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Abstract. As the generalization of the integer order partial differential equations (PDE),
the fractional order PDEs are drawing more and more attention for their applications in
fluid flow, finance and other areas. This paper presents high-order accurate Runge-Kutta
local discontinuous Galerkin (DG) methods for one- and two-dimensional fractional dif-
fusion equations containing derivatives of fractional order in space. The Caputo deriva-
tive is chosen as the representation of spatial derivative, because it may represent the
fractional derivative by an integral operator. Some numerical examples show that the
convergence orders of the proposed local P*~DG methods are O(h**!) both in one and
two dimensions, where P* denotes the space of the real-valued polynomials with degree
at most k.
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1. Introduction

Fractional calculus is a natural extension of the integer order calculus [28,30]. Re-
cently many problems in physics [2], finance [31] and hydrology [1] have been formu-
lated on fractional partial differential equations (PDE), containing derivatives of fractional
order in space, time or both. For example, anomalous diffusion is a possible mechanism
underlying plasma transport in magnetically confined plasmas, and the fractional order
space derivative operators can be used to model such transport mechanism.

In recent years the numerical solutions of the fractional PDEs have attracted a consid-
erable interest both in mathematics and in applications. An intrinsical difference between
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the behaviors of integer and fractional order derivatives is that the integer order derivatives
depend only on the local behavior of a function or solution, while the fractional derivatives
are non-local, i.e., they depend on the entire function or solution. Thus, new difficulties
and challenges appear in deriving numerical methods for this kind of equations.

The fractional derivatives of order a > 0, g £ X are usually represented by the Riemann-
Liouville formula [28,30]
S R f e, 0 - £ de Ry
—(,t)=——=—| u(& t)(x— , .
Ix? I(n—a)dx" |,

where I'(+) is the Gamma function, x € [a,b], —co<a<b<oo,n—1<a<n,neZ".
The fractional derivatives are also frequently defined by the Griinwald-Letnikov formula

(1

2 —(x,1) = 1)1cm0A . Z( 1)5( “ )u(x—mx,t), (1.2)

where [X=4 Y ¢] denotes the integer part of =*. If u(¢,) € C"[a, x], the Riemann-Liouville
formula is equivalent to the Griinwald- Letmkov However, the discrete approximations of
the latter present some limitations: frequently numerical approximations based on this
formula originate unstable numerical methods and henceforth in many cases a shifted
Griinwald-Letnikov formula is used; the order of accuracy of such approaches is never
higher than one.

Another way to represent the fractional derivative is by the Caputo formula

ou 8”u(§ t) n—a—1
Ix® r(n—a)f agn _g) d§ (1.3)

This formula has some advantages over the Riemann-Liouville formula. The Laplace trans-
form method is very frequently used for solving fractional differential equations, the Laplace
transform of the Riemann-Liouville derivatives leads to boundary conditions involving the
limit value of the Riemann-Liouville derivatives at the lower terminal x = a. Although
technically such problems can be solved, there is no physical interpretation. On the other
hand, the Laplace transform of the Caputo derivative imposes boundary conditions involv-
ing integer order derivatives which usually are more acceptable and physical. Another ad-
vantage is that the Caputo derivative of a constant is zero, while for the Riemann-Liouville
it’s not.

During the past decade, numerical methods of the fractional PDEs have been increas-
ingly appearing in literatures. Lynch et al. [24] studied the numerical properties of the
PDEs of fractional order a € (1,2). Shen and Liu [35] gave error analysis of an explicit
finite difference approximation for the space fractional diffusion equation with insulated
ends. Chen et al. [3] proved the stability and convergence of an implicit difference approx-
imation scheme of the fractional diffusion equation describing anomalous slow diffusion
(sub-diffusion) by using a Fourier method. Liu et al. [21] discussed stability and conver-
gence of the difference methods for the space-time fractional advection-diffusion equation.
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Shen et al. [36] studied the fundamental solution and the finite difference approximations
of the Riesz factional advection-dispersion equation. Cui [11] developed a compact finite
difference method for the fractional diffusion equation by using the Griinwald-Letnikov
discretization of the Riemann-Liouville derivative. Yuste [43] developed weighted average
finite difference methods for fractional diffusion equations.

Most of the existing finite difference methods developed for the PDEs of fractional or-
der a € (1,2) are only first order accurate and restricted to one-dimensional problem. A
second order accurate finite difference method for one- and two-dimensional fractional
diffusion equations can be found in [39,40], where the Richardson extrapolation is ap-
plied to achieve second-order accuracy. Xu and his coworkers [19, 20] considered spectral
approximations for the time fractional diffusion equation, this equation can be used to
describe the anomalous sub-diffusion. Deng [13] studied finite element methods for the
space and time fractional Fokker-Planck equation. In the time fractional equation, the so-
lution at a time t; depends on the solutions at all previous time levels ¢t < t. This makes
the storage very expensive and challenges the algorithm design. There are several ways
to discretize the time fractional derivative and speed its computation [12,19,23], McLean
et al. studied the convergence analysis of a discontinuous Galerkin method for the time
fractional differential equation, the non-uniform time steps are used in their methods due
to the singularity of derivatives at t = 0 [25, 26].

The aim of this paper is to develope high-order accurate local discontinuous Galerkin
(DG) approximations of a fractional diffusion model containing derivatives of fractional
order in space. The DG methods discussed here are a class of the finite element meth-
ods, which adopt completely discontinuous piecewise polynomial space for the numerical
solutions and the test functions in the spatial variables, coupled with explicit and nonlin-
early stable high order Runge-Kutta time discretization. The original DG was introduced
in 1973 by Reed and Hill to solve the neutron transport equation [33], which was first
analyzed by Lesaint and Raviart [17] in 1974. Since then, it has been widely used in the
numerical simulation of elliptic equation [32], Dirac equation [38], convection-diffusion
equation [34], shallow water equation [18], MHD equation [42], the time fractional diffu-
sion equation [25], etc. It was first developed for hyperbolic conservation laws containing
first derivatives by Cockburn et al. in a series of papers [5-8]. The natural features of the
the Runge-Kutta DG methods are their formal high order accuracy, their nonlinear stability,
their ability to capture the discontinuous or strong gradients of the exact solution with-
out producing spurious oscillations, and their excellent parallel efficiency. For a detailed
description of the methods, we refer the readers to several substantial review papers and
lecture notes [4, 9] as well as the paper [22,41] on the extensions and applications of the
DG methods.

