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Abstract. As the generalization of the integer order partial differential equations (PDE),

the fractional order PDEs are drawing more and more attention for their applications in

fluid flow, finance and other areas. This paper presents high-order accurate Runge-Kutta

local discontinuous Galerkin (DG) methods for one- and two-dimensional fractional dif-

fusion equations containing derivatives of fractional order in space. The Caputo deriva-

tive is chosen as the representation of spatial derivative, because it may represent the

fractional derivative by an integral operator. Some numerical examples show that the

convergence orders of the proposed local Pk–DG methods are O(hk+1) both in one and

two dimensions, where Pk denotes the space of the real-valued polynomials with degree

at most k.
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1. Introduction

Fractional calculus is a natural extension of the integer order calculus [28, 30]. Re-

cently many problems in physics [2], finance [31] and hydrology [1] have been formu-

lated on fractional partial differential equations (PDE), containing derivatives of fractional

order in space, time or both. For example, anomalous diffusion is a possible mechanism

underlying plasma transport in magnetically confined plasmas, and the fractional order

space derivative operators can be used to model such transport mechanism.

In recent years the numerical solutions of the fractional PDEs have attracted a consid-

erable interest both in mathematics and in applications. An intrinsical difference between
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the behaviors of integer and fractional order derivatives is that the integer order derivatives

depend only on the local behavior of a function or solution, while the fractional derivatives

are non-local, i.e., they depend on the entire function or solution. Thus, new difficulties

and challenges appear in deriving numerical methods for this kind of equations.

The fractional derivatives of order α > 0, ∂
αu

∂ xα
, are usually represented by the Riemann-

Liouville formula [28,30]

∂ αu

∂ xα
(x , t) =

1

Γ(n−α)

∂ n

∂ xn

∫ x

a

u(ξ, t)(x − ξ)n−α−1 dξ, (1.1)

where Γ(·) is the Gamma function, x ∈ [a, b], −∞ ≤ a < b ≤ ∞, n− 1 < α < n, n ∈ Z+.

The fractional derivatives are also frequently defined by the Grünwald-Letnikov formula

∂ αu

∂ xα
(x , t) = lim

∆x→0

1

∆xα

[ x−a

∆x
]∑

ℓ=0

(−1)ℓ

�
α

ℓ

�
u(x − ℓ∆x , t), (1.2)

where [ x−a

∆x
] denotes the integer part of x−a

∆x
. If u(ξ, ·) ∈ Cn[a, x], the Riemann-Liouville

formula is equivalent to the Grünwald-Letnikov. However, the discrete approximations of

the latter present some limitations: frequently numerical approximations based on this

formula originate unstable numerical methods and henceforth in many cases a shifted

Grünwald-Letnikov formula is used; the order of accuracy of such approaches is never

higher than one.

Another way to represent the fractional derivative is by the Caputo formula

∂ αu

∂ xα
=

1

Γ(n−α)

∫ x

a

∂ nu(ξ, t)

∂ ξn
(x − ξ)n−α−1dξ. (1.3)

This formula has some advantages over the Riemann-Liouville formula. The Laplace trans-

form method is very frequently used for solving fractional differential equations, the Laplace

transform of the Riemann-Liouville derivatives leads to boundary conditions involving the

limit value of the Riemann-Liouville derivatives at the lower terminal x = a. Although

technically such problems can be solved, there is no physical interpretation. On the other

hand, the Laplace transform of the Caputo derivative imposes boundary conditions involv-

ing integer order derivatives which usually are more acceptable and physical. Another ad-

vantage is that the Caputo derivative of a constant is zero, while for the Riemann-Liouville

it’s not.

During the past decade, numerical methods of the fractional PDEs have been increas-

ingly appearing in literatures. Lynch et al. [24] studied the numerical properties of the

PDEs of fractional order α ∈ (1,2). Shen and Liu [35] gave error analysis of an explicit

finite difference approximation for the space fractional diffusion equation with insulated

ends. Chen et al. [3] proved the stability and convergence of an implicit difference approx-

imation scheme of the fractional diffusion equation describing anomalous slow diffusion

(sub-diffusion) by using a Fourier method. Liu et al. [21] discussed stability and conver-

gence of the difference methods for the space-time fractional advection-diffusion equation.
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Shen et al. [36] studied the fundamental solution and the finite difference approximations

of the Riesz factional advection-dispersion equation. Cui [11] developed a compact finite

difference method for the fractional diffusion equation by using the Grünwald-Letnikov

discretization of the Riemann-Liouville derivative. Yuste [43] developed weighted average

finite difference methods for fractional diffusion equations.

Most of the existing finite difference methods developed for the PDEs of fractional or-

der α ∈ (1,2) are only first order accurate and restricted to one-dimensional problem. A

second order accurate finite difference method for one- and two-dimensional fractional

diffusion equations can be found in [39, 40], where the Richardson extrapolation is ap-

plied to achieve second-order accuracy. Xu and his coworkers [19,20] considered spectral

approximations for the time fractional diffusion equation, this equation can be used to

describe the anomalous sub-diffusion. Deng [13] studied finite element methods for the

space and time fractional Fokker-Planck equation. In the time fractional equation, the so-

lution at a time tk depends on the solutions at all previous time levels t < tk. This makes

the storage very expensive and challenges the algorithm design. There are several ways

to discretize the time fractional derivative and speed its computation [12,19,23], McLean

et al. studied the convergence analysis of a discontinuous Galerkin method for the time

fractional differential equation, the non-uniform time steps are used in their methods due

to the singularity of derivatives at t = 0 [25,26].

The aim of this paper is to develope high-order accurate local discontinuous Galerkin

(DG) approximations of a fractional diffusion model containing derivatives of fractional

order in space. The DG methods discussed here are a class of the finite element meth-

ods, which adopt completely discontinuous piecewise polynomial space for the numerical

solutions and the test functions in the spatial variables, coupled with explicit and nonlin-

early stable high order Runge-Kutta time discretization. The original DG was introduced

in 1973 by Reed and Hill to solve the neutron transport equation [33], which was first

analyzed by Lesaint and Raviart [17] in 1974. Since then, it has been widely used in the

numerical simulation of elliptic equation [32], Dirac equation [38], convection-diffusion

equation [34], shallow water equation [18], MHD equation [42], the time fractional diffu-

sion equation [25], etc. It was first developed for hyperbolic conservation laws containing

first derivatives by Cockburn et al. in a series of papers [5–8]. The natural features of the

the Runge-Kutta DG methods are their formal high order accuracy, their nonlinear stability,

their ability to capture the discontinuous or strong gradients of the exact solution with-

out producing spurious oscillations, and their excellent parallel efficiency. For a detailed

description of the methods, we refer the readers to several substantial review papers and

lecture notes [4,9] as well as the paper [22,41] on the extensions and applications of the

DG methods.

The paper is organized as follows. Section 2 develops numerical schemes for one-

dimensional fractional differential equation. Their two-dimensional extensions are given

in Section 3. Section 4 conducts some numerical experiments to demonstrate the accuracy

and capability of the present methods. Several concluding remarks are given in Section 5.



336 X. Ji and H. Tang

2. Numerical schemes in one dimension

In one-dimensional case, we consider the fractional diffusion equation

∂ u

∂ t
= d(x)

∂ αu

∂ xα
+ p(x , t), 0< x < L, (2.1)

subject to the following initial condition and (Dirichlet) boundary conditions

u(x , 0) = u0(x), u(0, t) = uL(t), u(L, t) = uR(t), 0< x < L, t ≥ 0, (2.2)

with 1< α < 2 and d(x)≥ 0. This model is often used to describe the super-diffusion [37].

An example of the super-diffusion is a continuous random walk with steps obeying a Levy

distribution [29]. Models for anomalous slow diffusion (sub-diffusion) can be found in

[27]. The super-diffusion is a form of diffusion in which the random walk of the molecules

contains occasional very long steps, while the sub-diffusion is the tendency of particles in

a fluid not to diffuse due to random trapping.

