersection of two curves is a common task in computer graphics. If one curve

is specified implicitly as the zero set (“affine variety”) of a bivariate algebraic polyno-

mial P(x , y) and the other is a closed curve, parameterized by a pair of trigonometric

polynomials, the intersection problem may be reduced to finding zeros of a trigonometric

polynomial. If the parameterized curve is specified by some functions (x(t), y(t)), then the

univariate trigonometric polynomial whose roots are needed is f (t) ≡ P(x(t), y(t)). Later,

we thus compute the intersection of an algebraic curve (a trifolium) with a parameterized

ellipse.

2. Previous work on computing the zeros of trigonometric polynomials

Three transformations have been used to convert trigonometric polynomials into alge-

braic polynomials so that the standard rootfinders for the latter can be deployed. Weidner

set z = exp(i t), which yields a polynomial with complex coefficients and maps the real

zeros in t to roots on the unit circle in z [18]. Schweikard avoided complex coefficients by

the substitutions

t = 2 arctan(s) ↔ s = tan(t/2), (2.1)

which convert a trigonometric polynomial to a rational function and then, after clearing

denominators, to a polynomial in s via the identities [16,17]

cos(t) =
1− s2

1+ s2
, sin(t) =

2s

1+ s2
. (2.2)

Lastly, one may write cos(t) = c, sin(t) = s and add the constraint Q(c, s) ≡ c2+ s2− 1= 0

which yields a system of two algebraic equations in the unknowns (c, s). This option is

very popular in robotics and yields the ECM companion matrix [4].

Other authors have applied interval arithmetic [7–9, 17] and the Durand-Kerner it-

eration for finding all roots simultaneously [1, 7–9, 13, 14]. Earlier and complementary

companion matrix studies by the author include [2–4,6].

We omit a full-scale review because we have already provided one in [2].



588 J. P. BoydTable 1: A bibliography of trigonometri
 root�nding.
Angelova& Semerdzhiev [1] trigonometric generalization of Durand-Kerner

Boyd [3] symmetry-exploiting companion matrices for cosine polynomials,

sine polynomials and polynomials with double parity

Boyd [2] comprehensive review of orthogonal polynomial and

Fourier rootfinding

Boyd [4] Chebyshev companion matrix (ECM) derived from the

c = cos(t), s = sin(t) substitution

Boyd & Sadiq [6] Zeros of Fourier series with a linear, secular term

Carstensen & Petkovic, Durand-Kerner method,

Carstensen & Reinders, higher order generalizations and

Carstensen [7–9] interval arithmetic

Frommer [13] simplified Durand-Kerner iteration

Makrelov & Semerdzhiev [14] Durand-Kerner simultaneous rootfinding

Makrelov & Semerdzhiev [15] primarily polynomials of exponentials

Schweikard [16] x = tan(t/2) transformation, square-free method

Schweikard [17] interval arithmetic

Weidner [18] z = exp(i t) transformation to algebraic polynomial in z

3. Multiplication matrices

When discretizing a differential equation using a set of basis functionsφn(t), a common

task is to calculate the product of a function λ(t) with the basis functions. For trigonomet-

ric polynomials, it is convenient to define a vector ~φ whose elements are the first 2N basis

functions:

φn(x)≡
¨

cos([n− 1]t), n= 1, · · · , N ,

sin(nt), n= N + 1, · · · , 2N .
(3.1)

(Note that one of the basis functions in the trigonometric polynomial of degree N , cos(N t),

is not included.) The product of the multiplier with each basis function can then be ex-

panded as a series in the basis:

λ(t)φn(t) =

2N
∑

k=1

Hn,kφk(t) +ρn(t), (3.2)

where the "residuals" ρ j include all terms which cannot be represented using the first 2N

basis functions. In the usual matrix notation, collecting the residuals as a vector ~ρ, we can

write

λ(t) ~φ = ~~H ~φ + ~ρ. (3.3)

To discretize a term in a differential equation, the residual vector is simply ignored. The

resulting relationship has the form of an eigenproblem, ~~H ~φ = λ ~φ, but is only an approxi-

mation.

