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Abstract. Node importance or centrality evaluation is an important methodology for

network analysis. In this paper, we are interested in the study of objects appearing

in several networks. Such common objects are important in network-network interac-

tions via object-object interactions. The main contribution of this paper is to model

multiple networks where there are some common objects in a multivariate Markov

chain framework, and to develop a method for solving common and non-common ob-

jects’ stationary probability distributions in the networks. The stationary probability

distributions can be used to evaluate the importance of common and non-common ob-

jects via network-network interactions. Our experimental results based on examples

of co-authorship of researchers in different conferences and paper citations in differ-

ent categories have shown that the proposed model can provide useful information for

researcher-researcher interactions in networks of different conferences and for paper-

paper interactions in networks of different categories.
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1. Introduction

Node importance evaluation is an important methodology for network analysis that

can assist in the tasks of ranking query results of search engine, extracting communi-

ties of social networks and studying communities evolutions of dynamic networks. In

the literature, there are many approaches to evaluating node importance or centrality
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[3, 10, 11, 13, 15, 19]. Among them, PageRank [19] and HITS [13] are the most well-

known and have been successfully applied to determine the popularity of different web-

pages. PageRank algorithm considers that webpages are visited randomly in a network

and their limiting probabilities are used to evaluate webpages. Different from PageRank,

HITS defines two evaluation scores for a node, i.e., authoritativeness score and hubness

score, and computes them in a mutually reinforcing way. There are many variants of both

methods for different purposes or different applications, see [6,8,12,14,18,21].

On the other hand, there are many centrality measures that have been developed. Puzis

et al. proposed a method for rapid computation of the group betweenness centrality [20].

Newman proposed a betweenness centrality measure based on random walks, which is

computed through counting how often a node is traversed by a random walk between

two nodes [17]. In [4], Brandes discussed several variants of shortest path betweenness

centrality and studied their computational algorithms. Ercsey-Ravasz and Toroczka [9]

studied the property of betweenness centrality in a large network.

In many scenarios, objects are involved in multiple networks rather than in a single

network. For example, people are involved in multiple communication networks charac-

terized by different communication tools, and researchers are involved in multiple col-

laboration networks characterized by different conferences. Common objects in multiple

networks result in a network-network interactions via object-object interactions. It is more

interesting to analyze object-object interactions over multiple networks and find out useful

information across networks.

The main contribution of this paper is to model multiple networks where there are

some common objects across them, in a multivariate Markov chain framework, and to de-

velop a method for solving common and non-common objects’ stationary probability dis-

tribution in these networks. The stationary probability distribution can be used to evaluate

the importance of common and non-common objects via network-network interactions.

Our model is able to handle both directed networks and undirected networks. Experimen-

tal results based on examples of co-authorship of researchers in different conferences and

paper citations in different categories have shown that the proposed model can provide

useful information for researcher-researcher interactions in networks of different confer-

ences or for paper-paper interactions in networks of different categories. The proposed

method is also very efficient to compute the stationary probability distribution for network

analysis purpose.

In [5], Ching et al. have studied multivariate Markov chain models, and showed under

some assumption that the existence and uniqueness of blockwise stationary probability

vector of a multivariate Markov chain. The main differences between this paper and [5]

are that (i) we relax the assumption to show the existence and uniqueness results, and (ii)

we are interested in analysis of common and non-common objects in multiple networks via

multivariate Markov chain models, where such analysis is not studied in [5].

Recently, Bini et al. [1, 2] and Del Corso et al. [7] study some integrated models for

ranking scientific publications together with authors and journals. Their models rely on

certain adjacency matrices obtained from the relations of citation, authorship and publica-

tion, which combine to form a suitable irreducible stochastic matrix whose Perron vector
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provides the ranking. They design two models. One is to scale the rows to obtain a row-

stochastic matrix. The other one is to partition authors, papers and journals in block,

and scale each block to be row-stochastic matrix. The latter model is similar to multivari-

ate Markov chain models. However, in their papers, they only study multivariate Markov

chains of three-by-three block, while we give a general existence and uniqueness of block-

wise stationary probability vector of a multivariate Markov chain. In addition, their analy-

sis of multivariate Markov chains of three-by-three block is based on the coupling theorem

involving Schur complement in [16], and these results are also different from our results

in Section 2.

The rest of the paper is organized as follows. In Section 2, we present and study the

model and the method. In Section 3, we present the experimental results for multiple au-

thor and paper networks arising from international conferences. Finally, some concluding

remarks are given in Section 4.

2. The Proposed Model

In this paper, we are interested to model multiple networks where there are some

common objects in a multivariate Markov chain framework. Assume that there are m

networks and let Nk denote the k-th network. The number of objects in k-th network is

given by nk. For simplicity, we set n =
∑m

k=1 nk and assume there are c common objects

among m networks,

Let A(k,k) represent the adjacency matrix of Nk, where A
(k,k)

i, j
= 1 if there is a directed

edge from the j-th object to the i-th object in Nk, i.e., the j-th object and the i-th object

have a relationship in Nk, otherwise A
(k,k)

i, j
= 0. If the relationship is also reciprocal, then

there is a directed edge from the i-th object to the j-th object, and therefore A(k,k) is

symmetric. It is clear that A(k,k) is an nk-by-nk matrix.