This section will construct high-order local DG spatial discretizations for (2.1) on a

finite interval [0, L] with the Caputo representation (1.3) for 1< α < 2, i.e.

∂ αu

∂ xα
=

1

Γ(2−α)

∫ x

0

∂ 2u(ξ, t)

∂ x2
(x − ξ)1−αdξ=:K

�
∂ 2u(x , t)

∂ x2

�
, (2.3)

and two auxiliary variables q(x , t) and g(x , t), which are defined by

q(x , t) :=
∂ u(x , t)

∂ x
, (2.4)

g(x , t) :=
∂ q(x , t)

∂ x
≡
∂ 2u(x , t)

∂ x2
. (2.5)

Using the auxiliary variables q(x , t) and g(x , t), (2.1) may be rewritten as follows

∂ u

∂ t
= d(x)K [g(x , t)] + p(x , t). (2.6)

Multiplying (2.4)-(2.6) by the test functions vu, vq, vg , respectively, integrating them

over the finite element I j , which is defined in the following text, and using a simple formal

integration by parts, we can get

∫

I j

∂ u

∂ t
vu d x =

∫

I j

d(x)K [g]vu d x +

∫

I j

pvu d x , t ≥ 0, (2.7)

∫

I j

qvq d x = −

∫

I j

u
dvq

d x
d x + u(x j, t)vq(x j)− u(x j−1, t)vq(x j−1), t ≥ 0, (2.8)

∫

I j

gvg d x = −

∫

I j

g
dvy

d x
d x + q(x j, t)vg(x j)− q(x j−1, t)vg(x j−1), t ≥ 0. (2.9)
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The initial condition in (2.2) becomes

∫

I j

u(x , 0)vu d x =

∫

I j

u0(x)vu d x . (2.10)

Those are the weak formulations of (2.4)-(2.6) as well as (2.2), in which will be used to

construct corresponding local DG approximations of the problem (2.1)-(2.2).

2.1. Local DG spatial discretization

This subsection starts to present high-order accurate local DG methods approximating

the initial-boundary value problem (2.1)-(2.2). Divide the domain Ω = [0, L] into N

elements arbitrarily, i.e. Ω =
⋃N

j=1 I j , where the jth element is I j = [x j−1, x j], j = 1, · · · , N ,

and 0 = x0 < · · · < x j−1 < x j · · · < xN = L. Our computations will be restricted to the

uniform partition of the domain for the sake of simplicity, ∆x is the step size.

Following the idea of Cockburn and Shu [10], define the finite dimensional space

V k
h =
¦

v ∈ L 2(0, L)
�� v(x) ∈ Pk(I j), if x ∈ I j , j = 1, · · · , N

©
, (2.11)

where Pk(I j) denotes the space of the real-valued polynomials of degree at most k over

the element I j .

Replacing the exact solutions (u(x , t),q(x , t), g(x , t)) by their approximations

(uh(x , t),qh(x , t), gh(x , t)) ∈ (V k
h )

3

in (2.7)-(2.10), and approximating the fluxes on the boundary of the element I j , {u(x j , t),

u(x j−1, t), q(x j, t), q(x j−1, t)}, by the corresponding numerical fluxes, {ĥq, j, ĥq, j−1, ĥg , j,

ĥg , j−1}, respectively, in (2.8)-(2.9), then we have the following local DG formulations for

the problem (2.1)-(2.2): find uh ∈ V
k

h
,qh ∈ V

k
h

, gh ∈ V
k

h
such that for all I j , j = 1, · · · , N

we have

∫

I j

∂ uh

∂ t
vu,h d x =

∫

I j

d(x)K [gh]vu,hd x +

∫

I j

pvu,h d x , (2.12)

∫

I j

qhvq,h d x = −

∫

I j

uh

dvq,h

d x
d x + ĥq, jvq,h(x

−
j )− ĥq, j−1vq,h(x

+
j−1
), (2.13)

∫

I j

ghvg ,h d x = −

∫

I j

qh

dvg ,h

d x
d x + ĥg , j vg ,h(x

−
j
)− ĥg , j−1vg ,h(x

+
j−1
), (2.14)

∫

I j

uh(x , 0)vu,h d x =

∫

I j

u0(x)vu,h d x , (2.15)
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for any vu,h ∈ V
k

h
, vq,h ∈ V

k
h

, vg ,h ∈ V
k

h
. Here
∫

I j
d(x)K [gh]vu,h d x is defined as

∫

I j

d(x)K [gh]vu,h d x =
1

Γ(2−α)

∫

I j

[vu,hd(x)

∫ x

0

gh(ξ, t)(x − ξ)1−α dξ] d x

=
1

Γ(2−α)

∫

I j

vu,hd(x)
n� j−1∑

ℓ=1

∫

Iℓ

gh(ξ, t)(x − ξ)1−α dξ

+

∫ x

x j−1

gh(ξ, t)(x − ξ)1−α dξ
�o

d x . (2.16)

Since the approximate solution {u,q, g}h(x j, t) is discontinuous at the points x j, j =

0, · · · , N , we must choose {ĥq, j, ĥg , j} carefully in order to derive a stable scheme. The

choice of the numerical fluxes is quite delicate as it can affect the stability and accuracy

of the method, as well as the sparsity and symmetry of the stiffness matrix [10]. Usu-

ally {ĥq, j, ĥg , j} is taken as a two-point numerical flux, which may be represented in the

following general form

bhq, j :=bhq

�
uh(x j − 0, t),uh(x j + 0, t)

�
, bhq(u,u) = u,

bhg , j :=bhg

�
qh(x j − 0, t),qh(x j + 0, t)

�
, bhg(q,q) = q.

Inspired by the mixed formulation for the heat equation, we use the “alternating principle”

[44] to choose the numerical fluxes in (2.13)-(2.14)

ĥq, j = uh(x j + 0, t), ĥg , j = qh(x j − 0, t), (2.17)

or

ĥq, j = uh(x j − 0, t), ĥg , j = qh(x j + 0, t), (2.18)

on the interior boundaries, i.e., j = 1,2, · · · , N − 1. On the domain boundaries x = 0 or

x = L, the numerical fluxes are taken as

ĥq,0 = uL(t), ĥq,N = uR(t), ĥg ,0/N = qh(x = 0/L, t). (2.19)

For any x ∈ [0, L] and t ∈ [0, T], we now express our approximation solutions (uh,qh, gh)

as follows

uh(x , t) =

k+1∑

ℓ=1

u
(ℓ)
j
(t)φ

(ℓ)
j
(x), qh(x , t) =

k+1∑

ℓ=1

q
(ℓ)
j
(t)φ

(ℓ)
j
(x), (2.20a)

gh(x , t) =

k+1∑

ℓ=1

g
(ℓ)
j
(t)φ

(ℓ)
j
(x), x ∈ I j , (2.20b)

where {φ(ℓ)
j
(x),ℓ = 1, · · · , k+ 1} is a basis of the local polynomial space Pk(I j) for x ∈ I j .

We also define the local mass matrix M j , the local stiff matrix Mx
j
, the convolution related
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matrix M j,i , the source related vector ~S j and the initial value related vector ~U0
j
, whose

elements are defined as

(M j)m,ℓ =

∫

I j

φ
(ℓ)
j
φ
(m)

j
d x , (Mx

j )m,ℓ =

∫

I j

φ
(ℓ)
j

dφ
(m)

j

d x
d x , (2.21a)

(~S j)m =

∫

I j

p(x , t)φ
(m)

j
d x , (M j,i)m,ℓ =

∫

I j

d(x)φ
(m)

j
K [φ(ℓ)

i
] d x , (2.21b)

(~U0
j )m =

∫

I j

u0(x)φ
(m)

j
d x , (2.21c)

and introduce the following local vector notations

~u j = (u
(1)

j
, · · · ,u(k+1)

j
)T , ~q j = (q

(1)

j
, · · · ,q(k+1)

j
)T , (2.22a)

~g j = (g
(1)

j
, · · · , g

(k+1)

j
)T , ~φ j,R =
�
φ
(1)

j
(1), · · · ,φ(k+1)

j
(1)
�T

, (2.22b)

~φ j,L =
�
φ
(1)

j
(−1), · · · ,φ(k+1)

j
(−1)
�T

. (2.22c)

By using the projections in (2.20), the notations in (2.21)-(2.22), the numerical fluxes

e.g. (2.17), and taking the test functions vu,h, vq,h, vg ,h as the basis functions φ
(ℓ)
j
(x), ℓ =

1,2, · · · , k + 1, the semi-discrete local DG scheme (2.12)-(2.17) can be recasted into the

following local matrix-vector forms.