The paper is organized as follows. Section 2 develops numerical schemes for one-
dimensional fractional differential equation. Their two-dimensional extensions are given
in Section 3. Section 4 conducts some numerical experiments to demonstrate the accuracy
and capability of the present methods. Several concluding remarks are given in Section 5.
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2. Numerical schemes in one dimension

In one-dimensional case, we consider the fractional diffusion equation

u _ d( )
En X

subject to the following initial condition and (Dirichlet) boundary conditions

a

—+p(x,t), 0<x<I, 2.1

u(x,0) =ug(x), u(0,t) =uy(t), u(L,t)=ugr(t), 0<x<L, t=>0, (2.2)

with 1 < a < 2 and d(x) > 0. This model is often used to describe the super-diffusion [37].
An example of the super-diffusion is a continuous random walk with steps obeying a Levy
distribution [29]. Models for anomalous slow diffusion (sub-diffusion) can be found in
[27]. The super-diffusion is a form of diffusion in which the random walk of the molecules
contains occasional very long steps, while the sub-diffusion is the tendency of particles in
a fluid not to diffuse due to random trapping.

This section will construct high-order local DG spatial discretizations for (2.1) on a
finite interval [0, L] with the Caputo representation (1.3) for 1 < a < 2, i.e.

2%y 82u(§ t) ane o [0%ulx,0)
o= a)f (x — &) dg_.x[—}, (2.3)

Jox® 0 x2

and two auxiliary variables q(x, t) and g(x, t), which are defined by

du(x,t)
qCx, 0) = —-—, 2.4
dq(x,t) _ d%u(x,1)
= = . 2.5
g(x,t) Tx 32 (2.5)
Using the auxiliary variables g(x, t) and g(x, t), (2.1) may be rewritten as follows
u
- =d(x) A [g(x, )]+ p(x,t). (2.6)

ot

Multiplying (2.4)-(2.6) by the test functions v,, vy, v,, respectively, integrating them
over the finite element I}, which is defined in the following text, and using a simple formal
integration by parts, we can get

o
( —uvu dx = J d(x)x[glv, dx +J pv,dx, t=>0, 2.7)
JI; at I; I
J J J
(‘ dv,
) qvg dx =— 1 ua dx +u(x;j, t)vg(x;) —ulxj_q, t)vg(x;—q), t =0, (2.8)
i j
(‘ dv,
l gV, =_ 1 gﬁ dx +q(x;j, t)vg(x;) —qlxj_1, t)ve(xj_q), t=0. (2.9)

J
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The initial condition in (2.2) becomes

J u(x,0)v, dx = J ug(x)v, dx. (2.10)
I

j I
Those are the weak formulations of (2.4)-(2.6) as well as (2.2), in which will be used to
construct corresponding local DG approximations of the problem (2.1)-(2.2).

2.1. Local DG spatial discretization

This subsection starts to present high-order accurate local DG methods approximating
the initial-boundary value problem (2.1)-(2.2). Divide the domain © = [0,L] into N
elements arbltrarlly, ie. Q= U;V 1 I;, where the jth elementis I; = [x;_;,x;], j=1,---,N,
and 0 = xo < --- < Xj_; < xj--- < xy = L. Our computations will be restricted to the
uniform partition of the domain for the sake of simplicity, Ax is the step size.

Following the idea of Cockburn and Shu [10], define the finite dimensional space
¥k ={veL*0,L)| v(x)eP*()), ifx €I}, j=1,--- N}, (2.11)

where PX(I ;) denotes the space of the real-valued polynomials of degree at most k over
the element ;.
Replacing the exact solutions (u(x,t),q(x,t), g(x, t)) by their approximations

(Uh(x, t)) qh(xy t)) gh(X1 t)) € (/1/}1]{)3

in (2.7)-(2.10), and approximating the fluxes on the boundary of the element I is {u(xj, t),
u(xj_1,t), q(xj,t), q(xj_1,t)}, by the corresponding numerical fluxes, {hg ;, hy i1, hg ;s
hg’j_l}, respectively, in (2.8)-(2.9), then we have the following local DG formulations for
the problem (2.1)-(2.2): find u;, € ”f/hk,qh IS “th,gh IS “th such that for all Ij,j=1,---,N
we have

G,

( uh wh dX = J d(x)A[gplv, pdx +J Py dx, (2.12)
JIJ I I

( dvq h B — 7 +
) QnVgn dx = Un g dx + hq’jvq’h(xj )— hq’j_lvq,h(xj_l), (2.13)
I I

(‘ dvge . N
) gnVgn dx =— d— dx + hgjvg’h(xj )— hg’j_lvg’h(xj_l), (2.14)
IJ J

(‘ up(x,0)v, p dx —J up(x)v,p dx, (2.15)
JI;

j L
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for any v, j, € "I/h > Vo, "Vh s Veh € "th. Here f[- d(x)A [gplv,p dx is defined as
J

r2—

= _ 1-a
_F(Z—a)JI Vi pd(x) [ZLgh(S t)(x - &) *d&

+ J gu(&, )(x — €)' d&] } dx. (2.16)

j—1

Jd(X)Ji’[gh]Vu,h dx = )J hd(x)f gn(&, D(x — &) "* dEl d
I

Since the approximate solution {u,q, g},(x;,t) is discontinuous at the points x;, j =
0,---,N, we must choose {ilq’j,ilg,]-} carefully in order to derive a stable scheme. The
choice of the numerical fluxes is quite delicate as it can affect the stability and accuracy
of the method, as well as the sparsity and symmetry of the stiffness matrix [10]. Usu-
ally {hq J,hg ;} is taken as a two-point numerical flux, which may be represented in the
following general form

ﬂq,]- :=ﬂq (up(x; = 0, ), up(x; +0,1)), ﬁ (u,u) =u,

h hg(

a.j :=ﬂg(qh(x 0,1),qn(x; +0,1)), (,9)=q

Inspired by the mixed formulation for the heat equation, we use the “alternating principle”
[44] to choose the numerical fluxes in (2.13)-(2.14)

ilq,]- =up(x;+0,t), ilg’j = qun(x; = 0,1), 2.17)

or

hyj=un(x;—0,t), hy;=qu(x;+0,0), (2.18)

on the interior boundaries, i.e., j = 1,2,--- ,N — 1. On the domain boundaries x = 0 or
x = L, the numerical fluxes are taken as

i:lq,o = uL(t), Eq,N = uR(t), Bg,O/N = Qh(x = O/L, t). (2.19)

Forany x € [0, L] and t € [0, T], we now express our approximation solutions (uy, gy, g4)
as follows

k+1 k+1
w(x,6) =Y ul(0)p0x), gulx,0) =D a0 (x), (2.202)
(=1 =1
k+1
g, = g (07 (x), x<I, (2:20b)
=1

where {qu(.e)(x),ﬁ =1,---,k+ 1} is a basis of the local polynomial space Pk(IJ-) for x € I;.
We also define the local mass matrix M;, the local stiff matrix M;.‘ , the convolution related
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matrix M/, the source related vector S ; and the initial value related vector [7]‘.), whose
elements are defined as

(m)
| 4O pm N RGNS
(Mj)m,€ _L- ¢j ¢j dX, (Mj )m’g —J; ¢j T dX, (2213)
(5)m = f pCx, )¢{™ dx, (Mf’i)m,ezf d(x)p ™M (6] dx, (2.21b)
I; I
(ﬁf)m=J up(x)p5™ dox, 2.210)
I;

J

and introduce the following local vector notations

i =@, g =Y, (2.22a)
. k - K T

g=" g, Gir=(9") 0P, (2.22b)
ng k T

i = (¢](-1)(—1),--- ,qb](- -1 (2.220)

By using the projections in (2.20), the notations in (2.21)-(2.22), the numerical fluxes
e.g. (2.17), and taking the test functions v, j, Vg s, V4 n as the basis functions ¢](.f)(x), L=
1,2,---,k + 1, the semi-discrete local DG scheme (2.12)-(2.17) can be recasted into the
following local matrix-vector forms.