Suppose, however, that we can write each residual in the form

ρn(t) = f (t)qn(t) + r̃n(t), (3.4)
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where f (t) is the trigonometric polynomial whose roots we seek and each remainder r̃n

is a trigonometric polynomial that can be exactly represented by sum of the first 2N basis

functions. When t is one of the roots of the polynomial, each residual collapses into

the corresponding remainder, and each remainder r̃n can be absorbed into the square

matrix by defining a new square matrix ~~M whose elements are equal to those of ~~H minus

the expansion coefficients of the remainders r̃n(t). The eigenproblem ~~M ~φ = λ ~φ is then

exact, but only when t = tk where tk is one of the roots of f (t). Therefore, each of

the eigenvalues is the multiplier λ(t), evaluated at one of the roots, and the root can be

obtained by inverting λ(t).

For polynomial companion matrices, the multiplier function λ is simply t itself, no

version of the multiplier is necessary, all the residuals are identically zero except for that

in the last row, and the factorization of the residual as ρn = f (t)qn(t) + rn(t) is the result

of synthetic division, also known as "polynomial division with the remainder".

In our case, the product of t with a trigonometric function is an infinite series. If

instead we choose the multiplier as

λ= 2 cos(t), (3.5)

then the trigonometric identities below show that all the residuals are zero except for ρN ,

generated by 2 cos(t) cos([N−1]t) = cos([N−2]t)+cos(N t) where cos(N t) is outside the

vector ~φ, and ρ2N , generated by 2 cos(t) sin(N t) = sin([N − 1]t) + sin([N + 1]t) where

sin([N + 1]t) is also outside the vector ~φ. Both of these can be factored by a process

analogous to polynomial division.

3.1. Fourier synthetic division

Synthetic division of an ordinary polynomial p(x) by another polynomial d(x) yields

p(x)/d(x) = q(x)+ r(x)/d(x) where q(x) is the quotient and r(x) is the remainder. This

is equivalent to factorizing the polynomial as p(x) = q(x)d(x)+ r(x)where a classical the-

orem asserts that the degree of the remainder is less than the degree of the divisor. Here,

we compute similar factorizations for trigonometric polynomials using f (t), the polyno-

mial whose roots are sought, as the divisor. We make heavy use of the trigonometric

identities

2 cos(t) cos( j t) = cos([ j− 1]t) + cos([ j+ 1]t), (3.6a)

2 cos(t) sin( j t) = sin([ j− 1]t) + sin([ j+ 1]t). (3.6b)

The factorization of 2 cos(t) cos([N − 1]t) is easy because the quotient is a constant:

2 cos(t) cos([N − 1]t) = q1 f (t) + rN (3.7a)

m
cos([N − 2]t) + cos(N t) = q1

�

aN cos(N t) + bN sin(N t) + lower degree
	

+ rN (t), (3.7b)

where we used a trigonometric identity to go from the upper left to the bottom left. (Note

that it is now convenient to factorize λφn instead of just the residuals, and we have
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dropped the tildes over the remainders to indicate that these are now the remainders

of the entire product of the multiplier function with the basis function.) By choosing the

quotient as

q1 = 1/aN , (3.8)

we can match the terms in cos(N t) on both sides of the equation, thus ensuring that the

remainder rN (t) ≡ cos([N − 2]t) + cos(N t) − f (t)/aN contains only −(bN/aN ) sin(N t)

plus terms of lower degree than cos(N t). Because sin(N t) is included in ~φ, rN (t) is a

trigonometric polynomial in only the 2N basis functions included in ~φ; its coefficients can

therefore be completely absorbed into the matrix and in fact are the elements of the N -th

row of the multiplication matrix ~~M as catalogued below in (3.15e).