The numerical schemes for ~q j are

M j~q j = −Mx
j ~u j + ~φ j,R

~φT
j,L~u j+1 − ~φ j,LuL, j = 1, (2.23a)

M j~q j =
�
−Mx

j − ~φ j,L
~φT

j,L

�
~u j + ~φ j,R

~φT
j,L~u j+1, j = 2, · · · , N − 1, (2.23b)

M j~q j =
�
−Mx

j − ~φ j,L
~φT

j,L

�
~u j + ~φ j,RuR, j = N . (2.23c)

For ~g j, we have

M j~g j =
�
−Mx

j − ~φ j,L
~φT

j,L +
~φ j,R
~φT

j,R

�
~q j, j = 1, (2.24a)

M j~g j = (−Mx
j +
~φ j,R
~φT

j,R)~q j − ~φ j,L
~φT

j,R~q j−1, j = 2, · · · , N , (2.24b)

and the numerical schemes for ~u j are

M j

d~u j

d t
=

j∑

i=1

M j,i~gi + ~S j , j = 1, · · · , N . (2.25)

Similarly, (2.15) becomes

M j~u j(0) = ~U
0
j . (2.26)
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Remark 2.1 In practice, we will choose the Legendre polynomials Lℓ(ξ) as basis functions

of the space Pk(I j), i.e.,

φ
(ℓ)
j
(x) := Lℓ−1(ξ j(x)), ξ j(x) =

2(x − x j−1)

∆x
− 1, ℓ= 1, · · · , k+ 1, x ∈ I j , (2.27)

and then we may exploit sufficiently their L2–orthogonality:

∫ 1

−1

Lm(ξ)Lℓ(ξ) dξ=
2

2m+ 1
δm,ℓ, m ≤ ℓ, (2.28)

to obtain a diagonal mass matrix so that we may construct an explicit local DG method

approximating the fractional diffusion equation (2.1). In this case, let x = x i−1 + x̂(x j −

x j−1), then K [φ(ℓ)
i
](x) in the matrix element (M j,i)m,ℓ can be represented as

K [φ(ℓ)
i
](x) =





0, j < i,

∆x2−α

Γ(2−α)

∫ 1

0

( x̂ − s)1−αLℓ−1(2s− 1) ds, j > i,

∆x2−α

Γ(2−α)

∫ x̂

0

( x̂ − s)1−αLℓ−1(2s− 1) ds, j = i,

(2.29)

whose analytical formula can be gotten by using the symbolic toolbox of Matlab. We give

the expressions for α = 1.2 in Appendix I.

2.2. Time discretizations

To discretize the ODE system (2.25) with the initial data (2.26), we use the high-order

Runge-Kutta time discretizations. As shown by Cockburn in [4], when the polynomials of

degree k, a higher-order accurate Runge-Kutta method must be used in order to guarantee

that the scheme is stable. In this paper we use a fourth-order non-TVD Runge-Kutta scheme

[15]. Numerical experiments demonstrate its numerical stability.

The ODE system (2.25) is first rewritten into

d

d t
~U(t) = ~F(t, ~U),

then the fourth-order accurate non-TVD Runge-Kutta scheme is given as

~k1 = ~F(tn, ~Un), (2.30a)

~k2 = ~F(tn +
∆t

2
, ~Un +

∆t

2
~k1), (2.30b)

~k3 = ~F(tn +
∆t

2
, ~Un +

∆t

2
~k2), (2.30c)

~k4 = ~F(tn +∆t, ~Un +∆t~k3), (2.30d)

~U (n+1) = ~Un+
∆t

6
(~k1+ 2~k2 + 2~k3+~k4), (2.30e)
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where ∆t is the time step size, ~Un is an approximation of the solution vector ~U at time

t = tn.

3. Numerical schemes in two dimensions

This section extends the above high-order accurate local DG methods to the two-

dimensional fractional diffusion equation

∂ u

∂ t
= d1(x , y)

∂ αu

∂ xα
+ d2(x , y)

∂ βu

∂ yβ
+ p(x , y, t), (3.1)

on a finite rectangular domain Ω = {(x , y)| 0 < x < Lx , 0 < y < L y}, where 1 < α,β < 2,

d1(x , y) ≥ 0, and d2(x , y) ≥ 0. The initial condition and the boundary conditions are

specified as

u(x , y, 0) = u0(x , y), u(0, y, t) = uW (y, t), u(Lx , y, t) = uE(y, t), (3.2a)

u(x , 0, t) = uS(x , t), u(x , L y , t) = uN (x , t). (3.2b)

To obtain the local DG methods, we will still employ the Caputo representation (1.3)

of the fractional derivatives in x - and y-directions in (3.1), i.e.

∂ αu

∂ xα
=

1

Γ(2−α)

∫ x

0

∂ 2u(ξ, y, t)

∂ x2
(x − ξ)1−α dξ=:K x

�
∂ 2u(x , y, t)

∂ x2

�
, (3.3)

∂ βu

∂ yβ
=

1

Γ(2− β)

∫ y

0

∂ 2u(x ,η, t)

∂ y2
(y −η)1−β dη=:K y

�
∂ 2u(x , y, t)

∂ y2

�
, (3.4)

and introduce four auxiliary variables qx(x , t), q y(x , t), g x (x , t) and g y(x , t) as follows

qx (x , t) :=
∂ u(x , y, t)

∂ x
, g x(x , t) :=

∂ qx(x , y, t)

∂ x
=
∂ 2u(x , y, t)

∂ x2
, (3.5)

q y(x , t) :=
∂ u(x , y, t)

∂ y
, g y(x , t) :=

∂ q y(x , y, t)

∂ y
=
∂ 2u(x , y, t)

∂ y2
, (3.6)

so that the fractional diffusion equation (3.1) can be rewritten as

∂ u

∂ t
= d1(x , y)K x
�

g x (x , y, t)
�
+ d2(x , y)K y
�

g y(x , y, t)
�
+ p(x , y, t). (3.7)

Now we start to present high-order accurate local DG methods approximating (3.1)

from (3.5)-(3.7). Divide the domain Ω = [0, Lx]×[0, L y] into Nx×Ny elements uniformly,

and define Ii, j = [(i−1)∆x , i∆x]× [( j−1)∆y, j∆y], where ∆x and ∆y are step sizes in

x - and y-directions. Define the finite element space as

Vh = {v ∈ L2([0, Lx]× [0, L y])
�� v|Ii, j

∈ P(Ii, j), i = 1, · · · , Nx , j = 1, · · · , Ny}, (3.8)
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where P(Ii, j) is any finite dimensional space of the two-dimensional smooth functions (e.g.

polynomials for our local DG methods) defined on the element Ii, j .