The numerical schemes for G; are

M]q] = —M;cl_l'] + ¢j,R¢}:Lﬁj+1 - qb]-,LuL, ] = 1, (2233)
Mg = (M — 6,67, ) i+ 6 b, Ty, j=2--,N-1,  (223b)
M;q; = (_Mj‘c - ¢j,L¢jT,L) U+ ¢; rug, j=N. (2.230)

For g;, we have
Mg = (—M5 = 6,087, + $1xdl ) 45 i=1, (2.24a)
M; g = (—M; + ¢j,R¢}:R)qj - ¢j,L¢jT,RCTj—1, J=2,---,N, (2.24b)
and the numerical schemes for it ; are

dit;, < ..
i iz G i—1...
M — _;M g+S, j=1,---,N. (2.25)

Similarly, (2.15) becomes
M;iZ;(0) = U7}, (2.26)
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Remark 2.1 In practice, we will choose the Legendre polynomials L,(&) as basis functions
of the space Pk(I]-), ie.,

¢ (x):=L—1(E;(x)), &i(x)= N 1, £=1,--,k+1, xe€I;, (227)
and then we may exploit sufficiently their L.?—orthogonality:
! 2
(E)L(E) dE = ——=6py, m={, (2.28)
f—1 " 2m+1""

to obtain a diagonal mass matrix so that we may construct an explicit local DG method
approximating the fractional diffusion equation (2.1). In this case, let x = x;_; + %(x; —

Xj_1), then & [qbl.(e)](x) in the matrix element (Mj’i)m’g can be represented as
0, Jj<i

F(2 a)f (x —s)17*L,_1(2s — 1) ds, j>i,

#[pP1(x) = (2.29)

1"(2 a)J (2 —s)'7%L, (25 — 1) ds, j=i,
whose analytical formula can be gotten by using the symbolic toolbox of Matlab. We give
the expressions for a = 1.2 in Appendix I.

2.2. Time discretizations

To discretize the ODE system (2.25) with the initial data (2.26), we use the high-order
Runge-Kutta time discretizations. As shown by Cockburn in [4], when the polynomials of
degree k, a higher-order accurate Runge-Kutta method must be used in order to guarantee
that the scheme is stable. In this paper we use a fourth-order non-TVD Runge-Kutta scheme
[15]. Numerical experiments demonstrate its numerical stability.

The ODE system (2.25) is first rewritten into

d o o
—U(t)=F(t,U),

dt
then the fourth-order accurate non-TVD Runge-Kutta scheme is given as
k, =F(t,,0), (2.30a)
- . At - At
At At
kg = ﬁ(t + At, U + Atks), (2.30d)

g+ — gn 4 _(kl + 2k2 + 2k3 + k4) (2.30e)
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where At is the time step size, U" is an approximation of the solution vector U at time
t=t,.

3. Numerical schemes in two dimensions

This section extends the above high-order accurate local DG methods to the two-
dimensional fractional diffusion equation

2% oPu

T —dl(x y) - +dy(x, y) )7 7 +p0x,y, 1), (3.1)

on a finite rectangular domain Q = {(x,y)| 0 <x < L,,0<y <L,}, where 1 <a,f3 <2,
d;(x,y) = 0, and d,(x,y) = 0. The initial condition and the boundary conditions are
specified as

u(x1y10):u0(x).y)) u(o).y) t) :uW(.yJ t)) u(Lx,_y, t) :uE(.yJ t)) (3.23)
u(x,0,t) =ug(x,t), ulx,Ly,t)=uy(x,t). (3.2b)

To obtain the local DG methods, we will still employ the Caputo representation (1.3)
of the fractional derivatives in x- and y-directions in (3.1), i.e.

% azu(i y,t) lea 1r . o %u(x,y,t)
F(2 a)f x=&) YdE=x |:—}, (3.3)

Jx“ dx?
L 82u(x n t) ) 2%u(x,y,t)
. )Py =Y | —2 =, 3.4

and introduce four auxiliary variables ¢*(x, t), g7 (x,t), g*(x,t) and g¥(x, t) as follows

du(x, y,t) 9q*(x,y,t) _ d%u(x,y,t)
x =" x = = 3.5
a0 1= 5o, g 0) = S5 69

du(x,y,t ¢’ (x,y,t)  d%u(x,y,t
q’(x,t) = M, g (x,0):= 22 Loyt _ 9ulbey ), (3.6)

dy dy dy?
so that the fractional diffusion equation (3.1) can be rewritten as
du

=7 =di0e, YA [g7(x, y, )] + do(x, y)#7 [g7 (x, ¥, )] +p(x, ¥, 0). 3.7)

at

Now we start to present high-order accurate local DG methods approximating (3.1)
from (3.5)-(3.7). Divide the domain = [0, L, ] X [0, L, ] into N, X N,, elements uniformly,
and define I; ; = [(i — 1)Ax,iAx] x [(j — 1)Ay, jAy], where Ax and Ay are step sizes in
x- and y-directions. Define the finite element space as

V=1 € ([0, L] x [0, L, )| vl € PUIj),i =1, ,Ny,j=1,---,N,},  (3.8)
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where P(I; ;) is any finite dimensional space of the two-dimensional smooth functions (e.g.
polynomials for our local DG methods) defined on the element I ;.
Similarly, multiplying (3.5)-(3.7) by the test function v, vgx, V4r, Vgx, vy, Tespectively,

and integrating by parts over the element I; ;, we get

du
J — v, dxdy = J (dy(x, y) A [g*] +do(x, y) A [g7]) v, dxdy
1 Ii,j

_dt
L]
+ J pv, dxdy, (3.9)
I
[ v dxdy = O e d
q Vg dxdy = — u Ix xdy + Uvgxn, ds, (3.10)
I Ii; oI ;
[ o5y, dxdy = Ve <y eny d 1
& Vgx dxdy = — q I xdy + q Vgxny ds, (3.11)
Ji I ol
( 3vqy
vy dxdy=—| u 3 dxdy + uvgyn, ds, (3.12)
Ji; L; 9Y oI,
( any
g vy dxdy=—1 ¢ 5 dxdy + q”vgyny, ds, (3.13)
Ji; I Y oI,

where 91; ; denotes the boundary of the element I;;, and (n,,n,) is the outward unit
normal vector on the element boundary J1; ;. The initial condition in (3.2) becomes

f u(x,y,0)v, dxdy = f ug(x,y)v, dxdy. (3.14)
I, I
These equations form the weak formulations of the initial-boundary value problem (3.1)-
(3.2) which we shall use to define the local DG methods.