The factorization of 2 cos(t) sin(N t) = sin([N−1]t)+sin([N+1]t) is more complicated

because sin([N+1]t) is one degree higher than f (t). Therefore, the quotient of q2(t)must

be a linear trigonometric polynomial of the form

q2(t) ≡ w1 +w2 cos(t) +w3 sin(t). (3.9)

The factorization is

2 cos(t) sin(N t) = (w1 +w2 cos(t) +w3 sin(t)) f (t) + r2(t) (3.10a)

m
sin([N − 1]t) + sin([N + 1]t)

=
�

w3 bN −w2aN

	

cos([N + 1]t) +
�−w2 bN −w3aN + 1

	

sin([N + 1]t)

+
�−2 w1aN +w3 bN−1−w2aN−1

	

cos(N t) + lower degree+ r2(t). (3.10b)

The condition that the three terms in braces all vanish, removing high degree terms from

the remainder, yields

w1 = −1/2
−aN bN−1+ bN aN−1
�

aN
2 + bN

2
�

aN

, (3.11a)

w2 =
bN

aN
2 + bN

2
, (3.11b)

w3 =
aN

aN
2 + bN

2
. (3.11c)

The elements of the multiplication matrix can be written in symbolic form as

M j,k =< 2 cos(t)φ j(t),φk(t) > / < φk,φk >, (3.12)

where the inner product here is, for arbitrary functions p(t) and q(t),

< p(t),q(t) >≡
∫ π

−π
d tp(t)q(t), (3.13)
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and we define

2 cos(t)φ j(t) =







rN (t), j = N ,

r2N (t), j = 2N ,

2 cos(t)φ j(t), otherwise.

(3.14)

Evaluating the inner products gives explicitly

M1, j = 2δ j,2, (3.15a)

Mn, j = δ j,n−1 + δ j,n+1, n= 2, · · · , (N − 1), (3.15b)

MN+1, j = δ j,N+2, (3.15c)

Mn, j = δ j,n−1 + δ j,n+1, n= (N + 2), · · · , (2N − 1), (3.15d)

MN , j = δ j,N−1−
a j−1

aN

, j = 1, · · · , N , (3.15e)

MN , j = −
b j−N

aN

, j = N + 1, · · ·2N , (3.15f)

M2N ,1 = −2w1a0−w2a1−w3 b1, (3.15g)

M2N ,2 = −2w1a1−w2(2a0+ a2) +w3(−b2), (3.15h)

M2N ,N+1 = −2w1 b1 −w2(b2) +w3(a2 − 2a0), (3.15i)

M2N ,2N−1 = −2w1 bN−1 −w2(bN−2+ bN ) +w3(aN − aN−2) + 1, (3.15j)

M2N ,2N = −2w1 bN −w2(bN−1) +w3(−aN−1), (3.15k)

M2N ,n = −2w1an−1 −w2(an−2 + an) +w3(bn−2 − bn), n= 3, · · · , N , (3.15l)

M2N ,n+N = −2w1 bn−w2(bn−1 + bn+1) +w3(an+1 − an−1),

n= 2, · · · , (N − 2). (3.15m)

4. Processing the eigenvalues

For each eigenvalue, we calculate the two branches of the arccosine function in the

strip ℜ(t) ∈ (−π,π]

t±j = ±arccos
�

λ j/2
�

. (4.1)

Since there are 4N of these numbers and a theorem [2] shows that a trigonometric poly-

nomial of degree N has precisely 2N roots, counted according to their multiplicity, with

ℜ(t) ∈ (−π,π], it follows that half of these t±
j

are spurious. The simplest procedure to

resolve this ambiguity is to evaluate | f (t)| at each of the candidates. The genuine roots

have tiny residuals whereas | f (t)| is not small for the spurious zeros as illustrated for our

numerical example in Table 2.

However, our goal is not to minimize the residuals, but rather to approximate the zeros.

We therefore recommend refining the arccosines of the eigenvalues by applying Newton’s



592 J. P. Boyd

iteration to all the candidates. For each pair, the Newton corrections are

ν±
j
=

f (t±
j
)

d f /d t(t±
j
)
. (4.2)

Of these 4N Newton corrections, half will be tiny and half will be O (1). We select the 2N

corrections of tiny magnitude, subtract these from the corresponding t±
j

, and return the

corrected values as the final approximations to the roots.

5. Removing difficulties by translation

The companion matrix fails if:

1. aN = 0.

2. One or more pairs of roots are symmetric about the origin, that is, ±t∗ are both zeros

of f (t) for some t∗.

If the highest cosine coefficient aN in f (t) is zero, then the constant w1 in the quotient

q2(t) is infinite. It is then impossible for w1 f (t) to remove cos(N t) from the remainder

r2N (t). Except for the special case of a pure sine polynomial ( f (−t) = − f (t) for all t, and

all an = 0), which is best handled by special algorithms [3], this situation is very unlikely

in practice where typically the sine and cosine coefficients are similar in magnitude. We

shall nevertheless describe a remedy in a moment.