Similarly, multiplying (3.5)-(3.7) by the test function vu, vqx , vq y , vg x , vg y , respectively,

and integrating by parts over the element Ii, j , we get

∫

Ii, j

∂ u

∂ t
vu d xd y =

∫

Ii, j

�
d1(x , y)K x[g x] + d2(x , y)K y[g y]

�
vu d xd y

+

∫

Ii, j

pvu d xd y, (3.9)

∫

Ii, j

qx vqx d xd y = −

∫

Ii, j

u
∂ vqx

∂ x
d xd y +

∫

∂ Ii, j

uvqx nx ds, (3.10)

∫

Ii, j

g x vg x d xd y = −

∫

Ii, j

qx
∂ vg x

∂ x
d xd y +

∫

∂ Ii, j

qx vg x nx ds, (3.11)

∫

Ii, j

q y vq y d xd y = −

∫

Ii, j

u
∂ vq y

∂ y
d xd y +

∫

∂ Ii, j

uvq y ny ds, (3.12)

∫

Ii, j

g y vg y d xd y = −

∫

Ii, j

q y
∂ vg y

∂ y
d xd y +

∫

∂ Ii, j

q y vg y ny ds, (3.13)

where ∂ Ii, j denotes the boundary of the element Ii, j , and (nx , ny) is the outward unit

normal vector on the element boundary ∂ Ii, j . The initial condition in (3.2) becomes

∫

Ii, j

u(x , y, 0)vu d xd y =

∫

Ii, j

u0(x , y)vu d xd y. (3.14)

These equations form the weak formulations of the initial-boundary value problem (3.1)-

(3.2) which we shall use to define the local DG methods.

Following the same procedure in one-dimensional case, the two-dimensional semi-

discrete local DG methods are given as follows: Find uh ∈ Vh, qx
h
∈ Vh, g x

h
∈ Vh, q

y

h
∈ Vh,

and g
y

h
∈ Vh such that for all Ii, j , i = 1, · · · , Nx , j = 1, · · · , Ny , we have

∫

Ii, j

∂ uh

∂ t
vu,h d xd y =

∫

Ii, j

�
d1(x , y)K x[g x

h
] + d2(x , y)K y[g

y

h
]
�

vu,h d xd y

+

∫

Ii, j

pvu,h d xd y, (3.15)

∫

Ii, j

qx
h

vqx ,h d xd y = −

∫

Ii, j

uh

∂ vqx ,h

∂ x
d xd y +

∫

∂ Ii, j

ĥx
q vqx ,hnx ds, (3.16)

∫

Ii, j

g x
h vg x ,h d xd y = −

∫

Ii, j

qx
h

∂ vg x ,h

∂ x
d xd y +

∫

∂ Ii, j

ĥx
g vg x ,hnx ds, (3.17)
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∫

Ii, j

q
y

h
vq y ,h d xd y = −

∫

Ii, j

uh

∂ vq y ,h

∂ y
d xd y +

∫

∂ Ii, j

ĥy
q uq y ny ds, (3.18)

∫

Ii, j

g
y

h
vg y ,h d xd y = −

∫

Ii, j

q
y

h

∂ vg y ,h

∂ y
d xd y +

∫

∂ Ii, j

ĥy
g vg y ny ds, (3.19)

∫

Ii, j

uh(x , y, 0)vu,h d xd y =

∫

Ii, j

u0(x , y)vu,h d xd y. (3.20)

For numerical computations, the second integrations at the right-hand sides of (3.16)-

(3.19) are calculated by the higher-order accurate Gaussian quadrature rule, and the nu-

merical fluxes ĥx
q , ĥx

g , ĥ
y
q and ĥ

y
g in (3.16)-(3.19) are appropriate approximations to u, qx

and q y at the points of the element boundary ∂ Ii, j corresponding to the nodes of gaussian

quadrature. In our computations, we take them as

ĥx
q = uh+

〈uh〉

2
nx , ĥy

q = uh+
〈uh〉

2
ny , ĥx

g = qx
h
−
〈qx

h
〉

2
nx , hathy

g = q
y

h
−
〈q y

h
〉

2
ny , (3.21)

for the interior boundaries of the element, and

ĥx
q = uB, ĥy

q = uB, ĥx
g = qx

h
, ĥy

g = q
y

h
, (3.22)

for those element boundaries in accordance with part of the domain boundary, where

a := aout+ain

2
, 〈a〉 := aout− ain, ain and aout are the limits taken from the interior and exterior

of the element Ii, j along the outward unit normal vector (nx , ny) of ∂ Ii, j , respectively, and

uB denotes the node value of uW , uE , uS , or uN , which are given in (3.2).

Suppose {φ(ℓ)
i, j
(x , y),ℓ = 1,2, · · · , k} are the basis functions of the local function space

P(Ii, j), then we may represent the approximate solutions uh,qx
h
, g x

h
,q

y

h
, g

y

h
as

uh(x , y, t) =
k∑
ℓ=1

u
(ℓ)
i, j
(t)φ

(ℓ)
i, j
(x , y), qx

h
(x , y, t) =

k∑
ℓ=1

q
x ,(ℓ)
i, j
(t)φ

(ℓ)
i, j
(x , y),

g x
h
(x , y, t) =

k∑
ℓ=1

g
x ,(ℓ)
i, j
(t)φ

(ℓ)
i, j
(x , y), q

y

h
(x , y, t) =

k∑
ℓ=1

q
y,(ℓ)
i, j
(t)φ

(ℓ)
i, j
(x , y),

g
y

h
(x , y, t) =

k∑
ℓ=1

g
y,(ℓ)
i, j
(t)φ

(ℓ)
i, j
(x , y),

(3.23)

For convenience, we introduce some notations

~ui, j = (u
(1)

i, j
, · · · ,u(k)

i, j
)T , ~qx

i, j
= (q

x ,(1)

i, j
, · · · ,qx ,(k)

i, j
)T ,

~g x
i, j
= (g

x ,(1)

i, j
, · · · , g

x ,(k)

i, j
)T , ~q

y

i, j
= (q

y,(1)

i, j
, · · · ,q y,(k)

i, j
)T ,

~g
y

i, j
= (g

y,(1)

i, j
, · · · , g

y,(k)

i, j
)T ,

(3.24)

and define the local mass matrix Mi, j, the local stiff matrices Mx
i, j

,M
y

i, j
, the sources related

vector ~Si, j, the element boundary related matrices Wi, j, Ei, j , Si, j, Ni, j, W̃i, j, Ẽi, j, S̃i, j, Ñi, j ,
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the initial value related vector ~U0
i, j

, and the element boundary related vectors ~BW
i, j ,
~BE

i, j ,
~BS

i, j
,

~BN
i, j , whose elements are defined by

(Mi, j)m,ℓ =
∫

Ii, j
φ
(ℓ)
i, j
φ
(m)

i, j
d xd y, (Mx

i, j
)m,ℓ =
∫

Ii, j
φ
(ℓ)
i, j

∂φ
(m)
i, j

∂ x
d xd y,

(M
y

i, j
)m,ℓ =
∫

Ii, j
φ
(ℓ)
i, j

∂ φ
(m)

i, j

∂ y
d xd y, (~Si, j)m =

∫
Ii, j

p(x , y)φ
(m)

i, j
d xd y,

(Wi, j)m,ℓ =
∫
∂ IW

i, j

φ
W,(ℓ)
i, j
φ

W,(m)

i, j
d y, (W̃i, j)m,ℓ =

∫
∂ IW

i, j

φ
W,(ℓ)
i, j
φ

E,(m)

i, j
d y,

(Ei, j)m,ℓ =
∫
∂ I E

i, j

φ
E,(ℓ)
i, j
φ

E,(m)

i, j
d y, (Ẽi, j)m,ℓ =

∫
∂ I E

i, j

φ
E,(ℓ)
i, j
φ

W,(m)

i, j
d y,

(Si, j)m,ℓ =
∫
∂ IS

i, j

φ
S,(ℓ)
i, j
φ

S,(m)

i, j
d x , (S̃i, j)m,ℓ =

∫
∂ IS

i, j

φ
S,(ℓ)
i, j
φ

N ,(m)

i, j
d x ,

(Ni, j)m,ℓ =
∫
∂ I N

i, j

φ
N ,(ℓ)
i, j
φ

N ,(m)