Let A(k1,k2) represent the adjacency matrix for the objects in Nk2
interacting to the

objects in Nk1
. In this case, A(k1,k2) is an nk1

-by-nk2
matrix. The objects in Nk2

can interact

with the objects in Nk1
via the common objects in the two networks. If the j-th object in

Nk2
and the i-th object in Nk1

are indeed the same, i.e., the common object in the two

networks, we set the j-th column of [A(k1,k2)]., j equal to the i-th column of [A(k1,k1)].,i. In

our setting, A(k1,k2) is not necessarily to be symmetric, and A(k1,k2) is not necessarily the

same as A(k2,k1).

We remark that our motivation is to study the network-network interactions via com-

mon object interactions. Instead of formulating a combined single network via common

objects, we keep the structure of each network and model the influence of networks with

the others so that we can understand the importance and behavior of common and non-

common objects in each network.
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2.1. Multivariate Markov Chains

In order to evaluate the importance of common objects and non-common objects in

multiple networks, we would like to compute their stationary probabilities based on a

multivariate Markov chain framework. The stationary probability of an object in a network

can be interpreted as the expectation of the number of random interactions required to get

from the object back to itself. It is interesting to note that the random interactions include

both object-object interactions within a network and across networks via common objects.

From A(k1,k2), one can compute the transition probability [P(k1,k2)]i, j that the j-th object

in Nk2
will interact with the i-th object in Nk1

given that currently the j-th object Nk2
is

considered. Clearly, one has

[P(k1,k2)]i, j =
[A(k1,k2)]i, j

nk1
∑

l=1

[A(k1,k2)]l , j

, i = 1,2, · · · , nk1
,

if [A(k1,k2)]·, j is a non-zero vector. We note in our setting that there are some columns

[A(k1,k2)]·, j that can be zero as the j-th object in Nk2
is not a common object with Nk1

.

In this case, we consider the j-th object in Nk2
interacts with objects in Nk1

with equal

chance, i.e., we set

[P(k1,k2)]i, j =
1

nk1

, i = 1,2, · · · , nk1
.

The whole matrix [P(k1,k2)] is called the one-step transition probability matrix from

Nk2
to Nk1

because

[P(k1,k2)]i, j ≥ 0,

nk1
∑

i=1

[P(k1,k2)]i, j = 1, j = 1,2, · · · , nk2
.

Let x
(k)
t and x

(k)
t+1 (k = 1,2, · · · , m) be the probability distributions of objects being consid-

ered in the k-th network at time t and t + 1 respectively. In the multivariate Markov chain

model, we assume the following relationship:

x
(k1)

t+1 =

m
∑

k2=1

λk1,k2
P(k1,k2)x

(k2)
t , k1 = 1,2, · · · , m,

where the parameter λk1,k2
satisfies the following properties:

λk1,k2
≥ 0, 1≤ k1, k2 ≤ m, (2.1)

and
m
∑

k2=1

λk1,k2
= 1, k1 = 1,2, · · · , m. (2.2)
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Here the parameters λk1,k2
is the influence of the k2-th network to the k1-th network.

In [5], it is required to set

λk1,k2
> 0, 1≤ k1, k2 ≤ m,

in order to obtain stationary probability distribution of a multivariate Markov chain. In

other words, the proposed model is less restricted.

The object probability distribution of the k1-th network at time (t + 1) depends on

the weighted average of P(k1,k2)x
(k2)
t . We note that the parameters λk1,k2

are the weights

referring the influence of the k2-th network to the k1-th network. In matrix form we can

write

xt+1 ≡















x
(1)
t+1

x
(2)
t+1
...

x
(m)
t+1















=













λ1,1P(1,1) λ1,2P(1,2) · · · λ1,mP(1,m)

λ2,1P(2,1) λ2,2P(2,2) · · · λ2,mP(2,m)

...
...

...
...

λ1,1P(m,1) λm,2P(m,2) · · · λm,mP(m,m)



























x
(1)
t

x
(2)
t
...

x
(m)
t















≡ Pxt .

The requirement in (2.2) makes sure that when x
(i)
t is a probability vector with its sum

being equal to 1, then x
(i)
t+1

has the same property. Although the column sum of P is not

equal to one (the column sum of P(k1,k2) is equal to one), we still have the following results.

Lemma 2.1. Let λk,kP(k,k) be irreducible, k = 1,2, · · · , m. Then P is irreducible if and only

if the matrix Λ = [λk1,k2
]

k1,k2=m

k1,k2=1
is irreducible.

