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Abstract. As is known, the numerical stiffness arising from the small mean free path is

one of the main difficulties in the kinetic equations. In this paper, we derive both the

split and the unsplit schemes for the linear semiconductor Boltzmann equation with a

diffusive scaling. In the two schemes, the anisotropic collision operator is realized by

the “BGK"-penalty method, which is proposed by Filbet and Jin [F. Filbet and S. Jin,

J. Comp. Phys. 229(20), 7625-7648, 2010] for the kinetic equations and the related

problems having stiff sources. According to the numerical results, both of the schemes

are shown to be uniformly convergent and asymptotic-preserving. Besides, numerical

evidences suggest that the unsplit scheme has a better numerical stability than the split

scheme.
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1. Introduction

The semiconductor Boltzmann equation, serving as the mathematical model for the

highly integrated semiconductor devices, has a diffusive scaling measured by the dimen-

sionless parameter ε, i.e., the ratio of the mean free path of the particle with the typical

length. When ε goes to zero, i.e, ε→ 0+, the kinetic equations lead asymptotically to the

drift-diffusion equations.

In practical applications, it is often found that ε locates in the very different scale

within one problem, which causes the difficulty of transition regime, i.e, a regime with

ε too small for the kinetic equations to avoid numerical stiffness, and meanwhile, too

large for the drift-diffusion equations to be accurate [15]. In this situation, one has to

resolve the kinetic scaling and applies very fine grids to the kinetic equations when using

the standard numerical methods. Clearly, the cost will be expensive. On the other hand,

what we are concerned is actually the macroscopic observables of the system, such as the
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mass density and the bulk momentum, but not the phase distribution [4]. Hence, it is

worthless to compute the kinetic models wherever and whenever the drift-diffusion limits

are valid. To tackle this problem, one can apply such a class of multiscale, multi-physics

type domain decomposition methods (see, e.g., [3, 5, 7, 20]). All of them have the same

idea of solving the drift-diffusion equations in the diffusive regimes (where ε is small), and

the kinetic equations in the rarefied regimes (where ε is big). However, these methods

have the difficulties of determining the interface, including the location and the coupling

condition. In the recent years, the domain decomposition methods are gradually replaced

by the so-called asymptotic-preserving (AP) schemes in many areas.

The concept of AP was firstly summarized by Jin as follows. An AP scheme should pos-

sess the discrete analogy of the continuous asymptotic limit when ε→ 0+ (see, e.g., [9]).

To derive a class of AP schemes for the kinetic equations having the drift-diffusion limits,

Jin, Pareschi and Toscani proposed the diffusive relaxation system (DRS) and described

the features of the diffusive relaxation schemes as follows (see, e.g., [9–12]):

• The numerical stability is independent of ε. Even in the worst case, it is merely

restricted by the parabolic condition ∆t ∼ O(∆x2).

• For the fixed step sizes∆t and∆x , when ε→ 0+, the scheme becomes a good solver

for the limiting drift-diffusion equation.

• The collision term, though applied with the implicit scheme, can be implemented

explicitly.

Here, we employ the idea of DRS and derive two diffusive relaxation schemes in three

steps. Firstly, we reformulate the kinetic equation into the DRS using the even- and

odd- parities (see, e.g., [10–12]). Next, we apply the upwind scheme associated with

the high-resolution method to the left hand side (LHS) of DRS, which corresponds to a

standard nonstiff hyperbolic system. Finally, we perform the time discretization with the

split and the unsplit techniques, respectively. In both the split and the unsplit schemes,

the anisotropic collision term is dealt with the “BGK"-penalty method proposed by Filbet

and Jin in [6], the velocity discretization is done with a quadrature method based on the

Hermite polynomials and being essentially the moment method (see, e.g., [10,14]).

In this paper, it is the first time for the “BGK"-penalty method applied to the Boltzmann

equation with a diffusive scaling. Some other related works can be found in [8,13], where

the authors have verified the efficiency of the method for the Fokker-Planck-Landau and

Quantum Boltzmann equations with the Euler limit. The outline of this paper is as follows.

In Section 2, we give a brief introduction for the linear semiconductor Boltzmann equation,

including the associated diffusive scaling and the reformulation of the DRS. In Section 3,

we arrange three parts for the numerical schemes. Part 1 gives the quadrature method for

the velocity discretization. Part 2 introduces the high-resolution method for the LHS of

the DRS. Part 3 presents the split and the unsplit techniques for the time discretization,

including the “BGK"-penalty method for the collision term. In Section 4, we apply both the

split and the unsplit schemes to two transport problems in the slab geometry. According
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to the numerical results, the two schemes are shown with the AP property, and the unsplit

scheme has a better numerical stability than the split scheme.

2. Linear Semiconduction Boltzmann Equation and Drift-Diffusion Limit

In this section, we arrange two parts. In part 1, we introduce the linear semiconductor

Boltzmann equation and its diffusive scaling [2]. In Part 2, we perform a brief asymptotic

analysis for the kinetic equation, and then reformulate it into the DRS.