i, j
d x , (Ñi, j)m,ℓ =

∫
∂ I N

i, j

φ
N ,(ℓ)
i, j
φ

S,(m)

i, j
d x ,

(~BW
i, j)m =
∫
∂ IW

i, j

φ
W,(m)

i, j
uW (y, t) d y, (~BE

i, j)m =
∫
∂ I E

i, j

φ
E,(m)

i, j
uE(y, t) d y,

(~BS
i, j
)m =
∫
∂ IS

i, j

φ
S,(m)

i, j
uS(y, t) d x , (~BN

i, j)m =
∫
∂ I N

i, j

φ
N ,(m)

i, j
uN (y, t) d x ,

(~U0
i, j
)m =
∫

Ii, j
u0(x , y)φ

(m)

i, j
d xd y,

(3.25)

where ∂ IW
i, j , ∂ I E

i, j , ∂ IS
i, j

and ∂ IN
i, j denote the left, right, bottom and upper parts of ∂ Ii, j ,

respectively, φ
W,(ℓ)
i, j

, φ
E,(ℓ)
i, j

, φ
S,(ℓ)
i, j

and φ
N ,(ℓ)
i, j

are the values of φ
(ℓ)
i, j

at the points of the

element boundaries ∂ IW
i, j , ∂ I E

i, j , ∂ IS
i, j

and ∂ IN
i, j corresponding to the nodes of gaussian

quadrature, respectively, ℓ= 1, · · · , k.

By using the projections in (3.23), the notations in (3.24)-(3.25), the numerical fluxes

e.g. (3.21), and taking the test functions vu,h, vqx ,h, vq y ,hvg x ,h, vg y ,h, as the basis functions

φ
(ℓ)
i, j

, ℓ= 1,2, · · · , k, the semi-discrete local DG scheme (3.15)-(3.20) can also be rewritten

into the following local matrix-vector forms.

The numerical schemes for ~qx
i, j

are, for all i = 1, · · · , Nx

Mi, j~q
x
i, j
= (−Mx

i, j
−Wi, j)~ui, j + W̃i, j~ui, j+1, j = 2, · · · , Ny − 1,

Mi, j~q
x
i, j
= −Mx

i, j
~ui, j − ~B

W
i, j + W̃i, j~ui, j+1, j = 1,

Mi, j~q
x
i, j
= (−Mx

i, j
−Wi, j)~ui, j + ~B

E
i, j , j = Ny .

(3.26)

For ~q
y

i, j
and all j = 1, · · · , Ny , we have

Mi, j~q
y

i, j
= (−M

y

i, j
− Si, j)~ui, j + S̃i, j~ui+1, j , i = 2, · · · , Nx − 1,

Mi, j~q
y

i, j
= −M

y

i, j
ui, j − ~B

S
i, j
+ S̃i, j~ui+1, j , i = 1,

Mi, j~q
y

i, j
= (−M

y

i, j
− Si, j)~ui, j + ~B

N
i, j , i = Nx .

(3.27)

For ~g x
i, j

and all i = 1, · · · , Nx , we have

Mi, j~g
x
i, j
= (−Mx

i, j
+ Ei, j)~q

x
i, j
− Ẽi, j~q

x
i, j−1

, j = 2, · · · , Ny ,

Mi, j~g
x
i, j
= (−Mx

i, j
+ Ei, j −Wi, j)~q

x
i, j

, j = 1.
(3.28)
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For ~g
y

i, j
and all j = 1, · · · , Ny , we have

Mi, j~g
y

i, j
= (−M

y

i, j
+Ni, j)~q

y

i, j
− Ñi, j~q

y

i−1, j
, i = 2, · · · , Nx ,

Mi, j~g
y

i, j
= (−M

y

i, j
+Ni, j − Si, j)~q

y

i, j
, i = 1.

(3.29)

The scheme for ~ui, j is, for all i = 1, · · · , Nx , j = 1, · · · , Ny

Mi, j

d~ui, j

d t
=

j∑

r=1

M1,i, j,r~g x
i,r +

i∑

s=1

M2,i, j,s~g
y

s, j
+ ~Si, j, (3.30)

where M1,i, j,r and M2,i, j,s are defined as

(M1,i, j,r)m,ℓ :=

∫

Ii, j

d1(x , y)φ
(m)

i, j
K x[φ

(ℓ)
i,r
] d xd y,

(M2,i, j,s)m,ℓ :=

∫

Ii, j

d2(x , y)φ
(m)

i, j
K y[φ

(ℓ)
s, j
] d xd y.

Similar to one-dimensional case, the analytical expressions of K x[φ(ℓ)r,s ] and K y[φ(ℓ)r,s ]

may be obtained by using the symbolic toolbox of Matlab.

The matrix (3.30) is a system of ordinary differential equations and will be solved by

the fourth-order accurate non-TVD Runge-Kutta method (2.30).

The discrete initial condition is

Mi, j~ui, j(0) = ~U
0
i, j . (3.31)

Remark 3.1 In practice, the basis functions of the space P(Ii, j) may be obtained by map-

ping the basis functions of the space P(I) by the transformation Ψ : (ξ,η) ∈ I 7→ (x , y) ∈
Ii, j , see e.g., [22], where I = [−1,1]× [−1,1] denotes the standard rectangular element.

For example, if we choose a set of basis functions for P(I) as

φ(ℓ)(ξ,η) := Lℓ1(ξ)Lℓ2(η), 0≤ ℓ1,ℓ2 ≤ k̂, − 1≤ ξ,η ≤ 1, (3.32)

where Lℓ1(·) and Lℓ2(·) are the Legendre polynomials of order ℓ1 and ℓ2 respectively, and

k = (k̂+ 2)(k̂+ 1)/2, then a set of the basis functions for the space P(Ii, j) can be taken as

φ
(ℓ)
i, j
(x , y) := φ(ℓ)
�
ξ(x , y),η(x , y)

�
,ℓ = 1,2, · · · , k, (x , y) ∈ Ii, j .

4. Numerical results

This section conducts some numerical experiments to show the accuracy and the per-

formance of the present local DG methods for the fractional diffusion equations (2.1) and

(3.1). The time step size of the Runge-Kutta local Pk-DG methods is taken as ∆t =
�
∆x

k2

�α

for one-dimensional problems and d t = 0.5( h

k2 )
max{α,β} for two-dimensional problems, re-

spectively, h= min{∆x ,∆y}, which is in agreement with the case of the integer values of

α [16].
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al errors and 
onvergen
e rates of the lo
al Pk-DG methods at t = 1.Here α = 1.2 and d(x) is a 
onstant fun
tion.
k N L∞–error order L1–error order L2–error order

25 6.09e-04 – 7.97e-05 – 1.40e-04 –

1 26 1.45e-04 2.06 1.89e-05 2.08 3.34e-05 2.06

27 3.60e-05 2.02 4.63e-06 2.03 8.26e-06 2.01

23 3.07e-04 – 5.24e-05 – 7.69e-05 –

2 24 3.78e-05 3.02 6.20e-06 3.08 9.19e-06 3.06

25 4.75e-06 2.99 7.63e-07 3.02 1.14e-06 3.02

4 9.08e-05 – 2.07e-05 – 2.83e-05 –

3 8 9.64e-07 4.17 1.15e-06 4.17 1.61e-06 4.14

12 2.61e-8 4.09 2.15e-07 4.14 3.07e-07 4.09

2 3.77e-05 – 1.07e-05 – 1.48e-05 –

4 3 4.56e-06 5.21 1.37e-06 5.06 1.81e-06 5.18

4 9.21e-07 5.56 3.57e-07 4.67 4.34e-07 4.96

4.1. 1D numerical results

Example 4.1 (Diffusive coefficient is constant). Consider the initial-boundary value prob-

lem (2.1)-(2.2) on the domain Ω = [0,1] with initial condition u(x , 0) = x5 and the

boundary conditions u(0, t) = 0 and u(1, t) = e−t . Let

d(x) =
Γ(6−α)

Γ(6)
, p(x , t) = −e−t(x5+ x5−α), α ∈ (1,2). (4.1)

In this case, the exact solution is u(x , t) = e−t x5, which does not depend on the value of

α and will be used to estimate the numerical errors in our computations.