Proof. Let us define c1 = 0 and ck =
∑k−1

u=1 nu for k = 2,3, · · · , m, and k̄ = {ck + 1, ck +

2, · · · , ck + nk} for k = 1,2, · · · , m. For i and j in between 1 and n, if i and j are in k̄ for

some k, there is a path connecting i and j as λk,kP(k,k) is irreducible.

Now, let us consider i ∈ k̄ and j ∈ r̄ where k 6= r. Since Λ is irreducible, there is a

path connecting k and r, i.e., λk,v1
, λv1,v2

, · · · , λvt ,r
are not equal to zero. It is noted that

since P(.,.) is a transition probability matrix, i.e., P(k,v1) 6= 0, · · · , P(vt ,r) 6= 0, and λ j, j P
( j, j)

for j = 1, · · · , m are irreducible, we can deduce that there is a path connecting i and j.

Conversely, if Λ is reducible, then there exist two subsets S1 and S2 such that S1∪ S2 =

{1,2, · · · , m}, S1 ∩ S2 = φ, and λi, j = 0 for any i ∈ S1 and j ∈ S2. We set k̄1 = ∪i∈S1
ī and

k̄2 = ∪ j∈S2
j̄. Then there is no path connecting from i ∈ k̄1 to j ∈ k̄2 which contradicts the

assumption. The result follows. �

Remark: The result of the above lemma is less restricted than that given in [5] where

all λk1,k2
must be positive. The above lemma does not hold without the assumption that

the irreducibility of λ j, j P
( j, j) for j = 1, · · · , m. For example, we consider λ1,1 and λ2,2 are

equal to 0, λ2,1P(2,1) and λ1,2P(1,2) are the 2-by-2 identity matrix, and P(11) and P(22) are

irreducible matrices. Then we have

P =











0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0











.
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Clearly, P is reducible.

Lemma 2.2. If Λ is irreducible, then the matrix P has an eigenvalue equal to one.

Proof. It is easy to see that 1 is a maximal eigenvalue in modulus of Λ. Then by Perron-

Frobenius Theorem, there exists a vector y = (y1, y2, · · · , ym)
T such that yTΛ = yT where

·T denotes the transpose operation. We note that eT P(i, j) = eT for 1 ≤ i, j ≤ m where e is

the vector of all ones. Then it is easy to show that

(y1eT , y2eT , · · · , ymeT )P = (y1eT , y2eT , · · · , ymeT ),

and hence 1 is an eigenvalue of P. �

Lemma 2.3. Let λk,kP(k,k) be irreducible, k = 1, · · · , m, and Λ = [λk1,k2
]

k1,k2=m

k1,k2=1
be irre-

ducible. Then 1 is the maximal eigenvalue of P in magnitude, and P is convergent if and only

if P is primitive†, in this case,

lim
t→∞
(P)t = uvT ,

where u and v are positive n-by-1 vectors.

Proof. By the proof of Lemma 2, P has a positive eigenvector corresponding to the

eigenvalue 1, i.e., yT P = yT . Now we show that 1 is the spectral radius of P. Let µ be the

maximal eigenvalue of P in magnitude. By Lemma 1, P is irreducible. Hence by Perron-

Frobenius theorem µ is positive and there is a positive eigenvector x corresponding to µ,

i.e., Px = µx. This implies that

1 · yT x = yT Px= yTµx.

Because yT x is a scalar and it must be positive, we obtain µ = 1.

Now we know that P is primitive if and only if there is nonsingular matrix S such that

P = S

�

1 0

0 P ′

�

S−1,

where the spectral radius of P ′ is less than 1. It follows that the first column u of S and

the first row vT of S−1 are the eigenvectors corresponding to the eigenvalue 1. They can

be chosen to be positive vectors. Hence we have

lim
t→∞

P t = S

�

1 0

0 0

�

S−1 = uvT .

The result follows. �

†Let A be a nonnegative and irreducible matrix with maximal eigenvalue r. If there is only one eigenvalue of

modulus r, then A is said to be primitive.
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Remark: In the above lemma, we cannot omit the primitivity of P. For example, we

consider

P =
1

2











0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0











,

where λ1,1 = λ2,2 = λ1,2 = λ2,1 = 1/2, and

P(2,1) = P(1,2) = P(1,1) = P(2,2) =

�

0 1

1 0

�

are irreducible. However, P is not convergent since 1 and −1 are eigenvalues of P. We

should emphasize that this requirement is not discussed in [5].

Lemma 2.4. Let λk,kP(k,k) be irreducible, k = 1, · · · , m, and Λ = [λk1,k2
]

k1,k2=m

k1,k2=1
be irre-

ducible. If there is an index j such that P( j, j) is primitive, then P is convergent.

Proof. By the assumption that P( j, j) is primitive, it is equivalent to the fact that the

greatest common factor of the length of any closed path in the directed graph associated

with P( j, j) is equal to 1. Clearly, the directed graph associated with P( j, j) is a subgraph

of the directed graph associated with P, and therefore the greatest common factor of the

length of any closed path in the directed graph associated with P must also be equal to 1.