Following the same procedure in one-dimensional case, the two-dimensional semi-

discrete local DG methods are given as follows: Find u; € %, q; € %, &, € %, q;: S /%

and g,{ € ¥, such thatforall [; ;,i =1,---,N,,j=1,--- ,N,, we have
duy, X[ X Yoy
—van dxdy = | (di0o, A [gi )+ do(e, Y)H” [87]) vin dxdy
+J pVyp dxdy, (3.15)
I,
avqx h ~
QpVgrpdxdy =— | up ~ dxdy + hyVox pty ds, (3.16)
L I ox Ol
anx h ~
gyVerpdxdy=—| qy — dxdy + h’g‘vgx’hnx ds, (3.17)
L Iij ox ol
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[ y quy,h zy

G vgndxdy=—| u 3 dxdy + hquqyny ds, (3.18)
I; I; Y oI,
[ ov R

g,{vgy,h dxdy = —J qi’%y’h dxdy+J hgvgyny ds, (3.19)
I I; Y oI,
.

up(x,y,0)v,, dxdy = uo(x, y)v,p dxdy. (3.20)
I I

i,j iJ

For numerical computations, the second integrations at the right-hand sides of (3.16)-
(3.19) are calculated by the higher-order accurate Gaussian quadrature rule, and the nu-
merical fluxes ilz; R flg, fl?{ and il}g/ in (3.16)-(3.19) are appropriate approximations to u, q*
and g at the points of the element boundary J1; ; corresponding to the nodes of gaussian
quadrature. In our computations, we take them as

- _ (u . _ {u - —  AqD) - (qy)
hy =up + %nx, hy =up + %ny, hy =qy — Thnx, hathy = qi - Thny, (3.21)

for the interior boundaries of the element, and

LXx Yy X _ X Yy — Y

hq =Ug, hq = up, hg _qh) hg _qh1 (322)
for those element boundaries in accordance with part of the domain boundary, where
— out y -in . : .. . . .
a:=%92F% (q):=a"—a", a" and a® are the limits taken from the interior and exterior

2
of the element [; ; along the outward unit normal vector (n,,n,) of 91, j,

ug denotes the node value of uy,, ug, ug, or uy, which are given in (3.2).
Suppose {q&laj)(x, ¥),L =1,2,--- k} are the basis functions of the local function space

respectively, and

P(I;;), then we may represent the approximate solutions up,q;, g, q;: R g]{ as
I OIRWR0) SENGING
uh(X, y: t) = Z ui’j (t)d)l"j (X, y): q}f(x,y, t) = Z qi’_’j (t)d)l"j (X, y):
(=1 (=1
k k
(e ¢ (¢ ¢
gy, =209y, qy0=3 g e x,y), (323
(=1 (=1
k
(0 ¢
g (6,0 =3 g (09 (x, ),
(=1

For convenience, we introduce some notations

S 1 k . a B
U= (ug’j), ... ,ug’j))T’ ql)'fj - (qzj( ), .. ’qzj( ))T’

o x,(1) x,(k)\T Sy oy (1) ViONT
géf/j—(gg;j(l),-.- ’gg}j(k)) > qi,j_(qi,j R o )T, (3.24)
Sy , Jtor

gi,j_(gi’j PR gij ),

the local stiff matrices M*., M? ., the sources related

»J? £,J2 L)
the element boundary related matrices W; ;, E; ;, S; ;, N; ;, W; ., E

and define the local mass matrix M;

vector S, j, o Eij» Sijs Nijs Wi, Ei i, S, Nyjs
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the initial value related vector UO , and the element boundary related vectors B!

Bl 7> whose elements are deﬁned by

(M e = f ¢“)¢(”° dxdy,

M D= [, ¢“) 1 gxdy,
(Wi D = fa,mw%w“") dy,
(Bi e = fa,E o Vpl™ dy,
(Si)me = fals oiy 9y dx,
(N,J)mg faIN ”“)qs“’")d
B = falwcpw“")uw(y,t) dy,
(fj)m fa,s o7 Mus(y, ) dx,

(00D = [, e, )7 dxdy,

where 311“;, ﬁllEl, 315 and 31N

respectively, qb

element boundanes 31”; 8IIEJ, o

quadrature, respectively, { =1,--- , k.

¢

N I L dxdy,
Sim=1, p(x y)¢("‘)dxdy,
(W, e = J o ¢W(“¢E ™y,
(Ei e = fa,E oVl ™Mdy,
(8 me = fa,s ¢V Mdx,
(N e = faIN N“)qs“’")d

(BE )m faIE ¢)E (m)uE(.y) t) d.y)

W BE BS

l]’

( fvl)m faIN N(m)uN(yst) dX,

denote the left, right, bottom and upper parts of JI;
W(E) ¢E ,(€) ¢S (Z) and ¢N ,(€)

L,j> 7ij?

(3.25)

l]’

are the values of qb(f) at the points of the

oIs. and EIN‘ corresponding to the nodes of gaussian

By using the projections in (3.23), the notations in (3.24)-(3.25), the numerical fluxes
e.g. (3.21), and taking the test functions v, y, Vgx b, Vgr qVgx > Vev 4> @S the basis functions

¢, 0=1,2,

The numerical schemes for g q

M‘,jf?fj =(=M;,; -
’]ql,] M" -—B +W
x
M,Jql,] ( Ml,] lJ)ulJ+B

For c‘jlyl andallj=1,--- ,N,, we have

1]+1;

l])ul]+wl] i,j+1> j:2,"',Ny—1,

M’]q'i/]_( My l])ul]+s ul+1]’ L=z, ')Nx_la
Mi’jq); M yull + Sl]uH—l]a i=1,
Mi,jqi,]:( Ml] l])ul]+B L= Ny.