2.1. The Linear Semiconduction Boltzmann Equation

Electron transport in semiconductors is usually modeled (See [1,2]) by the linear semi-

conductor Boltzmann equation, which has the form of

∂t f +
1

ħh
∇~kE (~k) · ∇~x f +

q

ħh
∇~x V (~x , t) · ∇~k f =Q( f ). (2.1)

Here ~k ∈ B is the wave vector in the first Brillouin zone B, which is associated with the

lattice structure, ~x ∈ Ω is the electron position in the computational domain Ω ⊂ R3,

t ∈ R+ is the time variable, and f = f (~x ,~k, t) is the space phase density distribution. The

two constants q > 0 and ħh denote the electron charge and the reduced Plank’s constant,

respectively. E (~k) stands for a given energy band diagram, and V (~x , t) is the external

potential. In this paper, we treat V (x , t) as a given function independent of t, i.e., V (x , t) =

V (x). The collision operator Q for elastic collisions is given by

Q( f )(~k) =
∫

B

σ(~k,~k′) f (~k′)d~k′M (~k)M (~k)−λ(~k) f (~k) ,

M (~k) = exp(−E (
~k)

KBT0

) , λ(~k) =

∫

R
3

σ(~k,~k′)M (~k′)d~k′ ,

whereM (~k) is the Maxwellian depending on the Boltzmann constant KB and the thermal

temperature T0, λ(~k) denotes the collision frequency, and σ(~k,~k′) is the cross section being

assumed with the properties as

• Rotation invariance: ∀ R ∈ SO(3), it holds σ(R~k,R~k′) = σ(~k,~k′);

• Symmetry: ∀ ~k, ~k′ ∈ B, it holds σ(~k, ~k ′) = σ(~k ′, ~k);

• Boundedness: ∃ c0, c1 > 0, such that c0 ≤ σ(~k,~k′)≤ c1.

As usual, we begin with rescaling equation (2.1) (See [2], [19]). For simplicity, we con-

sider the local parabolic approximation, i.e., E (~k) = ħh2

2m
|~k|2, where m is the effective mass.

In this case, the definition domain of ~k can be extended from B to the whole space R3. Let

x0 be the typical length of the system, and E0 = KB T0 be the typical kinetic energy. Then

the wave vector scale k0, the time scale t0, the potential scale V0, the Maxwellian scale M0,
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the distribution scale f0, the cross section scale σ0, and the collision frequency scale λ0

satisfy

k0 =

p

2mE0

ħh
, t0 =

mx0

ħhk0

, V0 =
2E0

q
,

M0 =
p
π

3
, f0 =

1

x3
0k3

0

, λ0 = σ0M0k3
0 .

By introducing the dimensionless arguments

~ks =
~k

k0

, ~xs =
~x

x0

, ts =
t

t0

,

and the Knudsen number ε= 1

λ0 t0
, the dimensionless form of equation (2.1) is give as

∂ts
fs +~ks · ∇~xs

fs +∇~xs
Vs · ∇~ks

fs =
1

ε
Qs( fs) , (2.2)

where

Vs(~xs) =
V (x0~xs)

V0

, Ms(
~ks) =

M (k0
~ks)

M0

, fs(~xs,
~ks, ts) =

f (x0~xs, k0
~ks, t0 ts)

f0
,

σs(~ks,~k
′
s) =

σ(k0
~ks, k0

~k′s)
σ0

, λs(~ks) =
λ(k0

~ks)

λ0

, Qs(·)(~ks) =
Q(·)(k0

~ks)

λ0

.

For the more general case, we assume the Knudsen number depending on the position

variable, i,e., ε = ε(~xs), and define the constant δ = max~xs∈Ω ε(~xs). When δ ≪ 1, the

equation (2.2) leads a diffusive scaling with

t′ = δts, ~v
′ = ~ks, ~x

′ = ~xs ,

and thus

∂t f +
1

δ

�

~v · ∇~x f − ~E · ∇~v f

�

=
Q( f )
εδ

. (2.3)

Here all the primes have been omitted, ~v denotes the velocity of the electron, ~E(~x) =

−∇~x V (~x) is the external field with ‖~E(~x)‖L∞(Ω) bounded, and the rescaled collision oper-

ator Q is connected with velocity ~v through

Q( f )(~v) =
∫

R3

σ(~v,~v′) f (~v′)d~v′M (~v)−λ(~v) f (~v), ,

M (~v) = 1
p
π

3
exp(−|~v|2) , λ(~v) =

∫

R3

σ(~v,~v′)M (~v′)d~v′.
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2.2. The Drift-Diffusion Limit

It is well-known that the phase distribution f contains all the information about the

macroscopic observables, such as the mass density ρ and the bulk momentum ~u through

the relations

ρ(~x , t) =
∫

R3 f (~x ,~v, t)d~v , ~u(~x , t) =
∫

R3 ~v f (~x ,~v, t)d~v . (2.4)

However, since f depends on seven variables, thus it is challenging for the storage de-

vice. One preferred approach is deducing some approximate macroscopic model through

asymptotic analysis [4]. In this subsection, a brief asymptotic analysis is given for the equa-

tion (2.3), which suggests the kinetic model having the drift-diffusion limit in the sense of

δ→ 0+. As a preliminary, we present several standard theoretical results (See [2,17–19])

for the collision operator Q.

Theorem 2.1. Denote the Hilbert space H =L 2
�

R
3; d~v/M (~v)�. Then it holds that

1. −Q is bounded and self-adjoint.