Table 1 shows the numerical L1-, L2-, and L∞-errors and the convergence rates of the

local Pk-DG methods at t = 1 for the case α = 1.2 with k = 1,2,3,4, where N denotes

the number of elements. From there we see that the local Pk-DG methods can achieve the

accuracy of order k+ 1.

Example 4.2 (Diffusive coefficient is nonconstant). Consider the initial-boundary value

problem (2.1)-(2.2) on the domain Ω = [0,1] with initial condition u(x , 0) = x5 and the

boundary conditions u(0, t) = 0 and u(1, t) = e−t . Let

d(x) =
Γ(6−α)

Γ(6)
xα, p(x , t) =−2e−t x5, α ∈ (1,2). (4.2)

Now the exact solution is given by e−t x5, which does not depend on the value of α either.

We estimate the numerical L1-, L2-, and L∞-errors and the numerical convergence rates

of the local Pk-DG methods at t = 1 for the cases α = 1.01, 1.2 and 1.99, k = 1,2,3,4.

Those results are given in Tables 2, 3 and 4, and show that the local Pk-DG methods are

(k+ 1)st order accurate in both cases.
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al errors and 
onvergen
e rates of the lo
al Pk-DG methods at t = 1.Here α = 1.01 and d(x) is a fun
tion of x .
k N L∞–error order L1–error order L2–error order

25 1.29e-03 – 1.44e-04 – 2.68e-04 –

1 26 3.23e-04 2.00 3.45e-05 2.06 6.46e-05 2.05

27 7.98e-05 2.02 8.00e-06 2.11 1.52e-05 2.09

23 1.08e-03 – 1.30e-04 – 2.25e-04 –

2 24 1.36e-04 2.99 1.22e-05 3.41 2.14e-05 3.39

25 1.26e-05 3.43 9.08e-07 3.75 1.62e-06 3.72

4 2.63e-04 – 7.24e-05 – 9.79e-05 –

3 8 1.87e-05 3.82 4.15e-06 4.13 5.42e-06 4.17

12 3.46e-06 4.16 7.59e-07 4.19 1.00e-06 4.16

2 1.50e-04 – 3.44e-05 – 5.05e-05 –

4 3 1.56e-05 5.58 5.55e-06 4.50 7.19e-06 4.81

4 5.04e-06 3.93 1.32e-06 4.99 1.79e-06 4.84

Example 4.3 (Diffusive coefficient is nonconstant). This example is used to test the con-

vergence when increasing the order of the finite element approximation. Solve numerically

the initial-boundary value problem (2.1)-(2.2) within the domain Ω = [0,1] with the ini-

tial condition

u(x , 0) = (x − 1)16 x161010+ (x − 0.4)2, (4.3)

and the boundary conditions u(0, t) = 0.16et ,u(1, t) = 0.36et . Here d(x) and p(x , t) are

taken as

d(x) = x1/5Γ(0.8), (4.4)

and

p(x , t) =−1010/608024154515319435113061625476e−t x15(608024154515319435113061625476x17

+ 35405106204296098259077244461134x16− 622092888676896289788080554161630x15

+ 4670634487774233633025986026842815x14− 21343249542858718702862294247883680x13

+ 67287056151467457698988036468358332x12− 155799788711629493064231057581313192x11

+ 274512219319335134294127253715492060x10+ 227486528085985623883413390472264582x6

+ 46285754401385358923419815372545940x4− 13412782655993269833527399401817880x3

+ 2697560382746457054641828709304884x2− 117578390764381233046124012997883680x5

− 375713563639374742060707689848873880x9− 342003464499664677209204812464125692x7

+ 403814295430398718979452876274085810x8− 336299022681589838951117407124524x

+ 19570335808861990818023681640625)+ et

�
(x − 0.4)2 −

202824096036516713896013668415625

81129638414606681695789005144064
x

�
,

(4.5)

respectively, where p(x , t) is generated by Matlab in order to have the exact solution

u(x , t) = e−t(x − 1)16 x161010+ et(x − 0.4)2.

Fig. 1 gives the exact solution u and the numerical solutions uh of the local Pk-DG

methods at t = 1, k = 2,3,4. Here α = 1.2, and 4 elements are used, 20 samples points
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ept for α = 1.2.
k N L∞–error order L1–error order L2–error order

25 6.12e-04 – 8.08e-05 – 1.41e-04 –

1 26 1.46e-04 2.07 1.90e-05 2.09 3.35e-05 2.07

27 3.60e-05 2.02 4.64e-06 2.03 8.28e-06 2.02

23 3.11e-04 – 5.41e-05 – 7.89e-05 –

2 24 3.78e-05 3.04 6.30e-06 3.10 9.28e-06 3.09

25 4.75e-06 2.99 7.70e-07 3.03 1.14e-06 3.02

4 9.35e-05 – 2.95e-05 – 3.95e-05 –

3 8 5.78e-06 4.01 1.60e-06 4.20 2.14e-06 4.20

12 1.20e-06 3.88 3.04e-07 4.10 4.11e-07 4.08

2 4.17e-05 – 1.03e-05 – 1.62e-05 –

4 3 5.81e-06 4.87 1.60e-06 4.60 2.27e-06 4.84

4 1.33e-06 5.13 4.08e-07 4.75 5.52e-07 4.92Table 4: Same as Table 2, ex
ept for α = 1.99.
k N L∞–error order L1–error order L2–error order

25 5.55e-04 – 7.40e-05 – 1.32e-04 –

1 26 1.40e-04 1.98 1.83e-05 2.01 3.28e-05 2.01

27 3.53e-05 1.99 4.56e-06 2.01 8.18e-06 2.00

23 2.81e-04 – 4.97e-05 – 7.32e-05 –

2 24 3.66e-05 2.94 6.09e-06 3.03 9.04e-06 3.02

25 4.67e-06 2.97 7.56e-07 3.01 1.12e-06 3.01

4 6.68e-05 – 1.55e-05 – 2.30e-05 –

3 8 4.36e-06 3.94 9.45e-07 4.03 1.41e-06 4.02

12 8.76e-07 3.96 1.85e-07 4.02 2.78e-07 4.01

2 2.57e-05 – 7.23e-06 – 1.13e-05 –

4 3 3.37e-06 5.01 1.25e-06 4.34 1.70e-06 4.68

4 8.00e-07 5.00 3.29e-07 4.63 4.24e-07 4.83

are taken in each element to get the plots. We see that the solutions of the local Pk-DG

methods are more and more accurate with the increasing of the approximation order k.

4.2. 2D numerical results

Example 4.4 (Diffusive coefficients are constant). Consider the two-dimensional initial-

boundary value problem (3.1)-(3.2) on Ω = {(x , y)
�� 0 < x < 1,0 < y < 1}. The initial

condition and the boundary conditions are specified as

u(x , y, 0) = x5 y5, u(x , 0, t) = u(0, y, t) = 0,

u(x , 1, t) = e−t x5, u(1, y, t) = e−t y5, (4.6)
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al solutions of the lo
al Pk-DG methods at t = 1,

k = 2, 3, 4. Here α = 1.2.
and the functions d1(x , y), d2(x , y), and p(x , y, t) are

d1(x , y) =
Γ(6−α)

2Γ(6)
, d2(x , y) =

Γ(6− β)

2Γ(6)
, (4.7)

p(x , y, t) =
1

2

�
− e−t(x5+ x5−α)− e−t(x5+ x5−β)

�
, α ∈ (1,2), β ∈ (1,2). (4.8)

The exact solution of this initial-boundary value problem is u(x , y, t) = e−t x5 y5, indepen-

dent on the parameters α and β .

