
Numer. Math. Theor. Meth. Appl. Vol. 5, No. 3, pp. 447-492
doi: 10.4208/nmtma.2012.m1035 August 2012

ML(n)BiCGStab: Reformulation, Analysis and

Implementation⋆

Man-Chung Yeung∗

Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA.

Received 21 May 2011; Accepted (in revised version) 1 September 2011

Available online 3 July 2012

Abstract. With the aid of index functions, we re-derive the ML(n)BiCGStab algorithm
in [Yeung and Chan, SIAM J. Sci. Comput., 21 (1999), pp. 1263-1290] systematically.
There are n ways to define the ML(n)BiCGStab residual vector. Each definition leads
to a different ML(n)BiCGStab algorithm. We demonstrate this by presenting a second
algorithm which requires less storage. In theory, this second algorithm serves as a
bridge that connects the Lanczos-based BiCGStab and the Arnoldi-based FOM while
ML(n)BiCG is a bridge connecting BiCG and FOM. We also analyze the breakdown
situation from the probabilistic point of view and summarize some useful properties of
ML(n)BiCGStab. Implementation issues are also addressed.

AMS subject classifications: 65F10, 65F15, 65F25, 65F30

Key words: CGS, BiCGStab, ML(n)BiCGStab, multiple starting Lanczos, Krylov subspace, iterative
methods, linear systems.

1. Introduction

Consider the solution of the linear system

Ax = b, (1.1)

where A ∈ CN×N and b ∈ CN . If we express the BiCG [4, 15] residual as rBiCG
k

= pk(A)r0

in terms of a polynomial pk(λ) of degree k and the initial residual r0, the residual vector
rk of a Lanczos-type product method† based on BiCG is defined to be rk = φk(A)pk(A)r0,
where φk(λ) is some polynomial of degree k with φk(0) = 1. In CGS [28], φk = pk. Since,
in every iteration, CGS searches for an approximate solution in a larger Krylov subspace, it

⋆Dedicated to the Memory of Prof. Gene Golub. This paper was presented in Gene Golub Memorial Con-
ference, Feb. 29-Mar. 1, 2008, at University of Massachusetts. This research was supported by 2008 Flittie
Sabbatical Augmentation Award, University of Wyoming.
∗Corresponding author. Email address: myeung�uwyo.edu (M.-C. Yeung)
†For this type of Krylov subspace methods, one can consult [9]. They are called hybrid BiCG methods in [27].

http://www.global-sci.org/nmtma 447 c©2012 Global-Science Press

448 Man-Chung Yeung

often converges much faster than BiCG. However, CGS usually behaves irregularly due to
a lack of a smoothing mechanism. In BiCGStab [31], the φk is

φk(λ) =

¨
1 if k = 0,
(1−ωkλ)φk−1(λ) if k > 0.

(1.2)

Here ωk is a free parameter selected to minimize the 2-norm of rBiCGStab
k

in the kth iter-
ation. As a result, BiCGStab is generally more stable and robust than CGS. BiCGStab has
been extended to BiCGStab2 [7] and BiCGStab(l) [23,27] through the use of minimizing
polynomials of higher degree. In BiCGStab2, the φk is defined by the recursion

φk(λ) =





1 if k = 0,
(1−ωkλ)φk−1(λ) if k is odd,
((αkλ+ βk)(1−ωk−1λ) + 1− βk)φk−2(λ) if k is even.

The parameters are again chosen to minimize BiCGStab2 residuals. Likewise, BiCGStab(l)
defines its φk as

φk(λ) =

¨
1 if k = 0,

(1+
∑l

j=1α jλ
j)φk−l(λ) if k is a multiple of l,

where the parameters in the factor 1+
∑l

j=1 α jλ
j yields an l-dimensional minimization in

every lth step. BiCGStab2 and BiCGStab(l) usually converge faster than BiCGStab because
of smaller residuals in magnitude while avoiding near-breakdowns caused by a possibly
too small ωk. CGS, BiCGStab and BiCGStab2 have been summarized and generalized by
GPBi-CG [40] where φk is

φk(λ) =





1 if k = 0,
1−ω1λ if k = 1,
(1+ βk−ωkλ)φk−1(λ)− βkφk−2(λ) if k > 1.

GPBi-CG will become CGS, BiCGStab or BiCGStab2 when the α,β ,ω are appropriately
chosen. For detailed descriptions of these and other product-type methods, one is referred
to [6,8,20,22,32] and the references therein. Moreover, a history of product-type methods
can be found in [10]. The history starts three decades ago with IDR [36] method which
can be considered as the predecessor of CGS and BiCGStab [24]. Recently, IDR has been
generalized to IDR(s) with a shadow space of higher dimension, see [24, 30, 34]. IDR(s)
has close relations with ML(s)BiCGStab.

Generalizations of BiCGStab to methods based on the generalizations of BiCG have
been made. For example, BL-BiCGStab [3] is a BiCGStab variant built on the BL-BiCG [16]
for the solution of systems with multiple right-hand sides. ML(n)BiCGStab [39] is another
BiCGStab variant built on ML(n)BiCG, a BiCG-like method derived from a variant of the
band Lanczos process described in [1]with n left-starting vectors and a single right-starting
vector.

ML(n)BiCGStab: Reformulation, Analysis and Implementation 449

The derivation of the ML(n)BiCGStab algorithm in [39] was complicated. In this paper,
we exploit the concept of index functions to re-derive the algorithm in a more systematic
way, step by step. Index functions were introduced in [38] by Boley for the purpose of
simplifying the development of the transpose-free multiple starting Lanczos process or the
Sonneveld-van der Vorst-Lanczos process (SVLP)‡, and they proved to be very helpful.