Hence P is also primitive. According to the previous lemma, we know that P is convergent.

�

Theorem 2.1. Let λk,kP(k,k) be irreducible, k = 1,2, · · · , m, and Λ = [λk1,k2
]

k1,k2=m

k1,k2=1
be

irreducible. If there is an index j such that P( j, j) is primitive, then

lim
t→∞
(P)t = uvT ,

where u and v are positive n-by-1 vectors where n=
∑m

i=1 ni.

For any given initial vector x0 with nonnegative entries, we have

lim
t→∞

xt = lim
t→∞

P tx0 = uvT x0.

This implies that xt tends a stationary nonnegative vector x as t goes to infinity. We also

note that if x0 has the following property

nk
∑

i=1

[x
(k)
0
]i = 1, 1≤ k ≤ m,

then xt and x have the same property.
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Corollary 2.1. Under the assumptions of Theorem 1, there is a unique vector x = [x(1),

· · · ,x(m)]T such that x= Px and

nk
∑

i=1

[x(k)]i = 1, 1≤ k ≤ m.

Algorithm 2.1 Power Method

Require: an n× n matrix P

Ensure: the principal eigenvector x of P

1. x0 = [
1

n1
e, 1

n2
e, · · · , 1

nm
e]T ;

2. t = 1;

3. while until convergence do

4. xt = Pxt−1;

5. t = t + 1;

6. end while

Remark: In the model, we need not to assume that all P(i, j) are irreducible and all λi, j

are positive as required in [5].

2.2. The Algorithm

According to the results in the previous subsection, we can employ the power method

algorithm for computing principal eigenvector of P. Under the assumptions, we can make

sure the algorithm is convergent for any given initial nonnegative vector.

As an example, we construct a synthetic two-network to demonstrate the calculation.

We would like to show that the network-network interaction via common objects can bring

interesting results for both common objects and non-common objects interaction. Two

networks are generated and there are 13 objects all together, and they are shown in Fig.

1. We see that objects 1, 2, 3, 4, 5, 6, 12 and 13 appear in network 1 and objects 1, 2, 3,

6, 7, 8, 9, 10 and 11 appear in network 2. The common objects in both networks are 1, 2,

3 and 6. The others are non-common objects.
In this example, the adjacency matrices are given as follows:

A(1,1) =

























0 0 0 1 1 0 1 0

1 0 1 0 1 1 0 0

0 1 0 0 1 0 0 1

1 0 1 0 1 0 0 0

1 1 1 1 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

























, A(2,2) =





























0 1 0 0 0 0 0 0 1

1 0 1 1 0 0 0 0 1

0 1 0 0 0 0 0 0 1

0 1 0 0 1 1 1 1 0

0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 1 0

0 0 0 1 1 0 1 0 0

1 1 1 0 0 0 0 0 0





























,
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A(1,2) =

























0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

























, A(2,1) =





























0 1 0 0 0 0 0 0

1 0 1 0 0 1 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0





























.

Their transition probability matrices are given as follows:

P(1,1) =

























0 0 0 1/2 1/4 0 1 0

1/4 0 1/4 0 1/4 1 0 0

0 1/3 0 0 1/4 0 0 1

1/4 0 1/4 0 1/4 0 0 0

1/4 1/3 1/4 1/2 0 0 0 0

0 1/3 0 0 0 0 0 0

1/4 0 0 0 0 0 0 0

0 0 1/4 0 0 0 0 0

























,

P(2,2) =





























0 1/4 0 0 0 0 0 0 1/3

1/2 0 1/2 1/5 0 0 0 0 1/3

0 1/4 0 0 0 0 0 0 1/3

0 1/4 0 0 1/2 1/2 1/3 1/3 0

0 0 0 1/5 0 0 0 1/3 0

0 0 0 1/5 0 0 1/3 0 0

0 0 0 1/5 0 1/2 0 1/3 0

0 0 0 1/5 1/2 0 1/3 0 0

1/2 1/4 1/2 0 0 0 0 0 0





























,

P(1,2) =

























0 0 0 0 1/8 1/8 1/8 1/8 1/8
1/4 0 1/4 1 1/8 1/8 1/8 1/8 1/8

0 1/3 0 0 1/8 1/8 1/8 1/8 1/8

1/4 0 1/4 0 1/8 1/8 1/8 1/8 1/8

1/4 1/3 1/4 0 1/8 1/8 1/8 1/8 1/8

0 1/3 0 0 1/8 1/8 1/8 1/8 1/8

1/4 0 0 0 1/8 1/8 1/8 1/8 1/8

0 0 1/4 0 1/8 1/8 1/8 1/8 1/8

























,

P(2,1) =





























0 1/4 0 1/9 1/9 0 1/9 1/9

1/2 0 1/2 1/9 1/9 1/5 1/9 1/9

0 1/4 0 1/9 1/9 0 1/9 1/9

0 1/4 0 1/9 1/9 0 1/9 1/9

0 0 0 1/9 1/9 1/5 1/9 1/9

0 0 0 1/9 1/9 1/5 1/9 1/9
0 0 0 1/9 1/9 1/5 1/9 1/9

0 0 0 1/9 1/9 1/5 1/9 1/9

1/2 1/4 1/2 1/9 1/9 0 1/9 1/9





























.