2. KerQ=Span{M (~v)}⊂H , RanQ=KerQ⊥.

3. There exists a constant c̃0 > 0 such that

−
Q( f ), f
�

H ≥ c̃0‖ f −P ( f )‖2H , ∀ f ∈H ,

where

Q( f ), f
�

H =
∫

R3

Q( f )(~v) f (~v)
M (~v) d~v , P ( f ) =

∫

R3

f d~vM (~v) .

4. Let~h=~h(~v) ∈ R3 be the unique solution to Q(~h) =M (~v)~v in RanQ. Then ~h is an odd

function of ~v and there exists a positive number µ such that
∫

R3 ~v ⊗~hd~v = −µI3×3. µ

is called the mobility.

Given the even and odd parities

r(~x ,~v, t) =
1

2
[ f (~x ,~v, t) + f (~x ,−~v, t)], (2.5a)

j(~x ,~v, t) =
1

2δ
[ f (~x ,~v, t)− f (~x ,−~v, t)], (2.5b)

it is straightforward that

r(~v) = r(−~v), j(~v) = − j(−~v), Q( j) = −λ j , (2.6a)

ρ(~x , t) =

∫

R3

r(~x ,~v, t)d~v, ~u(~x , t) = δ

∫

R3

~v j(~x ,~v, t)d~v . (2.6b)
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For simplicity, we consider the uniform regime in Ω. When δ ≪ 1, suppose f has the

following Hilbert expansion form

f = f0 + δ f1 + δ
2 f2 + · · · . (2.7)

Inserting (2.7) into (2.3) and equating the different powers of δ, one gets

O(δ−1) : Q( f0) = 0 , (2.8a)

O(δ0) : Q( f1) = ~v · ∇~x f0 − ~E · ∇~v f0 , (2.8b)

O(δ1) : Q( f2) = ∂t f0 + ~v · ∇~x f1 − ~E · ∇~v f1 , (2.8c)

O(δ2) : Q( f3) = ∂t f1 + ~v · ∇~x f2 − ~E · ∇~v f2 . (2.8d)

Applying the Theorem 2.1-(ii) to equation (2.8a), f0 is solved as f0 = ρ0M (~v), which

implies r0 = ρ0M (~v) and j0 = 0. Splitting ~v in (2.8b) into ~v and −~v, one gets

Q( f1)(~v) = ~v · ∇~x f0 − ~E · ∇~v f0, Q( f1)(−~v) = −~v · ∇~x f0 + ~E · ∇~v f0 .

Adding and subtracting the two equations above, r1 and j1 are solved as

r1 = ρ1M (~v), δ j1 =~h(~v) · (∇~xρ0+ 2ρ0
~E) ,

where the property (2.6) and the Theorem 2.1-(iv) are used. The solvability of (2.8c)

suggests

∫

R3

(∂t f0 + ~v · ∇~x f1 − ~E · ∇~v f1)d~v = 0 .

Since

∫

R
3

(~v · ∇~x f1 − ~E · ∇~v f1)d~v

=∇~x ·
�∫

R
3

δ~v j1d~v

�

=∇~x ·
�∫

R
3

~v⊗~h(~v)d~v · (∇~xρ0 + 2ρ0
~E)

�

=−∇~x ·µ (∇~xρ0+ 2ρ0
~E) ,

thus ρ0 satisfies the following drift-diffusion equation

∂tρ0−∇~x ·µ(∇~xρ0+ 2ρ0
~E) = 0 ,

with the mobility µ. Analogously, one can derive ρ1 fulfilling the same drift-diffusion

equation as ρ0. Hence, it establishes

∂tρ−∇~x ·µ(∇~xρ+ 2ρ~E) = O(δ2) . (2.9)

In this paper, we assume δ ≤ 1.
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3. Numerical Scheme

We simply consider one-dimensional schemes in this section. According to [11, 12],

even when the anisotropic collision term is treated efficiently, solving (2.3) directly is still

restricted to the best Courant-Friedrichs-Levy (CFL) condition, i.e.,∆t ∼ O(δ∆x). Conse-

quently, the cost is still expensive when δ≪ 1. To tackle this problem, we follow the idea

in [10–12], and reformulate (2.3) into the system with respect to the parities (2.5), i.e.,

∂t r + v1∂x j− E∂v1
j =
Q(r)
εδ

, (3.1a)

∂t j+
v1∂x r − E∂x r

δ2
= −λ j

εδ
. (3.1b)

Here v1 denotes the first component of velocity ~v = (v1, v2, v3). Next, we rewrite (3.1a)-

(3.1b) into the DRS, i.e.,

∂t r + v1∂x j− E∂v1
j =
Q(r)
εδ

, (3.2a)

∂t j+φ(v1∂x r − E∂v1
r) = − 1

εδ
[λ j+

ε(1−δ2)

δ
(v1∂x r − E∂v1

r) ] , (3.2b)

where the artificial parameter φ is restricted by the relation 0 ≤ φ ≤ 1

δ2 to ensure the

problem being well-posed uniformly with δ. Since we have assumed δ ≤ 1, thus we simply

set φ = 1. The following split and the unsplit schemes are all based on the DRS (3.2a)-

(3.2b), moreover, except the time discretization they have the velocity discretization, the

LHS of the DRS and the anisotropic collision term discretized in the same manners.