For ng andalli=1,---,N,, we have

Mi,jgi]_( M +E1])ql]

Mi,jgi,] _( Mi] +E’

l])ql JJ

,Jq1] 1 j=2,--,

, k, the semi-discrete local DG scheme (3.15)-(3.20) can also be rewritten
1nto the followmg local matrix-vector forms.
care, foralli=1,---

(3.26)

(3.27)

(3.28)
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For glyj and all j=1,---,N,, we have

Mi,jg?’/j = (_M?:j + Ni,j)c_l?':j - Ni,jq’-l'y_l’jy i=2,---,N

g = . (3.29)
The scheme for &; ; is, foralli =1,--- ,N,,j=1,---,N,
m, Lo _ Ej MbET X Ei M>bisgY 4§ (3.30)
i’j dt - 4 gi,r - gs’j i,j) .
r= s=

where Mb5/ and M2/ are defined as

(Ml’i’j’r)m,f ::J dl(x5y)¢l(’r;l)%x[¢l(,€r)] dXdy’
Ii j

(M>15),, o= J dy(x, ) Y (9] dxdy.
I
Similar to one-dimensional case, the analytical expressions of ¢ x[qbﬁ?] and Y [qbg;)]
may be obtained by using the symbolic toolbox of Matlab.

The matrix (3.30) is a system of ordinary differential equations and will be solved by
the fourth-order accurate non-TVD Runge-Kutta method (2.30).

The discrete initial condition is

Remark 3.1 In practice, the basis functions of the space P(I; ;) may be obtained by map-
ping the basis functions of the space P(I) by the transformation ¥ : (§,n) €1 — (x,y) €
I; ;, see e.g., [22], where I = [—1,1] x [—1,1] denotes the standard rectangular element.
For example, if we choose a set of basis functions for P(I) as

¢D(E,m) =Ly, ()Ly,(m), 0<Ly,8, <k, —1<&n<1, (3.32)

where L, (-) and Ly, (-) are the Legendre polynomials of order £; and £, respectively, and
k = (k 4+ 2)(k +1)/2, then a set of the basis functions for the space P(I i,j) can be taken as

006, y) 1= 6O (E0x, y),n(6, 1)), = 1,2, K, (x,y) €1

4. Numerical results

This section conducts some numerical experiments to show the accuracy and the per-

formance of the present local DG methods for the fractional diffusion equations (2.1) and

(3.1). The time step size of the Runge-Kutta local Pk.-DG methods is taken as At = %)a

for one-dimensional problems and dt = 0.5(%)“"{“’/3 } for two-dimensional problems, re-
spectively, h = min{Ax, Ay}, which is in agreement with the case of the integer values of
a [16].
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Table 1: Example 4.1: Numerical errors and convergence rates of the local P*-DG methods at t = 1.
Here a = 1.2 and d(x) is a constant function.

k | N | L®-error order | L'-error order | L®-error order
2° | 6.09e-04 - |[7.97e-05 - |1.40e04 -

1] 2% | 1.45e-04 2.06 | 1.89e-05 2.08 | 3.34e-05 2.06
27 | 3.60e-05 2.02 | 4.63e-06 2.03 | 8.26e-06 2.01
2% | 3.07e-04 - [524e-05 - |[7.69e-05 -

2| 2% | 3.78¢-05 3.02 | 6.20e-06 3.08 | 9.19¢-06 3.06
2° | 4.75e-06 2.99 | 7.63e-07 3.02 | 1.14e-06 3.02

4 | 9.08e-05 - 2.07e-05 - 2.83e-05 -
318 9.64e-07 4.17 | 1.15e-06 4.17 | 1.61le-06 4.14
12| 2.61le-8 4.09 | 2.15e-07 4.14 | 3.07e-07 4.09
2 3.77e-05 - 1.07e-05 - 1.48e-05 -
413 4.56e-06 5.21 | 1.37e-06 5.06 | 1.81e-06 5.18
4 | 9.21e-07 5.56 | 3.57e-07 4.67 | 4.34e-07 4.96

4.1. 1D numerical results

Example 4.1 (Diffusive coefficient is constant). Consider the initial-boundary value prob-
lem (2.1)-(2.2) on the domain Q = [0,1] with initial condition u(x,0) = x° and the
boundary conditions u(0,t) =0 and u(1,t) =e™". Let

INGEE))!

— _ o try.5 5—a
O p(x,t)=—e"(x>+x>7%), ae(1,2). 4.1

d(x)=
In this case, the exact solution is u(x,t) = e ‘x>, which does not depend on the value of
a and will be used to estimate the numerical errors in our computations.

Table 1 shows the numerical L'-, L?-, and L*®-errors and the convergence rates of the
local P*-DG methods at t = 1 for the case a = 1.2 with k = 1,2, 3,4, where N denotes
the number of elements. From there we see that the local PX-DG methods can achieve the
accuracy of order k + 1.

Example 4.2 (Diffusive coefficient is nonconstant). Consider the initial-boundary value
problem (2.1)-(2.2) on the domain © = [0, 1] with initial condition u(x,0) = x° and the
boundary conditions u(0,t) =0 and u(1,t) =e™". Let
_ Ir'6 —a) o _ —t.5
d(x)= Wx , plx,t)=-2e¢""'x>, ac(l,2). (4.2)
Now the exact solution is given by e~ ‘x>, which does not depend on the value of a either.
We estimate the numerical L-, L?-, and L®-errors and the numerical convergence rates
of the local PX-DG methods at t = 1 for the cases @ = 1.01, 1.2 and 1.99, k = 1,2,3, 4.
Those results are given in Tables 2, 3 and 4, and show that the local Pk-DG methods are
(k + 1)st order accurate in both cases.
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Table 2: Example 4.2: Numerical errors and convergence rates of the local PX-DG methods at t = 1.
Here a = 1.01 and d(x) is a function of x.

k| N | L®-error order | L'-error order | L?-error order
2° [ 1.29e-03 - | 1.44e-04 - |2.68e04 -
1| 2% | 3.23e-04 2.00 | 3.45e-05 2.06 | 6.46e-05 2.05
27 | 7.98e-05 2.02 | 8.00e-06 2.11 | 1.52e-05 2.09
2% | 1.08e-03 - 1.30e-04 - 2.25e-04 -
2| 2% | 1.36e-04 2.99 | 1.22e-05 3.41 | 2.14e-05 3.39
2° | 1.26e-05 3.43 | 9.08e-07 3.75 | 1.62e-06 3.72
4 2.63e-04 - 7.24e-05 - 9.79e-05 -
1.87e-05 3.82 | 4.15e-06 4.13 | 5.42e-06 4.17
12 | 3.46e-06 4.16 | 7.59e-07 4.19 | 1.00e-06 4.16
1.50e-04 - 3.44e-05 - 5.05e-05 -
1.56e-05 5.58 | 5.55e-06 4.50 | 7.19e-06 4.81
5.04e-06 3.93 | 1.32e-06 4.99 | 1.79e-06 4.84

w
[e2)

N
A WD

Example 4.3 (Diffusive coefficient is nonconstant). This example is used to test the con-
vergence when increasing the order of the finite element approximation. Solve numerically
the initial-boundary value problem (2.1)-(2.2) within the domain Q = [0, 1] with the ini-
tial condition

u(x,0) = (x — 1)**x1°101° + (x — 0.4)%, (4.3)

and the boundary conditions u(0,t) = 0.16e",u(1,t) = 0.36e". Here d(x) and p(x, t) are
taken as
d(x) = x'/°1(0.8), (4.4)

and

p(x,t)=—10"/608024154515319435113061625476e 'x1°(608024154515319435113061625476x'7
+35405106204296098259077244461134x'° — 622092888676896289788080554161630x '