When there is a pair of symmetric roots, postprocessing will yield two valid roots for

a given eigenvalue. This can fool Newton’s iteration or the small | f (t)| criterion into

endorsing more than 2N roots unless the postprocessing is very careful.

The remedy for both difficulties is to make a change of coordinate

t ≡ t + s ⇔ t = t − s, (5.1)

where s is a positive constant. Then

fN (t + s) ≡ gN (t)

= a0 +

N
∑

j=1

¦

a j cos( js) + b j sin( js)
©

cos( j t)

+

N
∑

j=1

¦

b j cos( js) − a j sin( js)
©

sin( j t). (5.2)

Once the roots of gN (t) have been found as the set {tk}, the zeros of the original, unshifted

problem are

tr ≡ t r + s. (5.3)

It is easy to embed a companion matrix procedure in a loop and repeat the computation

with a different translation s whenever either of these singularity conditions is detected. A

fuller discussion is given in [4].
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6. Numerical examples

When

a0 = 1/13; a1 = 3/14; a2 =−11/37; (6.1a)

a3 = −1/3; a4 = 3/14; a5 = −161/71, (6.1b)

b1 = −2; b2 = −9/4; b3 = −17/11; b4 = 1/11; b5 = −51/23, (6.1c)

the multiplication matrix is

~~M =







































0 2 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

−0.35897 −1 2.3874 1.5556 9.3333 10.500 7.2121 −0.42424

0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

9.5435 14.692 −9.3018 −17.756 −49.835 −54.521 −33.402 6.2670







































. (6.2)

Note that all but two of the rows of the multiplication matrix are completely trivial in the

sense that there are at most two nonzero elements in the trivial rows, and these elements

are all ones except for M1,2 = 2.

The eigenvalues of the multiplication matrix are

~λ=







































5.35451999999999994+ 5.66558999999999990 i

5.35451999999999994− 5.66558999999999990 i

1.99987000000000004+ 0 i

−1.99811000000000006+ 0 i

0.0681942999999999994+ 0 i

−0.403386000000000022+ 0 i

−1.56857000000000002+ 0 i

−0.984462999999999977+ 0 i







































. (6.3)

The arccosine function is multivalued, and thus the arccosine of λk/2 for each eigenvalue

generates two numbers which are negatives of each other. To condense these 4N “root-

candidates” into 2N genuine roots and 2N numerical artifacts, the easiest procedure is

to evaluate the residuals, that is, the absolute value of f (t) at each of the candidates, as

illustrated in Table 2.

Residuals are not the same as errors; as noted above, it is a good precaution to apply

a Newton iteration to the approximate zeros. The eight candidates with tiny Newton
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k t+

k
≡ +arccos(λk/2) | f (t+

k
)| t−

k
≡ −arccos(λk/2) | f (t−

k
)|

1 .8299872013010460 − 2.054875306957421 i 701.6 − .8299872013010460+ 2.054 · · · i 0.77e− 11

2 .8299872013010460 + 2.054875306957421 i 701.6 −.8299872013010460− 2.054 · · · i 0.77e− 11

3 0.1161394466375658e − 1 .2502 −0.1161394466375658e− 1 0.40e− 11

4 3.098130435942467 0.38e− 12 −3.098130435942467 .22

5 1.536692578178622 0.94e− 14 −1.536692578178622 1.25

6 1.773882520239653 .53 −1.773882520239653 0.71e− 14

7 2.472342091902223 .98 −2.472342091902223 0.14e− 14

8 2.085447543296132 0.20e− 14 −2.085447543296132 .62

The genuine roots are in bold face and are listed next to their tiny residuals; the spurious zeros are in ordinary type next to

their O (1) residuals. The imaginary parts were truncated in the fourth column to fit the table to the width of the page; the

missing digits are given in the second column.

corrections were the same eight that had small residuals: the eight zeros of f (t) are thus







































−2.472342091902224

−1.773882520239652

−0.01161394466338633

1.536692578178624

2.085447543296132

3.098130435942322

−0.8299872013010614− 2.054875306957421 i

−0.8299872013010614+ 2.054875306957421 i







































. (6.4)

The largest Newton correction for any of these eight roots has a magnitude of only 0.37×
10−12.