3.1. Velocity Discretization

The quadrature method utilizes the Hermite polynomial and be essentially the moment

method. According to [18, 19], the method is stable and has the spectral accuracy. As a

preliminary, we introduce some notations. Given the triple indexes (See [14, 18, 19])

l = (l1, l2, l3), l1, l2, l3 ∈ Z+0 , and m = (m1, m2, m3), m1, m2, m3 ∈ Z+0 , the velocity node is

written as ~v l = (v
l1
1 , v

l2
2 , v

l3
3 ), and the function hm(~v) denotes

hm(~v) = hm1
(v1)hm2

(v2)hm3
(v3) ,

where the one dimensional Hermite polynomial hmi
(vi), vi ∈ R, i = 1,2,3, satisfies

h−1(vi) = 0, h0(vi) = π
−1/4, (3.3a)

hmi+1(vi) = vi

r

2

mi + 1
hmi
(vi)−
r

mi

mi + 1
hmi−1(vi) , mi ≥ 0, (3.3b)

h′mi
(vi) =
p

2mi hmi−1(vi). (3.3c)



Asymptotic Preserving Schemes for Semiconductor Boltzmann Equation in the Diffusive Regime 285

Clearly, the series {hm(~v)M (~v)}m consists of an orthonormal basis of the Hilbert space

H . From the aspect of numerical implementations, it generally truncates the orthonormal

basis for a specified triple index M = (M1, M2, M3), M1, M2, M3 ∈ Z+. Next, as was done

in [10,14], we factor the Maxwellian from the parities and rewrite them into the forms of

r = ϕ(~x ,~v, t)M (~v), j =ψ(~x ,~v, t)M (~v), (3.4)

where

ϕ =
∑

0≤m≤M

ϕm(~x , t)hm(~v), ψ=
∑

0≤m≤M

ψm(~x , t)hm(~v) .

It is straightforward that

∂v1
r =M∂v1

ϕ− 2v1ϕM , ∂v1
j =M∂v1

ψ− 2v1ψM .

Since the term ∂v1
j is discretized in the same manner as ∂v1

r, thus we consider ∂v1
r only.

Using the property (3.3c), one gets

∂v1
ϕ =
∑

0≤m≤M−e1

p

2(m1+ 1)ϕm+e1
hm(~v) , (3.5)

with e1 = (1,0,0). On the other hand, owing to the relation

ϕm =

∫

R3

ϕ(~v ′)hm(~v
′)e−|~v

′|2d~v′ =
∑

0≤l≤M

ϕ(~v l)hm(~v
l)ωl ,

one can reduce (3.5) to be as

∂v1
ϕ(~v) =
∑

0≤m≤M−e1

p

2(m1+ 1)hm(~v)hm+e1
(~v l)ωl

m+e1
ϕ(~v l) ,

where v
l1
1 , v

l2
2 , v

l3
3 , l1, l2, l3 ∈ Z+0 , are the roots of Hermite polynomials hM1+1(v), hM2+1(v),

hM3+1(v), respectively, and ωl is the associated weight given by

ωl =

3
∏

i=1

1

(Mi + 1)h2
Mi
(v

li
i
)

. (3.6)

Finally, the collision term is realized as

Q(r)(~v) = M (~v)
∫

R3

σ(~v,~v′)ϕ(~v ′)M (~v′)d~v ′−λ(~v)r(~v)

= π−3/2M (~v)
∑

0≤l≤M

σ(~v,~v l)ϕ(~v l)ωl −λ(~v)r(~v) ,

with

λ(~v) =

∫

R3

σ(~v,~v ′)M (~v ′)d~v ′ = π−3/2
∑

0≤l≤M

σ(~v,~v l)ωl .
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3.2. Space Discretization

In this section, we introduce the high-resolution method for the space discretization of

the LHS of (3.2a)-(3.2b). Setting u= r + j and w = r − j, one gets

∂tu+ v1∂x u= 0, ∂t w − v1∂x w = 0 . (3.7)

Without the loss of generality, we let Ω = [0,1], and simply employ a uniform mesh with

grid points x i = i∆x , ∆x = 1/N , i = 1,2, · · · , N , N ∈ Z+. Then the grid functions are

defined by

r n
i =

1

∆x

∫ x
i+ 1

2

x
i− 1

2

r(x ,~v, t n)dx , j n
i =

1

∆x

∫ x
i+ 1

2

x
i− 1

2

j(x ,~v, t n)dx .

An explicit discretization for (3.7) is given as

un+1
i
− un

i

∆t
+ v1∆

u
xu n

i = 0,
wn+1

i
−wn

i

∆t
− v1∆

u
x w n

i = 0 ,

where the upwind operator ∆u
x has the form of

∆u
xu i =

ui+ 1

2
− ui− 1

2

∆x
. (3.8)

By a direct calculation, one has

rn+1
i
= rn

i −
v1∆t∆u

x jn
i

2
, jn+1

i
= jn

i −
v1∆t∆u

x rn
i

2
. (3.9)

Owing to the symmetry (2.6) of the parities, we consider the situation of v1 > 0 only. The

first order upwind scheme for (3.9) is given as

ri+ 1

2
=

1

2
(ui +wi+1), ji+ 1

2
=

1

2
(ui −wi+1).