+ 4670634487774233633025986026842815x 1% — 21343249542858718702862294247883680x 1

+ 67287056151467457698988036468358332x'% — 155799788711629493064231057581313192x 1!
+274512219319335134294127253715492060x 0 + 227486528085985623883413390472264582.x°

+ 46285754401385358923419815372545940x* — 13412782655993269833527399401817880x°
+2697560382746457054641828709304884x2 — 117578390764381233046124012997883680x°

— 375713563639374742060707689848873880x° — 342003464499664677209204812464125692x”
+403814295430398718979452876274085810x° — 336299022681589838951117407124524x
202824096036516713896013668415625 )

81129638414606681695789005144064 X
(4.5)

4—19570335808861990818023681640625)4—e‘((x-—(x4)2—

respectively, where p(x,t) is generated by Matlab in order to have the exact solution
u(x,t) =e t(x —1)x1010 + e (x — 0.4)2.

Fig. 1 gives the exact solution u and the numerical solutions u;, of the local PX-DG

methods at t = 1, k = 2,3,4. Here a = 1.2, and 4 elements are used, 20 samples points
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Table 3: Same as Table 2, except for a =1.2.
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k | N | L®error order | L'-error order | L?—error order
2° | 6.12e-04 - [8.08e-05 - | 1.4le-04 -
1] 2°% | 1.46e-04 2.07 | 1.90e-05 2.09 | 3.35e-05 2.07
27 | 3.60e-05 2.02 | 4.64e-06 2.03 | 8.28e-06 2.02
23 | 3.11e-04 - 5.41e-05 - 7.89e-05 -
2| 2% | 3.78¢-05 3.04 | 6.30e-06 3.10 | 9.28e-06 3.09
2° | 4.75e-06 2.99 | 7.70e-07 3.03 | 1.14e-06 3.02
4 | 9.35e-05 - 2.95e-05 - 3.95e-05 -
3|8 5.78e-06 4.01 | 1.60e-06 4.20 | 2.14e-06 4.20
12 | 1.20e-06 3.88 | 3.04e-07 4.10 | 4.11e-07 4.08
2 4.17e-05 - 1.03e-05 - 1.62e-05 -
413 5.81e-06 4.87 | 1.60e-06 4.60 | 2.27e-06 4.84
4 1.33e-06 5.13 | 4.08e-07 4.75 | 5.52e-07 4.92
Table 4: Same as Table 2, except for a = 1.99.
k | N | L®-error order | L'-error order | L?-error order
2° | 5.55e-04 - | 7.40e-05 - | 1.32e-04 -
1]2%| 1.40e-04 1.98 | 1.83e-05 2.01 | 3.28e-05 2.01
27 | 3.53e-05 1.99 | 4.56e-06 2.01 | 8.18e-06 2.00
23 | 2.81e-04 - 4.97e-05 - 7.32e-05 -
2| 2% | 3.66e-05 2.94 | 6.09e-06 3.03 | 9.04e-06 3.02
25 | 4.67e-06 297 | 7.56e-07 3.01 | 1.12e-06 3.01
4 6.68e-05 - 1.55e-05 - 2.30e-05 -
3|8 4.36e-06 3.94 | 9.45e-07 4.03 | 1.41e-06 4.02
12 | 8.76e-07 3.96 | 1.85e-07 4.02 | 2.78e-07 4.01
2 2.57e-05 - 7.23e-06 - 1.13e-05 -
4|3 3.37e-06 5.01 | 1.25e-06 4.34 | 1.70e-06 4.68
4 | 8.00e-07 5.00 | 3.29e-07 4.63 | 4.24e-07 4.83

are taken in each element to get the plots. We see that the solutions of the local PX-DG
methods are more and more accurate with the increasing of the approximation order k.

4.2. 2D numerical results

Example 4.4 (Diffusive coefficients are constant). Consider the two-dimensional initial-
boundary value problem (3.1)-(3.2) on Q = {(x,y)| 0 < x <1,0 < y < 1}. The initial
condition and the boundary conditions are specified as

u(x,y,0) =x>y°, u(x,0,t)=u(0,y,t) =0,

u(x,1,t)=e x>, u(l,y,t)=e

—-t,,5
Yo

(4.6)
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1,
0.8f
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% 02 04 06 08 1

Figure 1: Example 4.3: The exact and numerical solutions of the local P*-DG methods at t = 1,
k=2,3,4. Here a =1.2.

and the functions d;(x, y), d»(x, y), and p(x, y, t) are

r6-a) 16— p)

e 2= g 7

dl(X,J’) =
p(x,y,t)= % [ —e (X x> M) — e (xS + xs_ﬁ)} , a<(l,2), pBe(1,2). (4.8)

The exact solution of this initial-boundary value problem is u(x, y, t) = e ‘x°y®, indepen-
dent on the parameters a and f3.

We estimate the numerical L!-, L?-, and L*®-errors and the numerical convergence or-
ders of the local P¥-DG methods at t = 1 for the case (a, ) = (1.2,1.8) with k = 1,2, 3, 4.
Numerical results are presented in Table 5 and show that the local PX-DG methods can
achieve the accuracy of order k + 1, where N denotes the number of elements.

Example 4.5 (Diffusive coefficients are nonconstant). Solve the initial-boundary value
problem (3.1)-(3.2) with non-constant diffusive coefficients

r6-a) _T6-P) ,
T(@X , dz(X,J’)—T(@X , (4.9)

dl(x5 .)’) =
with initial condition u(x, y,0) = x°y®,0 < x < 1,0 < y < 1 and the boundary conditions
u(x,0,t) =u(0,y,t) =0, u(x,1,t)=e x>, u(l,y,t)=e ty>. (4.10)

If the source term in (3.1) is taken as

p(x,y,t) =—2e 'x°y>, (4.11)

then the exact solution may be given by u(x, y,t) = e tx°y>, which does not depend on a
and .
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Table 5: Example 4.4: Numerical errors and convergence rates of the local P*-DG methods at t = 1.
Here (a,8)=(1.2,1.8) and d;(x,y) and d,(x, y) are two constant functions.