We note that both P(1,1) and P(2,2) are irreducible and primitive. In this example, we set

λ1,1 = λ1,2 = λ2,1 = λ2,2 = 1/2. According to our results, the power method converges

and gives stationary probability distributions of two networks.

Table 1 shows the stationary probabilities obtained by the proposed algorithm and the

PageRank algorithm. When we use the PageRank algorithm for individual network, the

objects 5 and 6 have the highest stationary probabilities in the first and second networks

respectively. We note that the object 5 is not a common object, and the object 6 is a

common object which is not important in the first network. According to the PageRank
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(a) (b)Figure 1: An example of a syntheti
 two-network. (a) network 1; (b) network 2.Table 1: The stationary probabilities 
al
ulated by multivariate Markov model and 
al
ulated by PageR-ank for individual networks.
Method PageRank Multivariate Markov model

network 1 network 2 network 1 network 2

Object 1 0.1579 0.0769 0.1075 0.1085

Object 2 0.1974 0.1539 0.2256 0.1978

Object 3 0.1579 0.0769 0.1530 0.1085

Object 4 0.1319 - 0.1115 -

Object 5 0.2105 - 0.1866 -

Object 6 0.0658 0.1923 0.0991 0.1291

Object 7 - 0.0769 - 0.0579

Object 8 - 0.0769 - 0.0579

Object 9 - 0.1154 - 0.0724

Object 10 - 0.1154 - 0.0724

Object 11 - 0.1154 - 0.1954

Object 12 0.0395 - 0.0555 -

Object 13 0.0395 - 0.0612 -

results, we cannot determine important common objects in both networks. However, when

the multivariate Markov model is used, the common object 2 has the highest stationary

probabilities in both networks. This result shows that the object 2 plays a very important

role in the connection between two networks.

On the other hand, the non-common object 11 is the second important (the probability

is 0.1954) in the network 2, while it is the third important object (the probability is 0.1154)

when individual network is considered. This observation may be explained by the fact that

the non-common object 11 is interacted with important common objects 1, 2 and 3 in

network 2.

In the next section, we present two real data examples to demonstrate the usefulness

of the proposed model in identification of important common objects.
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3. Experimental Results

The first experiment is based on multiple collaboration networks in conferences, and

the second experiment is based on multiple paper citation networks. We collected the data

for several years of different data mining conferences from DBLP‡. Given the data, we

construct multiple collaboration networks or multiple paper citation networks as follows:

• For collaboration networks, choose m conferences and construct a network for each

conference by treating researchers who have publications in the conference as nodes

and adding a bi-directed edge between two nodes if the corresponding researchers

collaborate in the conference. In this case, we construct m networks in terms of

the co-authorship of researchers in m conferences for experiment 1. The researchers

appearing commonly in the m conferences are common objects.

• For paper citation networks, choose m categories and construct a network for each

category by treating papers that belong to the category as nodes and adding a di-

rected edge between two nodes if the corresponding paper cites another. In this

case, we construct m networks in terms of the citation of papers belonging to m cat-

egories for experiment 2. The papers appearing commonly in the m categories are

common objects.

According to lemmas in Section 2.1, we need to make sure λk,kP(k,k) (k = 1,2, · · · , m)

and Λ =
�

λk1,k2

�k1,k2=m

k1,k2=1
be irreducible. Therefore we preprocess P(k,k) (k = 1,2, · · · , m)

by applying the method used in PageRank:

P(k,k) = (1− d)P(k,k)+
d

nk

Sk,

where Sk represents the nk-by-nk matrix of all ones, and we set d to be 0.1 in both experi-

ments. For the parameters Λ =
�

λk1,k2

�k1,k2=m

k1,k2=1
in our model, we address how to estimate

them in the next subsection.

3.1. Estimations of Parameters

In our model, we assume that multiple networks interact with each other via the com-

mon objects, therefore we can estimate parameters Λ =
�

λk1,k2

�k1,k2=m

k1,k2=1
by considering

the influence from common objects among the networks. For collaboration networks, let

C=
�

ck1,k2

�k1,k2=m

k1,k2=1
be a matrix that represents the number of common objects between

the two networks, i.e., ck1,k2
denotes the number of common objects between the k1-th

network and the k2-th network. For paper citation networks, let C=
�

ck1,k2

�k1,k2=m

k1,k2=1
be a

matrix that represents the number of citations from one network to anther via common

‡http://www.informatik.uni-trier.de/∼ley/db/
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objects, i.e., ck1,k2
denotes the number of citations from the k2-th network to the k1-th net-

work via common objects between them. Given the matrix C , we compute the matrix Λ as

the following formula:

λk1,k2
=

ck1,k2

m
∑

l=1

ck1,l

, 0≤ k1, k2 ≤ m.