Fig. 1 shows the exemplary f (t), its graph visually confirming the six real roots of the

eigenvalue calculation.

As a second example, consider the intersection of the algebraic curve known as the

“trifolium” with an ellipse as illustrated in Fig. 2. The trifolium is specified implicitly as

P(x , y)≡ (x2+ y2)2 − c(x3− 3x y2) = 0, (6.5)

where we shall arbitrarily choose the parameter c = 1. The ellipse is centered at the origin

with a horizontal semimajor axis, represented in parametric form as

x = Acos(t −π/3), y = B sin(t −π/3), (6.6)

where the π/3 was inserted merely so that our Fourier polynomial will be a mixture of

sines and cosines; this shifts the origin of t without altering the shape of the curve. We

shall choose the axes to be A= 1 and B = 1/2. To find the intersection of the two curves,
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–4

–2

0

2

4

–3 –2 –1 1 2 3

t

f

Figure 1: The trigonometri
 polynomial f (t) for the �rst numeri
al example. This polynomial of degreefour has six real roots as shown (bla
k disks).

Figure 2: The trifolium, de�ned impli
itly as the zero set of (x2 + y2)2 − (x3 − 3x y2), and the ellipse,parameterized by x = cos(t), y = (1/2) sin(t), interse
t at four simple roots and one double root. Theseinterse
tions were 
omputed by �nding the zeros of a trigonometri
 polynomial of degree four.
the first step is to substitute for x and y in the algebraic polynomial of the trifolium using

the parameterization of the ellipse, yielding

f (t)≡ P
�

x = Acos(t −π/3), y = B sin(t −π/3)�

=
59

128
− 15

64
cos (2 t) +

15

64
sin (2 t)

p
3− 9

256
sin (4 t)

p
3

− 9

256
cos (4 t)

7

16
cos (3 t)− 9

32
cos (t)− 9

32
sin (t)

p
3. (6.7)

The intersection points are now the zeros of the polynomial f (t); these roots t j can be

converted into the corresponding values in Cartesian coordinates by again invoking the

parameterization of the ellipse: (x j = Acos(t j −π/3), y j = sin(t j −π/3)).



596 J. P. BoydTable 3: Computed zeros and the distan
es between the 
omputed (x app

j
, y

app

j
) and exa
t interse
tionpoints (x ex

j
, y ex

j
)for the interse
tion of a trifolium and an ellipse.

j x j y j

Æ

(x
app

j
− x ex

j
)2 + (y

app

j
− y ex

j
)2

1 −.4680013939455222 −.4418638634424205 0.1e− 15

2 −0.8898338250960578e− 1 −.4980165553566340 0.2400e− 15

3 2.668095887566240 0.5079636723542840e− 15 0.15e− 14

+0.9418723816663841e− 15 i −1.236803911827566 i

4 −0.8898338250960517e− 1 .4980165553566340 0.3700e− 15

5 −.4680013939455190 .4418638634424214 0.34e− 14

6 2.668095887566240 0.5079636723542840e− 15 0.15e− 14

−0.9418723816663841e− 15 i +1.236803911827566 i

7 1.000000000000000 0.1903843391541801e− 15 0.19e− 15

8 1.000000000000000 0.1903843391541801e− 15 0.19e− 15

Fig. 2 shows that the two curves intersect at five points. Table 3 shows that, in 16 deci-

mal place arithmetic, the Fourier Division Companion Matrix computes intersection points

that lie at most a distance of 0.34× 10−14 from the true zeros! The double root at (0,1)

causes no problems; the corresponding eigenvalue appears twice in the output from the

multiplication matrix and therefore the same zero appears twice after postprocessing, but

its accuracy is actually the best of any of the roots. Although complex-valued intersections

are irrelevant in compute graphics, it is noteworthy that the Fourier companion matrix

finds them with extreme accuracy anyway.

More examples and detailed comparisons with other Fourier companion matrix strate-

gies are given in the companion paper [4].