We estimate the numerical L1-, L2-, and L∞-errors and the numerical convergence or-

ders of the local Pk-DG methods at t = 1 for the case (α,β) = (1.2,1.8) with k = 1,2,3,4.

Numerical results are presented in Table 5 and show that the local Pk-DG methods can

achieve the accuracy of order k+ 1, where N denotes the number of elements.

Example 4.5 (Diffusive coefficients are nonconstant). Solve the initial-boundary value

problem (3.1)-(3.2) with non-constant diffusive coefficients

d1(x , y) =
Γ(6−α)

2Γ(6)
xα, d2(x , y) =

Γ(6− β)

2Γ(6)
xβ , (4.9)

with initial condition u(x , y, 0) = x5 y5, 0< x < 1,0< y < 1 and the boundary conditions

u(x , 0, t) = u(0, y, t) = 0, u(x , 1, t) = e−t x5, u(1, y, t) = e−t y5. (4.10)

If the source term in (3.1) is taken as

p(x , y, t) = −2e−t x5 y5, (4.11)

then the exact solution may be given by u(x , y, t) = e−t x5 y5, which does not depend on α

and β .
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al errors and 
onvergen
e rates of the lo
al Pk-DG methods at t = 1.Here (α,β) = (1.2, 1.8) and d1(x , y) and d2(x , y) are two 
onstant fun
tions.
k N L∞–error order L1–error order L2–error order

23× 23 2.86e-02 – 5.52e-04 – 2.02e-03 –

1 24× 24 7.93e-03 1.85 1.10e-04 2.33 4.00e-04 2.33

25× 25 2.15e-03 1.88 2.33e-05 2.24 8.44e-05 2.25

22× 22 1.90e-02 – 5.05e-04 – 1.36e-03 –

2 23× 23 2.93e-03 2.70 4.87e-05 3.38 1.49e-04 3.19

24× 24 4.33e-04 2.76 5.59e-06 3.12 1.79e-05 3.05

4× 4 2.86e-03 – 8.61e-05 – 1.95e-04 –

3 6× 6 7.29e-04 3.37 1.43e-05 4.43 3.65e-05 4.14

8× 8 2.54e-04 3.66 4.27e-06 4.19 1.14e-05 4.06

3× 3 1.14e-03 – 3.80e-05 – 7.35e-05 –

4 4× 4 3.22e-04 4.41 8.55e-06 5.19 1.73e-05 5.02

5× 5 1.16e-04 4.56 2.71e-06 5.19 5.62e-06 5.04Table 6: Example 4.5: Numeri
al errors and 
onvergen
e rates of the lo
al Pk-DG methods at t = 1.Here (α,β) = (1.2, 1.8) and d1(x , y) and d2(x , y) depend on the independent variables x and y, N is thenumber of elements.
k N L∞–error order L1–error order L2–error order

23× 23 2.86e-02 – 5.38e-04 – 1.98e-03 –

1 24× 24 7.93e-03 1.85 1.12e-04 2.26 4.04e-04 2.29

25× 25 2.14e-03 1.89 2.40e-05 2.23 8.57e-05 2.24

22× 22 1.95e-02 – 5.08e-04 – 1.44e-03 –

2 23× 23 2.92e-03 2.75 5.23e-05 3.28 1.54e-04 3.22

24× 24 4.32e-04 2.76 5.77e-06 3.18 1.83e-05 3.08

4× 4 2.93e-03 – 8.20e-05 – 2.03e-04 –

3 6× 6 7.35e-04 3.41 1.43e-05 4.30 3.73e-05 4.17

8× 8 2.55e-04 3.67 4.26e-06 4.22 1.15e-05 4.09

3× 3 1.15e-03 – 3.33e-0 – 7.42e-05 –

4 4× 4 3.25e-04 4.38 7.46e-06 5.20 1.74e-05 5.05

5× 5 1.17e-04 4.59 2.35e-06 5.17 5.56e-06 5.10

We also estimate the numerical L1-, L2-, and L∞-errors and the convergence orders

of the local Pk-DG methods at t = 1 of the local Pk-DG methods at t = 1 for the cases

(α,β) = (1.2,1.8) and (1.99,1.99)with k = 1,2,3,4. Those results in Tables 6 and 7 show

that the local Pk-DG methods are (k+ 1)st order accurate in both cases.

Example 4.6 (Diffusive coefficients are nonconstant). This example is to solve the initial-

boundary value problem (3.1)-(3.2) with slightly more complicated diffusive coefficients

d1(x , y) =
399

3125
x6/5Γ(0.8), d2(x , y) =

44

3125
y9/5Γ(0.2). (4.12)

The initial condition and the boundary conditions are

u(x , y, 0) = 104(x − 0.5)(x − 1)2 x2(y − 0.5)(y − 1)2 y2, (4.13)
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ept for (α,β) = (1.99, 1.99).
k N L∞–error order L1–error order L2–error order

23 × 23 1.40e-02 – 5.38e-04 – 1.03e-03 –

1 24 × 24 4.18e-03 1.74 1.12e-04 2.26 2.40e-04 2.10

25 × 25 1.15e-03 1.86 2.40e-05 2.23 5.78e-05 2.05

22 × 22 1.35e-02 – 5.08e-04 – 1.08e-03 –

2 23 × 23 2.37e-03 2.51 5.23e-05 3.28 1.32e-04 3.02

24 × 24 3.55e-04 2.74 5.77e-06 3.18 1.63e-05 3.02

4× 4 2.93e-03 – 8.20e-05 – 1.35e-04 –

3 6× 6 7.35e-04 3.41 1.43e-05 4.30 2.76e-05 3.91

8× 8 2.55e-04 3.67 4.26e-06 4.22 8.92e-06 3.93

3× 3 7.13e-04 – 3.33e-0 – 4.84e-05 –

4 4× 4 2.07e-04 4.31 7.46e-06 5.20 1.19e-05 4.89

5× 5 7.65e-05 4.46 2.35e-06 5.17 3.96e-06 4.92

and u(0, y, t) = u(1, y, t) = u(x , 0, t) = u(x , 1, t) = 0, respectively. The function p(x , y, t)

in (3.1) are given as

p(x , y, t) = −2e−t x2 y2(−8364x − 8356y + 1825+ 15000x3 y3 − 33000x3 y2

+ 23520x3 y − 5352x3− 34500x2 y3 + 75000x2 y2 − 52800x2 y+

11880x2+ 25320x y3− 54300x y2− 5798y3+ 12245y2+ 37680x y),

(4.14)

in order to have the exact solution u(x , y, t) = 104e−t(x − 0.5)2(x − 1)2 x2(y − 0.5)2(y −
1)2 y2. Fig. 2 shows the solution of the local P4-DG method at t = 1, Fig. 3 gives the exact

solution and the numerical solutions of the local Pk-DG methods at t = 1 along the line

y = 0.25, where k = 2,3,4. In these numerical experiments, we take (α,β) = (1.2,1.8),

0
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0.5

1
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Figure 2: Example 4.6: The numeri
al solution of the lo
al P4-DG method at t = 1.
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Figure 3: Example 4.6: The exa
t solution and the numeri
al solutions of the lo
al Pk-DG methods at
t = 1 along the line y = 0.25.
4× 4 elements and 20× 20 samples points in each element to get the plots. The results

show that the approximation is also more and more accurate with the increasing of k. Fig.

4 further gives the evolution of the relative energy errors of the local Pk-DG methods in

time, k = 2,3,4, where the relative error is defined by
�����

∫ 1

0

u2
h
(x , t)

2
d x −

∫ 1

0

u2(x , t)

2
d x

�����
.∫ 1

0

u2(x , t)

2
d x , (4.15)

where uh is the numerical solution of the local Pk-DG method, and u is the exact solution.