Since we have the data for several years collected from DBLP, we can estimate how

frequently an object is associated to a network. Based on this estimation, we can check

whether the estimated parameters Λ is acceptable and reasonable. The idea is given as

follows. For each network k, we estimate the stationary vector probability qk:

�

qk

�

j =
fk, j

nk
∑

l=1

fk,l

,

where fk, j represents the number of papers that j-th researcher has published in k-th con-

ference for collaboration networks. Similarly, fk, j represents the times that j-th paper has

been cited by other papers belonging to k-th category for paper citation networks. Given

these m stationary probability vectors, we can check the following m approximation errors



















m
∑

k2=1

λk1,k2
P(k1,k2)qk2

− qk1



















. (3.1)

where k1 = 1,2, · · · , m, to be small enough. In our experiments, we consider both l∞-

norm and l2-norm in the evaluation because the former one shows the worst case of the

approximation error and the latter one shows the averaged case of the approximation error.

3.2. Experiment 1

In this experiment, we construct a collaboration network by considering the KDD con-

ference and the ICDM conference from 1994 to 2009 and from 2001 to 2009 respectively.

There are 1372 researchers in the KDD network and 745 researchers in the ICDM network.

There are 240 common researchers that appear in both networks. The matrix C and the

estimated parameters Λ are as follows:

C =

�

1372 240

240 745

�

, Λest =

�

0.8511 0.1489

0.2437 0.7563

�

.

By using Λest , we compute the approximation errors as in (3.1). For the KDD network,

we have


















2
∑

k2=1

λ1,k2
P(1,k2)qk2

− q1



















∞

= 0.0038,



















2
∑

k2=1

λ1,k2
P(1,k2)qk2

− q1



















2

= 0.0139.
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(b)Figure 2: The approximation stationary probability ve
tor and the estimated stationary probability ve
torfor ea
h network. (a) KDD network in experiment 1; (b) ICDM network in experiment 1.
Fig. 2(a) shows the approximation stationary probability vector and the estimated station-

ary probability vector for this network. For the ICDM network, we have


















2
∑

k2=1

λ2,k2
P(2,k2)qk2

− q2



















∞

= 0.0063,
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k2=1

λ2,k2
P(2,k2)qk2

− q2



















2

= 0.0207.

Fig. 2(b) shows the approximation stationary probability vector and the estimated station-

ary probability vector for this network. Based on the figures and the computing results, we

find that the approximation errors are small for both networks, which indicates that the

estimated Λ is acceptable and reasonable.

Tables 2 and 3 show the top common and non-common researchers in KDD and ICDM

networks when PageRank and the proposed Multivariate Markov chain model are used.

According to Tables 2 and 3, we find the following interesting results.

(i) The top ten lists of common researchers by the two methods are about the same

in the two networks. Christos Faloutsos cannot be identified in the ICDM network

by the PageRank, but can be identified (rank number one) in the KDD network.

It is clear that he is an important common researcher in both the KDD and ICDM

networks. Indeed, the number of his collaborations with all the researchers and the

top ten common researchers are 17 and 13 respectively in the ICDM network which

are better than the number of collaborations (15 and 8) of Ruoming Jin ranked the

number eight by the PageRank. These results show that the use of PageRank may

not be effective, but the new model can consider the importance of a researcher in

both collaborations with all the researchers and the common researchers together to
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ommon and non-
ommon resear
hers in KDD network by PageRank andmultivariate Markov 
hain.
Common Researchers Non-Common Researchers

Ranking PageRank Multivariate Markov PageRank Multivariate Markov

1 Christos Faloutsos Jiawei Han Padhraic Smyth Martin Ester

2 Jiawei Han Philip S. Yu Martin Ester Padhraic Smyth

3 Philip S. Yu Christos Faloutsos Rakesh Agrawal Rakesh Agrawal

4 Heikki Mannila Jian Pei Ravi Kumar Ravi Kumar

5 Jian Pei Eamonn J. Keogh Johannes Gehrke Rong Jin

6 Ke Wang Ke Wang David Jensen Foster J. Provost

7 Bing Liu Heikki Mannila Usama M. Fayyad Wynne Hsu

8 Eamonn J. Keogh Bing Liu Ron Kohavi David Jensen

9 Vipin Kumar Srinivasan Parthasarathy Foster J. Provost Deepak Agarwal

10 Mohammed Javeed Zaki Vipin Kumar Gregory Piatetsky-Shapiro Bishan YangTable 3: The top ten lists of 
ommon and non-
ommon resear
hers in ICDM network by PageRankand multivariate Markov 
hain.
Common Researchers Non-Common Researchers