To improve the accuracy up to O(∆t +∆x2), the second order total variation diminishing

(TVD) method [16] is applied as

ri+ 1

2
=

1

2
(ui +wi+1) +

1

4
(∆x + v1∆t)[Φ(u+

i+ 1

2

)−Φ(w−
i+ 1

2

)], (3.10a)

ji+ 1

2

=
1

2
(ui −wi+1) +

1

4
(∆x + v1∆t)[Φ(u+

i+ 1

2

)−Φ(w−
i+ 1

2

)], (3.10b)

where Φ(θ) is the van Leer limiter given by

Φ(θ) =
|θ |+ θ
1+ |θ | , (3.11)

u+
i+ 1

2

=
ui − ui−1

ui+1 − ui

, w−
i+ 1

2

=
wi+1 −wi

wi+2 −wi+1

. (3.12)
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3.3. Time Discretizations

We arrange two parts for this subsection. In part 1, we introduce the split scheme. In

part 2, we presents the unsplit scheme. In the two schemes, the collision terms are treated

with the “BGK"-penalty method [6].

3.3.1. Time-Splitting Method

A natural way to split (3.2a)-(3.2b) is splitting it into a stiff relaxation step

∂t r =
Q(r)
εδ

, (3.13a)

∂t j = − 1

εδ

�

λ j+
ε(1− δ2)

δ
(v1∂x r − E∂v1

r)

�

, (3.13b)

and a nonstiff convection step

∂t r + v1∂x j− E∂v1
j = 0 , (3.14a)

∂t j+ v1∂x r − E∂v1
r = 0 . (3.14b)

Clearly, the nonstiff convection step can be solved using the explicit high resolution method

in subsection 3.2. Whereas, the stiff relaxation step should be solved by using the explicit-

implicit (IMEX) scheme to ensure the δ-independent stability when∆t ≫ δ. Here the com-

plete implicit scheme for the relaxation step will cause expensive cost due to the anisotropic

collision operator [11,12]. For example, the first order Backward Euler method applied to

(3.13a)-(3.13b) gives r∗i and j∗i as (See [10])

r∗i − rn
i

∆t
=
Q(r∗i )
εiδ

, (3.15a)

j∗
i
− jn

i

∆t
= − 1

εiδ
[λ j∗i + β(v1∆2x r ∗i − E i∂v1

r ∗i ) ] , (3.15b)

where the constant β and the central difference operator ∆c
2x are defined by

β =
ε i(1− δ2)

δ
, ∆c

2x r i =
ri+1 − ri−1

2∆x
. (3.16)

It is straightforward that (3.15b) can be solved explicitly with r ∗i known. However, in

(3.15a), we have to invert the anisotropic Q and solve the algebraic system iteratively,

which is costly. To ensure both the stability and the efficiency, we follow the idea of AP

scheme, and utilize the “BGK"-penalty method, which is supposed by Filbet and Jin in [6]

and has the ability of solving the implicit collision term explicitly. In this method, one

needs to introduce an operator B in the “BGK" form

B(r) = L(ρM − r), (3.17)



288 Jia Deng

where the constant L depends on the spectrum of DQ(ρM ), the Fréchet derivative of Q.

Then rewriting (3.13a) into an equivalent form as

∂t r =
Q(r)−B(r)

εδ
+
B(r)
εδ

, (3.18)

one finds that the first term on the right hand side of (3.18) has been less or even not stiff

compared to the second term owing to the relation around r ≈ ρM , i.e.,

Q(r)≈Q(ρM )+ DQ(ρM )(r −ρM ) + · · · .

Thus the first order IMEX for (3.13a) is given as

r∗
i
− rn

i

∆t
=
Q(rn

i
)−B(rn

i
)

εiδ
+
B(r∗i )
εiδ

. (3.19)

Integrating (3.19) with velocity variable over R3, one obtains ρ∗i = ρ
n
i , which leads

r∗i = rn
i +∆tτiQ(rn

i ), τi = (L∆t + εiδ)
−1 . (3.20)

Applying (3.20) to (3.15b), j ∗i is solved as

j∗i = εiηi[δ jn
i − β v1∆t∆c

2x r∗i + β∆tEi∂v1
r ∗i ], ηi = (λ∆t + εiδ)

−1 . (3.21)

The split scheme, i.e.,(3.20)-(3.21) and (3.10)-(3.12), has the accuracy of O(∆t +∆x2).

In this problem, a seconder order accuracy in time is actually unnecessary owing to the

parabolic CFL condition ∆t ∼ O(∆x2) for small δ.

3.3.2. Time-Unsplitting method

In this subsection, we perform the time discretization for (3.2a)-(3.2b) using the unsplit

method. As was done in the split method, we introduce the operatorB defined by (3.17),

and rewrite (3.2a) to be as

∂t r + v1∂x j− E∂v1
j =
Q(r)−B(r)

εδ
+
B(r)
εδ

. (3.22)

Applying the first order IMEX to (3.22) following

rn+1
i
− rn

i

∆t
+ v1∆

u
x j n

i − Ei∂v1
j n
i =
Q(rn

i
)−B(rn

i
)

εiδ
+
B(rn+1

i
)

εiδ
, (3.23)

one gets

rn+1
i
=rn

i +∆tτiQ(rn
i ) + L∆tτi(ρ

n+1
i
−ρn

i )M
− εiδ∆tτi(v1∆

u
x jn

i − Ei∂v1
j n
i ) . (3.24)
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Integrating (3.23) with velocity variable over R3, one obtains