k| N L%®—error order | L1-error order | L2-error order
23 x 23 | 2.86e-02 - 5.52e-04 - 2.02e-03 -
1]2%x2%| 7.93e-03 1.85 | 1.10e-04 2.33 | 4.00e-04 2.33
2°x 2% | 2.15e-03 1.88 | 2.33e-05 2.24 | 8.44e-05 2.25
22 x 22 | 1.90e-02 - 5.05e-04  — 1.36e-03 -
2| 23x23| 2.93e-03 2.70 | 4.87e-05 3.38 | 1.49¢-04 3.19
24 x 2% | 4.33e-04 2.76 | 5.59e-06 3.12 | 1.79e-05 3.05
4x4 2.86e-03 - | 8.61le-05 - 1.95e-04 -
3|6x6 7.29e-04 3.37 | 1.43e-05 4.43 | 3.65e-05 4.14
8x8 2.54e-04 3.66 | 4.27e-06 4.19 | 1.14e-05 4.06
3x3 1.14e-03 - |3.80e-05 - |7.35e-05 -
4|4x4 3.22e-04 4.41 | 8.55e-06 5.19 | 1.73e-05 5.02
5x5 1.16e-04 4.56 | 2.71e-06 5.19 | 5.62e-06 5.04

Table 6: Example 4.5: Numerical errors and convergence rates of the local P*-DG methods at t = 1.
Here (a,8)=1(1.2,1.8) and d;(x, y) and d,(x,y) depend on the independent variables x and y, N is the
number of elements.

k| N L®—error order | L'-error order | L?-error order
23 x 23 | 2.86e-02 - 5.38¢-04  — 1.98e-03 -
1]2%x2%| 7.93e-03 1.85 | 1.12e-04 2.26 | 4.04e-04 2.29
2° x 2% | 2.14e-03  1.89 | 2.40e-05 2.23 | 8.57e-05 2.24
22 x 22 | 1.95e-02 - | 5.08e-04 - 1.44e-03 -
2| 23x23 | 2.92e-03 2.75 | 5.23e-05 3.28 | 1.54e-04 3.22
24 x 2% | 4.32e-04 2.76 | 5.77e-06 3.18 | 1.83e-05 3.08
4 x4 2.93e-03 - ]820e-05 - [203e04 -
3|6x6 7.35e-04 3.41 | 1.43e-05 4.30 | 3.73e-05 4.17
8x8 2.55e-04 3.67 | 4.26e-06 4.22 | 1.15e-05 4.09
3x3 1.15e-03 - 3.33e-0 - | 7.42e05 -
4|4x4 3.25e-04 4.38 | 7.46e-06 5.20 | 1.74e-05 5.05
5x5 1.17e-04 4.59 | 2.35e-06 5.17 | 5.56e-06 5.10

We also estimate the numerical L'-, L2-, and L®-errors and the convergence orders
of the local P*-DG methods at t = 1 of the local PX-DG methods at t = 1 for the cases
(a,)=1(1.2,1.8) and (1.99,1.99) with k = 1,2, 3, 4. Those results in Tables 6 and 7 show
that the local PX-DG methods are (k 4+ 1)st order accurate in both cases.

Example 4.6 (Diffusive coefficients are nonconstant). This example is to solve the initial-
boundary value problem (3.1)-(3.2) with slightly more complicated diffusive coefficients

_ 399 6/5 44 9/
di(x,y)= 3125)( 1(0.8), dy(x,y)= 31253/ r0.2). (4.12)

The initial condition and the boundary conditions are

u(x,y,0) =10%(x — 0.5)(x — 1)2x%(y — 0.5)(y — 1)?y2, (4.13)
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Table 7: Same as Table 6, except for (a, ) = (1.99,1.99).

351

k| N L®—error order | Ll-error order | L2-error order
23 x 23 | 1.40e-02 - 5.38¢-04  — 1.03e-03 -
1]2%x2%| 4.18e-03 1.74 | 1.12e-04 2.26 | 2.40e-04 2.10
2°x 2% | 1.15e-03 1.86 | 2.40e-05 2.23 | 5.78e-05 2.05
22 x 22 | 1.35e-02 - 5.08e-04  — 1.08¢-03 -
2| 23x23| 2.37e-03 251 | 5.23e-05 3.28 | 1.32e-04 3.02
2% x 24| 3.55e-04 2.74 | 5.77e-06 3.18 | 1.63e-05 3.02
4x4 2.93e-03 - | 8.20e-05 - 1.35e-04 -
3|6x6 7.35e-04 3.41 | 1.43e-05 4.30 | 2.76e-05 3.91
8x8 2.55e-04 3.67 | 4.26e-06 4.22 | 8.92e-06 3.93
3x3 7.13e-04 - 3.33e-0 - | 4.84e-05 -
4|4x4 2.07e-04 4.31 | 7.46e-06 5.20 | 1.19e-05 4.89
5%5 7.65e-05 4.46 | 2.35e-06 5.17 | 3.96e-06 4.92

and u(0,y,t) =u(l,y,t) =u(x,0,t) =u(x,1,t) = 0, respectively. The function p(x,y,t)

in (3.1) are given as

p(x,y,t) = —2e tx2y?(—8364x — 8356y + 1825+ 15000x>y> — 33000x3y?
+23520x3y — 5352x° — 34500x%y> 4+ 75000x2y? — 52800x2y +
11880x2 +25320xy> — 54300x y2 — 5798y°> + 12245y2 + 37680xy),

(4.14)

in order to have the exact solution u(x,y, t) = 10%~t(x — 0.5)%(x — 1)®x2(y — 0.5)*(y —
1)?y2. Fig. 2 shows the solution of the local P*-DG method at t = 1, Fig. 3 gives the exact
solution and the numerical solutions of the local PX-DG methods at t = 1 along the line
y = 0.25, where k = 2,3,4. In these numerical experiments, we take (a, ) = (1.2,1.8),

0.5

y

0

T=1

0

X

Figure 2: Example 4.6: The numerical solution of the local P*-DG method at t =1.
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%
o —exact
0 oo° "Voo 2
5 °
_0.2,
% 0% ooo
°o° o°°
-04¢ %,
ooo
-0.6
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Figure 3: Example 4.6: The exact solution and the numerical solutions of the local P*-DG methods at
t =1 along the line y =0.25.

4 x 4 elements and 20 x 20 samples points in each element to get the plots. The results
show that the approximation is also more and more accurate with the increasing of k. Fig.
4 further gives the evolution of the relative energy errors of the local PX-DG methods in
time, k = 2, 3,4, where the relative error is defined by

1.2 1 2 1.2
f 000 g f SASLFNY f LGP 4.15)
0 2 0 2 0 2

where 1, is the numerical solution of the local PX-DG method, and u is the exact solution.

Example 4.7 (Diffusive coefficients are nonconstant). The last example is used to further
evaluate the proposed local PX-DG methods. We solve the initial-boundary value problem

-2
o k=2
-3 k:3,
¢ k=4

IoglO|Error|
3

-6

0 02 04 06 08 1 12 14

Figure 4: Example 4.6: The relative energy errors of the local P*-DG methods from t =0 to 1.
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0.6
02 0.4

y X
Figure 5: Example 4.7: The numerical solution of the local P*-DG method at t =1.