Ranking PageRank Multivariate Markov PageRank Multivariate Markov

1 Philip S. Yu Philip S. Yu Xinsong Wu Xindong Wu

2 Jiawei Han Jiawei Han Peng Zhang Fei Wang

3 Haixun Wang Haixun Wang Fei Wang Ben Kao

4 Eamonn J. Keogh Eamonn J. Keogh Jun Yan Peng Zhang

5 Zheng Chen Christos Faloutsos Benyu Zhang Sau Dan Lee

6 Wei Fan Ruoming Jin Yiyu Yao Jing Peng

7 Hans-Peter Kriegel Hans-Peter Kriegel Ben Kao Benyu Zhang

8 Ruoming Jin Wei Fan Ning Zhong Jun Yan

9 Qiang Yang Wei Wang Jing Peng Dongqing Yang

10 Wei Wang Srinivasan Parthasarathy Sau Dan Lee Yiyu Yao

generate ranking results. Christos Faloutsos is ranked number three and five in the

KDD and ICDM networks.

(ii) The lists of top non-common researchers by the two methods are quite different. In

the KDD networks, there are four different researchers. In the ICDM networks, there

are also one different researcher. As we study two collaboration networks, we are

interested in the researchers collaborating with each other via common objects. The

multivariate Markov chain model provides most frequent non-common researchers

collaborating with common researchers in the two networks. The number of collab-

orations are 32 and 23 in the KDD and ICDM networks respectively. Their relations

like supervisor-student and colleagues can be further identified via these results by

the proposed model. However, the collaborations between common researchers and

non-common researchers are weak in the results by the PageRank. The number of

collaborations are only 17 and 19 in the KDD and ICDM networks respectively.

3.3. Experiment 2

In this experiment, we construct two citation networks by considering papers that be-

long to the category of “Information Search and Retrieval" and papers that belong to the

category of “Computing Methodologies" respectively. The papers and their categories infor-
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(b)Figure 3: The approximation stationary probability ve
tor and the estimated stationary probability ve
torfor ea
h network. (a) information sear
h and retrieval network; (b) 
omputing methodology network.
mation are all obtained from the KDD and CIKM in DBLP§. There are 317 papers belonging

to the category of “Information Search and Retrieval" and 320 papers belonging to the cat-

egory of “Computing Methodologies" for our consideration. There are 56 common papers

that appear in both networks. The matrix C and the estimated parameters Λ are given as

follows:

C =

�

453 69

69 411

�

, Λest =

�

0.8678 0.1322

0.1437 0.8562

�

.

By using Λest , we compute the approximation errors as in Equation 3.1. For information

search and retrieval network, we have
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Fig. 3(a) shows the approximation stationary probability vector and the estimated station-

ary probability vector for this network. For computing methodology network, we have



















2
∑

k2=1

λ2,k2
P(2,k2)qk2

− q2



















∞

= 0.0345,



















2
∑

k2=1

λ2,k2
P(2,k2)qk2

− q2



















2

= 0.0748.

§We collect the papers from both conferences in which reference lists are provided in DBLP. More precisely,

we collect papers from 1999 to 2010 for KDD and we collect papers in 2000 and also from 2002 to 2009 for

CIKM.
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ommon and non-
ommon papers in information sear
h and retrievalnetwork by PageRank and Multivariate Markov 
hain.
Ranking PageRank (Common Papers)

1 Agglomerative clustering of a search engine query log

2 Fast and effective text mining using linear-time document clustering

3 On the merits of building categorization systems by supervised clustering

4 Optimizing search engines using clickthrough data

5 Combining link-based and content-based methods for web document classification

6 Taxonomy-driven computation of product recommendations

7 Kernel k-means: spectral clustering and normalized cuts

8 Using appraisal groups for sentiment analysis

9 Determining the semantic orientation of terms through gloss classification

10 Enhanced word clustering for hierarchical text classification

Ranking Multivariate Markov (Common Papers)

1 Agglomerative clustering of a search engine query log

2 Fast and effective text mining using linear-time document clustering

3 Optimizing search engines using clickthrough data

4 On the merits of building categorization systems by supervised clustering

5 Combining link-based and content-based methods for web document classification

6 Taxonomy-driven computation of product recommendations

7 Kernel k-means: spectral clustering and normalized cuts

8 Information-theoretic co-clustering

9 Determining the semantic orientation of terms through gloss classification

10 Using appraisal groups for sentiment analysis

Ranking PageRank (Non-Common Papers)

1 Co-clustering documents and words using bipartite spectral graph partitioning

2 Simple BM25 extension to multiple weighted fields

3 A cross-collection mixture model for comparative text mining

4 Query association for effective retrieval

5 SimRank: a measure of structural-context similarity

6 Query expansion using random walk models

7 First story detection in TDT is hard

8 Efficient identification of Web communities

9 A local search mechanism for peer-to-peer networks

10 Document quality models for web ad hoc retrieval

Ranking Multivariate Markov (Non-Common Papers)