ρn+1
i
= ρn

i −α1

∫

R3

v1∆
u
x j n

i d~v , (3.25)

with which and (3.24) one can solve r n+1
i

. Next, we apply the first order IMEX to (3.2b)

following

j n+1
i
− j n

i

∆t
+ v1∆

u
x r n

i − E i∂v1
r n

i = −
λ j n+1

i
+ β(v1∆

c
2x r n+1

i
− E i∂v1

r n+1
i
)

ε iδ
,

and get

jn+1
i
=εiδηi[ j

n
i −∆t(v1∆

u
x r n

i − E i∂v1
r n

i )]

− β∆tη i(v1∆
c
2x r n+1

i
− E i∂v1

r n+1
i
) . (3.26)

4. Numerical Examples

In this section, we apply both the split and the unsplit schemes to two transport prob-

lems in the slab geometry. As mentioned above, the velocity discretization is done with

the quadrature method in Subsection 3.1. By numerical tests, the solution using larger M

is comparable to the results using M = (16,16,16), so we only present the results using

M = 16. The boundary conditions are assumed to be periodic. The cross section is given

as either the relaxation time approximation (RTA), i.e., σ(~v, ~w) = 1, or the mixture of RTA

and the electron-phonon interactions (EPI) models, i.e.,

σ(~v, ~w) = 1+M (~v)δ̃(|~v|2− |~w|2 + 1)+M (~w)δ̃(|~v|2− |~w|2 − 1), (4.1)

where δ̃(x) = exp(−|x |2) is the regularized delta function (see [11]).

In the numerical results, we use some notations as follows.

• Let ‖ f ‖1 be the discrete l1 norm of the distribution f = α(~x ,~v, t)M (~v) ∈ H . It is

calculated according to

‖ f ‖1 =
1

N

N−1
∑

i=0

∑

0≤l≤M

|α(x i,~v
l)|ωl.

where the associated weight ωl is given by (3.6).

• Let ‖ρ‖1,x be the discrete l1 norm of the function ρ = ρ(x , t). It is calculated

through

‖ρ‖1,x =
1

N

N−1
∑

i=0

|ρ(x i)|.
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• {rre f , ρre f } denote the reference solutions, which are obtained by using the split

scheme with very fine grids. In this case, the parameter L in (3.17) is set as L = 0,

and the BGK-penalty method is not applied to the collision term. {rs, ρs} and {ru,

ρu} denote the approximate solutions, which are obtained by using the split and the

unsplit schemes with coarse grids, respectively. ρD denotes the solution to the drift-

diffusion equation (2.9). The initial condition and the mobility function are given

as

ρD(x , 0) =

∫

R3

ϕ(x ,~v, 0)M (~v)d~v, µ̃(x) =
ε(x)

δ

∫

R

v2
1M (~v)
λ(~v)

d~v.

From the numerical results, we observe the following properties of

• The unsplit method has a better numerical stability than the split method.

• Both the methods are uniformly second order, w.r.t., ∆x .

• When the system has approached the global equilibrium state, the deviation ‖rs −ρsM‖1
is about first order, w.r.t., ∆t, in the case of δ ≪ 1 and ∆t ≫ δ2, however, the de-

viation ‖ru −ρuM‖1 is nearly independent of ∆t and about second order, w.r.t.,

δ.

As a conclusion, the two schemes are AP.

Example 1. In this example, we consider the uniform regime, i.e.,ε(x) = δ, in the

computational domain x ∈ [0,1]. The electric field is given by

E(x , t) = sin(2πx) . (4.2)

According to the numerical results in Table. 1 and Fig. 1- 5, we observe the features (i)-(iii).

In Table. 1 and Fig. 1, where the cross section are assumed to be the RTA model, we

numerically compare the stability for the split and the unsplit methods using the initial

conditions as

r(x ,~v, 0) =

�

1+
e−v1 + ev1

2

�

M (~v) , j(x ,~v, 0) =
e−v1 − ev1

2δ
M (~v) . (4.3)Table 1: Numeri
al stability 
ondition for the split method in Example 1. Given the relation ∆t =

cδ,∆x∆x2 with the unknown 
onstant cδ,∆x ∈ R+, Table. 1 presents a group of cδ,∆x for the split s
heme.
∆x = 1/N 25 50 100 200 400 800

ε= 10−1 1/2 1 1 1 1 1

ε= 10−2 1/4 1/4 1/3 1/2 1 1

ε= 10−3 1 1 1 1/2 1/5 1/3

ε= 10−4 2 2 2 2 2 2

ε= 10−6 2 2 2 2 2 2
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(a) Split Method

(b) Unsplit MethodFigure 1: Test of stability in Example 1. (a): left is the relation between ∆t and ∆x satis�es Table. 1.In the right one, the spa
e step for ‖rs −ρsM‖1 is given as ∆x = 1/25, and the time step satis�esTable. 1. (b): left is the relation between ∆t and ∆x satis�es ∆t = 2∆x2. In the right one, the spa
estep for ‖ru−ρuM‖1 is given as ∆x = 1/25 and the time step satis�es ∆t = 2∆x2.
There we assume δ ∈ Rδ = {10−1, 10−2, 10−3, 10−4, 10−6}, and set ∆x ∈ R∆x =

{1/25,1/50, 1/100,1/200, 1/400, 1/800}. We perform the comparison as follows. Given

δ0 ∈ Rδ and ∆x ∈ R∆x , the constant cδ0 ,∆x ∈ R+ in the relation ∆t = cδ0 ,∆x∆x2 should

be able to ensure the stability of the scheme when evolving the deviation ‖rs,u−ρs,uM‖1.