(3.1)-(3.2) with the initial condition

u(x,y,00) =100 —1)8x8(y — 18y +10(x - 0.6)>(y —0.4)%>, 0<x,y<1, (4.16)

and the boundary conditions

u(x,0,t) =1.6e(x —0.6)%, u(0,y,t)=3.6e!(y —0.4)% (4.17)
u(x,1,t) =3.6ef(x —0.6)%, u(l,y,t)=1.6e'(y —0.4)>2 (4.18)

The diffusive coefficients d,(x, y) and d,(x, y) and the source function p(x, y,t) are cho-
sen as

d,(x,y) =10">x°1(0.8), d,(x,y)=10"°y*°1(0.2), (4.19)
and

p(x,y,t) =100t (—(x — 1)8x®(y — 1)8y® — 1/100000x/5(y — 1)8y*®
(=762939453125/3203176788x%/° + 683593750,/1339481x**/5 4 390625/28101x34/°
—15625000/121771x%/5 — 976562500/852397x*°/% + 30517578125/39791016x%/°
+12207031250/7671573x°4° 4+ 3814697265625,/118517541156x74/5

— 48828125000/34817139x%%/%) — 1/100000y*/>(x — 1)8x®(—6835937500/380029 y*¢/>
+170898437500/6460493y°'/5 — 1525878906250/333460831 y />

+ 15258789062500/23675719001 y7'/° — 7812500/4433y°%/° 4+ 1367187500/181753y*/°
+781250/4433y°/5 4 427246093750/30314621y°'/° — 12207031250/496961y°%/))
+10e'((x — 3/5)*(y — 2/5)?

— 324518553658426742233621869465/1298074214633706907132624082305024x(y — 2/5)?
— 2028240960365167113619036909101/2028240960365167042394725128601600y (x — 3/5)%), (4.20)

which is generated by Matlab. Now the exact solution of the problem is u(x,y,t) =
e t10%0%(x — 1)8x8(y — 1)8y8 + 10ef(x — 0.6)?(y — 0.4)2. Fig. 5 shows the solution of the
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Figure 6: Example 4.7: The exact solution and the numerical solutions of the local P*-DG methods at
t =1 along the line y =0.5.

Figure 7: Example 4.7: The relative energy errors of the local P*-DG methods from t =0 to 1.

local P4-DG method at t = 1, Fig. 6 gives the exact solution and the numerical solutions
of the local PX-DG methods at t = 1 along the line y = 0.5, where k = 2,3,4. In the
numerical experiments, we take (a,3) = (1.2,1.8), 4 X 4 elements and 20 x 20 samples
points in each element to get the plots. The results show that the approximation is also
more and more accurate with the increasing of k. Fig. 7 further gives the evolution of the
relative energy errors of the local PK-DG methods in time, k = 2, 3,4, where the relative
error is defined by (4.15).

5. Conclusions

Fractional calculus is a natural extension of the integer order calculus. In recent years
the numerical solutions of the fractional PDEs have become considerably interesting both
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in mathematics and physics as well as in applications. Based on two (or four) auxiliary
variables in one dimension (or two dimensions) and the Caputo derivative as the spatial
derivative, this paper developed the high-order accurate Runge-Kutta local discontinuous
Galerkin (DG) methods for one- and two-dimensional space-fractional diffusion equations
with the variable diffusive coefficients. No any additional boundary condition is required.
The motivation to choose the Caputo derivative is that it could represent the fractional
derivative by an integral operator. Numerical examples were given to estimate the numeri-
cal errors and evaluate the numerical resolutions of the solutions. Our results showed that
the convergence orders of the proposed local PX*~DG methods are O(h**!) both in one- and
two-dimensions, where P¥ denotes the space of the real-valued polynomials of degree at
most k. It is worth mentioning that an alternative work on the DG method is given in [14]
for the one-dimensional fractional diffusion equation with a constant diffusive coefficient
and a more restrict assumption on the left boundary condition: u(a,t) = 0. It is a chal-
lenge to develop the high-order accurate Runge-Kutta local discontinuous Galerkin (DG)
methods on unstructured meshes and the adaptive refinement meshes.
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Appendix: Alternate method for equation (2.29)
The standard Legendre polynomials with £ = 0,1, 2, 3,4 defined on [—1,1] are

LO(X):]-5 Ll(X):X,

1

lq(X)=:5(3x2-1L (A.D)
1

Li(x) = E(ng —3x), (A.2)
1

La(x) = g(35x4 —30x2+3). (A.3)

Using the symbolic toolbox of Matlab, we can get the integrals in (2.29) as follows

4
5

x (x —1)3, (A.4)

Al

1
f (x —s) %2Lg(2s — 1)ds =
0

4
5

X5, (A.5)

Nl G

f (x —5)%2L(25s — 1)ds =
0
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(om0, - s = -t + Bty St - Byt (4.6)
— : — = ——X5 —X5 —_— —1)5 — — —1)s .
. X —S 1l&s S 4X 18X 36 X 18 X X,
[~ 302 _ _ _E 2 § 2
(x—=s)""“L(2s —1)ds = ——x5 + — x5, (A7)
o 4 18
rl( 1021 (25— 1)d 54 25 o N 125 14 5 ( 1)‘—‘+25( 1
x—s) s—1)ds=-x5 ——x5+—x5 ——(x—1)5 + —(x—1)5x
0 g 4 6 42 84 14
125 4,
—4—2()(—1)5)( ) (A8)
(x5 021,005 — 15 = Dt = Bt 1 125 (A.9)
X —S ’ S — S=—=X5——X5 —X S5, .
o 2 4 6 42
1( 1021 (25— 1)ds = Syt y Bypp 65 e 8125 w55
x—s) s—1)ds=—=x5+—x5 ———x5 + ——x5 + ——(x—1)5
o ’ 4 3 42 399 1596
275( e+ 6875( iy 3125 - 1yt A10)
——(x—1)sx+——(x—1)5x"——x°(x —1)5, .
133 798 399
x( J02L (25— 1)ds = — x4 22yt 020, 8 3125 A1)
X —3S : S — §=——X5 — X5 ———X>5 —-— X5, .
0 ° 4 3 42 399
' o2 54 125 o 625 1 3125 1 55 4
(x—=s) "“Ly(2s —1)ds ==x5 ——x5+ —x5 ———x5 — ——(x—1)5
o 4 9 14 57 2394
15625 4 4 2750 4 6875 4 6250 4
+ x5 = (x—1)5)+ ——=(x — 1)5x — ——(x — 1)5x% + ——(x — 1)5x3,
gga ¥ 7~ (=1t gran(x =) 309 1 177 <D
(A.12)
"( 1021 (25 - 1)d 5.4 125 5 625 1 3125 1 15625 1 (A13)
X —3S ' S — S§=—X5——X5 —_—X5 ———X>5 —X5, .
0 ! 4 9 14 57 684
here we choose a = 1.2.
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