1 Co-clustering documents and words using bipartite spectral graph partitioning

2 Simple BM25 extension to multiple weighted fields

3 A cross-collection mixture model for comparative text mining

4 SimRank: a measure of structural-context similarity

5 Query expansion using random walk models

6 Query association for effective retrieval

7 First story detection in TDT is hard

8 Efficient identification of Web communities

9 A local search mechanism for peer-to-peer networks

10 Document quality models for web ad hoc retrieval

Fig. 3(b) shows the approximation stationary probability vector and the estimated sta-

tionary probability vector for this network. Even though the approximation error in in-

formation search and retrieval network is large (compared with the errors in the last two

experiments), we suggest the estimated Λ can be acceptable because the approximation

stationary probability vector and the estimated stationary probability vector have quite

similar patterns, see Fig. 3(a).
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ommon and non-
ommon papers in 
omputing methodology network byPageRank and multivariate Markov 
hain.
Ranking PageRank (Common Papers)

1 Information-theoretic co-clustering

2 Agglomerative clustering of a search engine query log

3 Fast and effective text mining using linear-time document clustering

4 Generative model-based clustering of directional data

5 Visualization of navigation patterns on a web site using model-based clustering

6 On the merits of building categorization systems by supervised clustering

7 Combining link-based and content-based methods for web document classification

8 Enhanced word clustering for hierarchical text classification

9 Using appraisal groups for sentiment analysis

10 Kernel k-means: spectral clustering and normalized cuts

Ranking Multivariate Markov (Common Papers)

1 Agglomerative clustering of a search engine query log

2 Information-theoretic co-clustering

3 Fast and effective text mining using linear-time document clustering

4 Visualization of navigation patterns on a web site using model-based clustering

5 Generative model-based clustering of directional data

6 Combining link-based and content-based methods for web document classification

7 On the merits of building categorization systems by supervised clustering

8 Optimizing search engines using clickthrough data

9 Using appraisal groups for sentiment analysis

10 Enhanced word clustering for hierarchical text classification

Ranking PageRank (Non-Common Papers)

1 Efficient progressive sampling

2 MetaCost: A general method for making classifiers cost-sensitive

3 Mining the most interesting rules

4 Efficient clustering of high-dimensional data sets with application to reference matching

5 Mining and summarizing customer reviews

6 Statistics and data mining techniques for lifetime value modeling

7 Data selection for support vector machine classifiers

8 Modeling and predicting personal information dissemination behavior

9 Using association rules for product assortment decisions: a case study

10 A classifier for semi-structured documents

Ranking Multivariate Markov (Non-Common Papers)

1 MetaCost: a general method for making classifiers cost-sensitive

2 Mining the most interesting rules

3 Efficient progressive sampling

4 Mining and summarizing customer reviews

5 Efficient clustering of high-dimensional data sets with application to reference matching

6 Statistics and data mining techniques for lifetime value modeling

7 Data selection for support vector machine classifiers

8 Modeling and predicting personal information dissemination behavior

9 Using association rules for product assortment decisions: a case study

10 Incorporating prior knowledge with weighted margin support vector machines

Tables 4 and 5 show the top common and non-common papers in information search

and retrieval network and computing methodology network when PageRank and the pro-

posed Multivariate Markov chain model are used. According to Table 4, we find the fol-

lowing interesting results.

(i) In both networks, there are more citations by the common papers to the top ten com-

mon papers identified by the multivariate Markov chain than those by the PageRank,
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i.e., 33 against 27 in information search and retrieval network and 30 against 24

in computing methodology network. In the computing methodology network, there

are also more citations by all the papers to the top ten common papers identified by

the multivariate Markov chain than those by the PageRank (56 against 48).

(ii) One important common paper “Information-theoretic co-clustering” cannot be iden-

tified by the PageRank in information search and retrieval network, but can be iden-

tified by the PageRank in computing methodology network (ranked number one).

These results again show that the PageRank cannot capture the connection of com-

mon objects between two networks. As this common paper has high citations, the

multivariate Markov chain can rank it number eight in the top ten list of informa-

tion search and retrieval network and number two in the top ten list of computing

methodology network.

4. Concluding Remarks

In this paper, we have proposed to study common and non-common objects appearing

in multiple networks. Usually, common objects are important in network-network interac-

tions via object-object interactions, and they play a key connection point for other objects

in multiple networks. We have developed a multivariate Markov chain model for analyzing

multiple networks. New theoretical results of the multivariate Markov chain model are de-

rived. Different from [5], our model is to analyze the importance of common objects and

non-common objects in multiple networks. The other contribution of this paper is to give

a less restricted model than that in [5] where each block in the whole transition matrix is

required to be irreducible.

We have performed some experiments based on examples of co-authorship of researchers

in different conferences and paper citations in different categories. The experimental re-

sults have shown that the proposed model can provide useful information for researcher-

researcher interactions in networks of different conferences or for paper-paper interactions

in networks of different categories.
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