Let cδ0
be cδ0

= min∆x∈R∆x
cδ0,∆x . Then the scheme is uniform stable, w.r.t., ∆x for δ0

when ∆t = cδ0
∆x . Similarly, let c be c = minδ0∈Rδ cδ0

. The scheme is uniform stable,

w.r.t., δ and ∆x when ∆t = c∆x2.

In Table. 1, where the split method is applied, we present a group of the constant

cδ0 ,∆x . From the table, the split scheme is uniform stable, w.r.t., δ ∈ Rδ and ∆x ∈ R∆x

when ∆t = ∆x2/5. Additionally, the unsplit scheme is tested to be uniform stable, w.r.t.,

δ ∈ Rδ and∆x ∈ R∆x when∆t = 2∆x2. The numerical results are shown in Fig. 1, where

we introduce e∗{s,u} for δ0 ∈ Rδ and ∆x ∈ R∆x as

e∗{s,u} =
K
∑

k=1

∑

0≤l≤M

|ϕ(x ,~v l, t k)−ρs,u(x , t k))|ωl∆t, K =
� T

∆t

�

. (4.4)
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(a) ε = 10−1 (b) ε = 10−27 (c) ε= 10−3Figure 2: Test of stability in Example 1. The evolution of ‖rs −ρsM‖1 in the three sub�gures are solvedwith the split method. (a): with δ = 10−1 applied with ∆t = ∆x2 for ∆x = 1/25. (b): The evolution of
‖rs −ρsM‖1 with δ = 10−2 applied with ∆t =∆x2/3 for ∆x = 1/25, 1/50, ∆t = ∆x2/2 for ∆x = 1/100,and ∆t =∆x2 for ∆x = 1/200. (
): with δ = 10−3 applied with ∆t = ∆x2 for ∆x = 1/200, ∆t =∆x2/4for ∆x = 1/400, and ∆t =∆x2/2 for ∆x = 1/800.

(a) Split Method (b) Unsplit MethodFigure 3: Test of 
onvergen
e rate in Example 1. The relative error e{s,u} de�ned by (4.6) are solvedwith the split and unsplit methods, respe
tively.
Here the expansion form (3.4) of r is used. In Fig. 1(a), where the split method is

applied, we solve e ∗s with T = 1 and present the numerical results in the left figure. There

the mesh size is given by Table. 1. According to the numerical results, e ∗s decreases when

∆x decreases. In other words, if the split scheme is stable with ∆x = 1/25, then it is

stable with any ∆x ∈ R∆x . In the right figure in Fig. 1(a), we show the evolution of

‖rs −ρsM‖1 form T = 0 to T = 1.0 for δ0 ∈ Rδ with ∆x = 1/25. In Fig. 1(b), we repeat

the computations in Fig. 1(a) using the unsplit method and the mesh size ∆x ∈ R∆x ,

∆t = 2∆x2. Furthermore, it can be seen in Fig. 2 that the split scheme is not uniform

stable, w.r.t., ∆x ∈ R∆x and δ ∈ Rδ when∆t =∆x2/4. There we recompute the deviation

‖rs −ρsM‖1 for δ = 10−1 using ∆x = 1/25 with c = 1, for δ = 10−2 using ∆x = 1/25,

1/50 with c = 1/3, using ∆x = 1/100 with c = 1/2, and using ∆x = 1/200 with c = 1,

for δ = 10−3 using ∆x = 1/200 with c = 1, using ∆x = 1/400 with c = 1/4, and using

∆x = 1/800 with c = 1/2. As a conclusion, the unsplit method has a better numerical

stability than the split method.
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(a) Split Method (b) Unsplit MethodFigure 4: Test of feature (iii) in Example 1 with T = 1. The numeri
al results in (a) are solved with thesplit method and (b) are solved with the unsplit method.
(a) Evolution of ρ and u (b) Evolution of ‖ρs,u −ρD‖1,xFigure 5: Example 1. (a): the left des
ribes the evolution of the mass density, with the dash linedenoting the initial mass density. The right one gives the evolution of the bulk momentum, with theinitial bulk velo
ity u = 0. (b): the evolution of ‖ρs,u −ρD‖1,x from T = 0 to T = 1.0.

In the following computations, the cross section are all assumed to be as the mixture

of RTA and EPI model, i.e., (4.1), and the initial conditions all have the forms of

r(x ,~v, 0) =
�

0.5+ e−v2
1

�

M (~v) , j(x ,~v, 0) = 0 . (4.5)

In Fig. 3, where δ ∈ R2,δ = {10−1, 10−2, 10−4, 10−6}, we show the convergence

rates of the two methods as follows. For a given δ ∈ R2,δ, we let the space step be

∆x ∈ R2,∆x = {1/25,1/50, 1/100, 1/200, 1/400}, and then chose the time step satisfying

∆t ∼ O(∆x2) in the condition of stability. In Fig. 3(a), where the split method is applied,

we let∆t = 1/4002 for δ = 10−1, 10−2, and∆t = 2/4002 for δ = 10−4, 10−6. In Fig. 3(b),

where the unsplit method is applied, we fix ∆t = 2/4002 for δ ∈ R2,δ with ∆x ∈ R2,∆x .