Example 4.7 (Diffusive coefficients are nonconstant). The last example is used to further

evaluate the proposed local Pk-DG methods. We solve the initial-boundary value problem
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Figure 4: Example 4.6: The relative energy errors of the lo
al Pk-DG methods from t = 0 to 1.
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Figure 5: Example 4.7: The numeri
al solution of the lo
al P4-DG method at t = 1.
(3.1)-(3.2) with the initial condition

u(x , y, 0) = 1010(x − 1)8 x8(y − 1)8 y8 + 10(x − 0.6)2(y − 0.4)2, 0≤ x , y ≤ 1, (4.16)

and the boundary conditions

u(x , 0, t) = 1.6et(x − 0.6)2, u(0, y, t) = 3.6et(y − 0.4)2, (4.17)

u(x , 1, t) = 3.6et(x − 0.6)2, u(1, y, t) = 1.6et(y − 0.4)2. (4.18)

The diffusive coefficients d1(x , y) and d2(x , y) and the source function p(x , y, t) are cho-

sen as

d1(x , y) = 10−5x1/5Γ(0.8), d2(x , y) = 10−5 y4/5Γ(0.2), (4.19)

and

p(x , y, t) = 1010e−t(−(x − 1)8 x8(y − 1)8 y8 − 1/100000x1/5(y − 1)8 y8

(−762939453125/3203176788x69/5+ 683593750/1339481x44/5+ 390625/28101x34/5

− 15625000/121771x39/5− 976562500/852397x49/5+ 30517578125/39791016x64/5

+ 12207031250/7671573x54/5+ 3814697265625/118517541156x74/5

− 48828125000/34817139x59/5)− 1/100000y4/5(x − 1)8 x8(−6835937500/380029y46/5

+ 170898437500/6460493y51/5− 1525878906250/333460831y66/5

+ 15258789062500/23675719001y71/5− 7812500/4433y36/5+ 1367187500/181753y41/5

+ 781250/4433y31/5+ 427246093750/30314621y61/5− 12207031250/496961y56/5))

+ 10et((x − 3/5)2(y − 2/5)2

− 324518553658426742233621869465/1298074214633706907132624082305024x(y− 2/5)2

− 2028240960365167113619036909101/2028240960365167042394725128601600y(x− 3/5)2), (4.20)

which is generated by Matlab. Now the exact solution of the problem is u(x , y, t) =

e−t1010(x − 1)8 x8(y − 1)8 y8 + 10et(x − 0.6)2(y − 0.4)2. Fig. 5 shows the solution of the
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t solution and the numeri
al solutions of the lo
al Pk-DG methods at
t = 1 along the line y = 0.5.
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Figure 7: Example 4.7: The relative energy errors of the lo
al Pk-DG methods from t = 0 to 1.
local P4-DG method at t = 1, Fig. 6 gives the exact solution and the numerical solutions

of the local Pk-DG methods at t = 1 along the line y = 0.5, where k = 2,3,4. In the

numerical experiments, we take (α,β) = (1.2,1.8), 4× 4 elements and 20× 20 samples

points in each element to get the plots. The results show that the approximation is also

more and more accurate with the increasing of k. Fig. 7 further gives the evolution of the

relative energy errors of the local Pk-DG methods in time, k = 2,3,4, where the relative

error is defined by (4.15).

5. Conclusions

Fractional calculus is a natural extension of the integer order calculus. In recent years

the numerical solutions of the fractional PDEs have become considerably interesting both
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in mathematics and physics as well as in applications. Based on two (or four) auxiliary

variables in one dimension (or two dimensions) and the Caputo derivative as the spatial

derivative, this paper developed the high-order accurate Runge-Kutta local discontinuous

Galerkin (DG) methods for one- and two-dimensional space-fractional diffusion equations

with the variable diffusive coefficients. No any additional boundary condition is required.

The motivation to choose the Caputo derivative is that it could represent the fractional

derivative by an integral operator. Numerical examples were given to estimate the numeri-

cal errors and evaluate the numerical resolutions of the solutions. Our results showed that

the convergence orders of the proposed local Pk–DG methods are O(hk+1) both in one- and

two-dimensions, where Pk denotes the space of the real-valued polynomials of degree at

most k. It is worth mentioning that an alternative work on the DG method is given in [14]

for the one-dimensional fractional diffusion equation with a constant diffusive coefficient

and a more restrict assumption on the left boundary condition: u(a, t) = 0. It is a chal-

lenge to develop the high-order accurate Runge-Kutta local discontinuous Galerkin (DG)

methods on unstructured meshes and the adaptive refinement meshes.

Acknowledgments Xia Ji is partially supported by the National Natural Science Foun-

dation of China for the Youth (No. 10901157/ A0117) and the National Basic Research

Program of China (973 Program 2012CB025904). Huazhong Tang was partially supported

by the National Basic Research Program under the Grant 2005CB321703, the National

Natural Science Foundation of China (No. 10925101, 10828101), the Program for New

Century Excellent Talents in University (NCET-07-0022), and the Doctoral Program of Ed-

ucation Ministry of China (No. 20070001036).

Appendix: Alternate method for equation (2.29)

The standard Legendre polynomials with ℓ = 0,1,2,3,4 defined on [−1,1] are

L0(x) = 1, L1(x) = x ,

L2(x) =
1

2
(3x2− 1), (A.1)

L3(x) =
1

2
(5x3− 3x), (A.2)

L4(x) =
1

8
(35x4− 30x2+ 3). (A.3)

Using the symbolic toolbox of Matlab, we can get the integrals in (2.29) as follows

∫ 1

0

(x − s)−0.2 L0(2s− 1)ds =
5

4
x

4

5 −
5

4
(x − 1)

4

5 , (A.4)

∫ x

0

(x − s)−0.2 L0(2s− 1)ds =
5

4
x

4

5 , (A.5)
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∫ 1

0

(x − s)−0.2 L1(2s− 1)ds = −
5

4
x

4

5 +
25

18
x

9

5 +
5

36
(x − 1)

4

5 −
25

18
(x − 1)

4

5 x , (A.6)

∫ x

0

(x − s)−0.2 L1(2s− 1)ds =−
5

4
x

4

5 +
25

18
x

9

5 , (A.7)

∫ 1

0

(x − s)−0.2 L2(2s− 1)ds =
5

4
x

4

5 −
25

6
x

9

5 +
125

42
x

14

5 −
5

84
(x − 1)

4

5 +
25

14
(x − 1)

4

5 x

−
125

42
(x − 1)

4

5 x2, (A.8)

∫ x

0

(x − s)−0.2 L2(2s− 1)ds =
5

4
x

4

5 −
25

6
x

9

5 +
125

42
x

14

5 , (A.9)

∫ 1

0

(x − s)−0.2 L3(2s− 1)ds = −
5

4
x

4

5 +
25

3
x

9

5 −
625

42
x

14

5 +
3125

399
x

19

5 +
55

1596
(x − 1)

4

5

−
275

133
(x − 1)

4

5 x +
6875

798
(x − 1)

4

5 x2−
3125

399
x3(x − 1)

4

5 , (A.10)

∫ x

0

(x − s)−0.2 L3(2s− 1)ds =−
5

4
x

4

5 +
25

3
x

9

5 −
625

42
x

14

5 +
3125

399
x

19

5 , (A.11)

∫ 1

0

(x − s)−0.2 L4(2s− 1)ds =
5

4
x

4

5 −
125

9
x

9

5 +
625

14
x

14

5 −
3125

57
x

19

5 −
55

2394
(x − 1)

4

5

+
15625

684
x4(x

4

5 − (x − 1)
4

5 ) +
2750

1197
(x − 1)

4

5 x −
6875

399
(x − 1)

4

5 x2+
6250

171
(x − 1)

4

5 x3,

(A.12)
∫ x

0

(x − s)−0.2 L4(2s− 1)ds =
5

4
x

4

5 −
125

9
x

9

5 +
625

14
x

14

5 −
3125

57
x

19

5 +
15625

684
x

19

5 , (A.13)

here we choose α = 1.2.
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