7. Explicit solutions and multiplication matrices for N = 1 and N = 2

For the special case N = 1, the companion matrix is unnecessary because the roots of

f1(t) ≡ a0 + a1 cos(t) + b1 sin(t) are explicitly

S ≡
q

b1
2
�

a1
2− a0

2 + b1
2
�

; R≡ a1
2+ b1

2, (7.1a)

t+ = − arctan

�

a0 b1
2 + a1S

Rb1

,
− a0a1 + S

R

�

, (7.1b)

t− = − arctan

�

a0 b1
2 − a1S

Rb1

,
− a0a1− S

R

�

. (7.1c)

The solutions for N = 2 are

t = −arctan

�

a0 − a2 + a1Z + 2 a2Z2

b1 + 2 b2Z
, Z

�

, (7.2)
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where Z is one of the four roots of the quartic

�

4 b2
2+ 4 a2

2
�

Z4 +
�

4 b1 b2 + 4 a1a2

�

Z3 +
�

a1
2 − 4 b2

2 − 4 a2
2 + 4 a0a2 + b1

2
�

Z2

+
�−2 a1a2 − 4 b1 b2+ 2 a0a1

�

Z + a0
2 + a2

2 − 2 a0a2 − b1
2 = 0. (7.3)

This is no real improvement over the companion matrix method because the default strat-

egy for calculating the zeros of an algebraic polynomial in Matlab, for example, is to find

the eigenvalues of a Frobenius companion matrix which is the same size as the Fourier

companion matrix. The explicit solution requires further processing with an arc tangent

function; the multiplication matrix strategy requires postprocessing of eigenvalues with

the arccosine function. We therefore give the N = 2 Fourier multiplication matrix:

















0 2 0 0

− a0

a2
+ 1 − a1

a2
− b1

a2
− b2

a2

0 0 0 1

M4,1 M4,2 M4,3 M4,4

















, (7.4)

where

M4,1 =
−a0a2 b1 − b2a1a2 + a0 b2a1 − a2

2 b1
�

b2
2 + a2

2
�

a2

, (7.5a)

M4,2 = −
a1a2 b1 + 2 b2a2

2 + 2 b2a0a2 − a1
2 b2

�

b2
2 + a2

2
�

a2

, (7.5b)

M4,3 = −
2 a2

2a0 + b1
2a2− b1 b2a1 − 2 a2

3

�

b2
2 + a2

2
�

a2

, (7.5c)

M4,4 = −
−b2

2a1+ 2 b2 b1a2 + a2
2a1

�

b2
2+ a2

2
�

a2

. (7.5d)

The explicit solutions were computed by the “solve” function in Maple followed by con-

siderable manual simplification and numerical checking. The Maple algorithm employs

the s = tan(t/2) transformation to convert the trigonometric polynomial to an algebraic

polynomial in s, solves that, and then takes the arctan function.

8. Summary and generalizations

The new Fourier Division Companion Matrix (FDCM) described here is compared to

two older alternatives in [4]. The new method gives very accurate (near-machine-precision)

approximations to both real and complex valued zeros of a trigonometric polynomial for

all of the additional examples described there.

One of the alternatives, the Elimination/Chebyshev (ECM) method, is useful, alas, only

for real valued roots. The Complex Companion Matrix (CCM) [2, 4] has elements which
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are, as the name indicates, complex valued even when applied to real polynomials. There

is, however, little to choose, for real roots, between the three companion matrix algorithms

for either practical accuracy or speed.

Companion/multiplication matrices have been developed for many species of polyno-

mials [2,5,10–12]. To extend the multiplication matrix method beyond Fourier series, one

needs an easily-invertible λ(x) such that the expansion of λ(x)φn(x) for n= 1, · · · , N has

the following properties:

1. It terminates, including only a finite number of basis functions of degree n> N .

2. The residuals ρn(x), which are defined as the sum of the terms in the expansion of

λ(x)φn(x) which involve φ j with j > N , must be factorizable as ρn = qn(x) f (x) +

rn(x) where f (x) is the generalized polynomial whose roots are sought and rn(x) is

a weighted sum of the first N basis functions.

Beyond those already known, no obvious basis sets fulfill these stiff conditions. Perhaps

the reader will be more inventive!
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