Next, we solve rs,u at T = 0.1 and consider r̃s,u as the “reference" solution. Here r̃s,u is

actually rs,u applied with ∆x = 1/400. Finally, we solve the relative error e{s,u} through

e{s,u} = ‖rs,u− r̃s,u‖1 . (4.6)

According to the numerical results, both of the split and the unsplit schemes are shown to

be about second order, w.r.t., ∆x , i.e., the feature (ii).
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(a) Evolution of mass density.
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(b) Evolution of bulk momentum. (c) Evolution of ‖rs,u −ρs,uM‖1.Figure 6: Numeri
al results for Example 2 with δ0 = 10−3, and ε0 =
1
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(a) Evolution of mass density
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(b) Evolution of bulk momentum (c) Evolution of lg‖rs,u −ρs,uM‖1Figure 7: Numeri
al results for Example 2 with δ0 = 0, and ε0 = 10−5.
In Fig. 4, where δ ∈ {10−1,10−2, 10−4, 10−5}, we solve the deviation ‖rs,u−ρs,uM‖1

at T = 1.0 with the fixed space step as ∆x = 1/50. In the split method, we set ∆t =

∆x2/2k with k = 0, 1, 2, 3, 4, for δ = 10−1, k = 2, 3, 4, 5, 6, for δ = 10−2, and k = −1, 0,

1, 2, 3, for δ = 10−4, 10−5. In the unsplit method, we fix∆t = 2∆x2 for all δ. In Fig. 4(a),

where the split method is applied, the deviation ‖rs −ρsM‖1 is about first order, w.r.t., ∆t

when δ≪ 1 and ∆t ≫ δ2. In Fig. 4(b), the left figure shows that ‖ru −ρuM‖1 is nearly

independent of ∆t, whereas, the right one suggests that ‖ru −ρuM‖1 is about second

order, w.r.t., δ.

In Fig. 5, we assume δ = 0.005. In Fig. 5(a), we present the evolutions of the mass

density and the bulk momentum for the system. There the markers are solved by the

unsplit method using the mesh size ∆x = 1/50 and ∆t = 2∆x2. The solid lines denote

the reference solutions. Since the split method applied with the same coarse grids coincides

with the reference solutions well, thus we omit it here. In Fig. 5(b), we verify equation

(2.9) and compare ρs,u with ρD through the evolution of ‖ρs,u−ρD‖1,x from T = 0 to

T = 1.0. There, the space step is fixed as ∆x = 1/200. The time steps for ρu and ρD

satisfy ∆t = ∆x2. The time step for ρs fulfils ∆t = ∆x2/4. Moreover, the numerical tests

show that the split scheme is unstable with ∆x = 1/200 even when ∆t =∆x2/2.

Example 2. In this example, we consider a mixing regime, i.e.,

ε(x) = δ0 + ε0 exp(−100x2) .
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in the computational domain x ∈ [−0.5,0.5]. Here δ0 and ε0 are two constants. We still

consider the mixture model (4.1). The electric field and the initial condition are as same

as (4.2) and (4.5), respectively. According to the example, the two schemes are efficient

for the mixing regime, too. The numerical results are shown in Fig. 6- 7.

In Fig. 6, we set δ0 = 10−3 and ε0 = 4 × 10−3. There Fig. 6(a)-Fig. 6(b) describe

the evolution of the mass density and the bulk momentum, respectively. The markers are

solved with the unsplit method using ∆x = 1/50 and ∆t = 2∆x2. The solid lines denote

the reference solutions. In Fig. 6(c), we present the evolution of ‖rs,u−ρs,uM‖1 from

T = 0 to T = 2.0. The solid line is solved with the unsplit method using ∆x = 1/50

and ∆t = 2∆x2. The dash line is given with the split method using ∆x = 1/50 and

∆t =∆x2/2. According to the numerical tests, the split scheme is unstable with∆t =∆x2

when ∆x = 1/50.

In Fig. 7, we set δ0 = 0 and ε0 = 10−5. Similarly, we firstly present the evolutions of

the mass density and the bulk momentum in Fig. 7(a) and Fig. 7(b), respectively. There the

markers are solved with the unsplit method using ∆x = 1/80 and ∆t = 2∆x2. The solid

lines denote the reference solutions. In Fig. 7(c), we give the evolution of ‖rs,u−ρs,uM‖1
from T = 0 to T = 1.0. There both the solid line (which is solved with the unsplit method)

and the dash line (which is solved with split method) are applied with the mesh size

∆x = 1/50 and ∆t = 2∆x2. Differing from Fig. 6, the split scheme is stable in this

situation even when ∆t = 2∆x2.

5. Conclusion

This paper derives the split and the unsplit schemes for the linear semiconductor Boltz-

mann equation with a diffusive scaling. The key point of the two schemes is rewriting

the kinetic equation into the diffusive relaxation system, and applying the “BGK"-penalty

method to the collision term. Through the numerical results, the two methods are shown to

be asymptotic preserving. Furthermore, compared to the split method, the unsplit method

has a better numerical stability than the split method.
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