Motivated from the study of SVLP in [38], we recognized that the definition of the
ML(n)BiCGStab residual rk in [39] is not unique. There are n different ways to define
rk. Let brk be the residual of ML(n)BiCG and φk(λ) as in (1.2). Then, the ML(n)BiCGStab
residual rk in [39] is

rk = φ j+1(A)brk, (1.3)

where k = jn + i, 1 ≤ i ≤ n, j = 0,1,2, · · · . Starting from k = 1, let us call every n

consecutive k-iterations an iteration “cycle”. For example, iterations k = 1,2, · · · , n form
the first cycle, iterations k = n+1, n+2, · · · , 2n the second cycle and so on. Then definition
(1.3) increases the degree of φ by 1 at the beginning of a cycle. One actually can define rk

by increasing the degree of φ by 1 anywhere within an iteration cycle. Each definition will
lead to a different ML(n)BiCGStab algorithm. As an illustration, we shall derive a second
ML(n)BiCGStab algorithm associated with the definition

r jn+i =

¨
φ j(A)br jn+i if 1≤ i ≤ n− 1,
φ j+1(A)br jn+i if i = n.

(1.4)

Eq. (1.4) increases the degree of φ by 1 at the end of a cycle. The resulting algorithm
requires about 25% less storage (not counting the storage of the coefficient matrix and
the preconditioner) than the algorithm associated with definition (1.3). However, one
drawback with this storage-saving algorithm is that, in some experiments, its computed
residual rk can easily diverge from the corresponding exact residual when n is moderately
large.

ML(n)BiCG and ML(n)BiCGStab possess a set of left starting vectors (or, shadow vec-
tors) q1, · · · ,qn that can be chosen freely. This freedom appears to be an advantage of the
methods. It helps stabilize the performance of the algorithms (see [39, p.1] for an expla-
nation) and allows us to see a connection between the Lanczos-based BiCG/BiCGStab and
the Arnoldi-based FOM.

One question of interest about ML(n)BiCG and ML(n)BiCGStab is: can they solve (1.1)
when A is singular? Since both methods search for a solution of (1.1) in the affine Krylov
subspace

x0 +K(A, r0)≡ x0 +

�∑k
i=0 ciA

ir0

�� ci ∈ C, k ∈ N0

�
, (1.5)

where N0 is the set of nonnegative integers, they must fail to converge if (1.5) contains
no solution of the linear system. Notice that (1.5) contains a solution of (1.1) if and
only if GMRES converges to a solution of (1.1) that lies in (1.5) — this can be derived
from [2, Lemma 2.1]. It then follows from [2, Th. 2.6] and [5, Th. 4.1] that

‡We rename the process to remember the contributions of the two pioneers in this field of transpose-free
Lanczos. In [38], it was shown that the Arnoldi process is an extreme case of SVLP.

450 Man-Chung Yeung

Eq. (1.5) contains a solution of (1.1) for any initial guess x0 if and only if (1.1)
is consistent and ker(A)∩ Im(A) = {0}.

In the case when (1.1) is consistent but ker(A)∩ Im(A) 6= {0}, the selection of x0 should
be a careful step. For example, consider the example from [2] where A = [0,1; 0,0],b =
[1,0]T . This system is consistent. If one selects bx0 = [1,0]T , then (1.5) contains no
solution. The other thing that hampers the convergence of ML(n)BiCG and ML(n)BiCGStab
is breakdown by zero division. We shall show that the two methods will almost surely
converge without breakdown by zero division to a solution of (1.1) if the shadow vectors
are chosen randomly and the initial guess x0 is selected such that (1.5) contains a solution
of (1.1).

The outline of the paper is as follows. In §2, we introduce index functions. In §3,
we present the ML(n)BiCG algorithm introduced in [39], from which ML(n)BiCGStab al-
gorithms are derived. In §4, we rederive the ML(n)BiCGStab algorithm in [39] by index
functions. In §5, we derive a storage-saving ML(n)BiCGStab algorithm from a different
definition of the residual vector. In §6, we discuss relationships of ML(n)BiCGStab with
some other methods. In §7, implementation issues are addressed. Conclusions are made
in §8.

2. Index Functions

Let be given a positive integer n. For all integers k, we define

gn(k) = ⌊(k− 1)/n⌋ and rn(k) = k− ngn(k),

where ⌊ · ⌋ rounds its argument to the nearest integer towards minus infinity. We call gn

and rn index functions; they are defined on Z, the set of all integers, with ranges Z and
{1,2, · · · , n}, respectively. If we write

k = jn+ i, (2.1)

with 1≤ i ≤ n and j ∈ Z, then

gn(jn+ i) = j and rn(jn+ i) = i. (2.2)

Table 1 illustrates the behavior of gn and rn with n = 3. It can be seen that gn(k) has a
jump when k, moved from left to right, passes a multiple of n.Table 1: Simple illustration of the index fun
tions for n= 3.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
gn(k) -1 0 0 0 1 1 1 2 2 2 3 3 3 · · ·
rn(k) 3 1 2 3 1 2 3 1 2 3 1 2 3 · · ·

The following properties can be easily verified by using (2.2).

ML(n)BiCGStab: Reformulation, Analysis and Implementation 451

Proposition 2.1. Let k ∈ N, the set of all positive integers, and s ∈ N0 = N∪ {0}.

(a) gn(k+ n) = gn(k) + 1 and rn(k+ n) = rn(k).

(b) gn(s+ 1)+ 1= gn(k+ 1) if max(k− n, 0)≤ s ≤ gn(k)n− 1.

(c) gn(s+ 1) = gn(gn(k)n+ 1) = gn(k) if gn(k)n≤ s ≤ k− 1.

(d) gn(k+ 1) = gn(k) + 1 if rn(k) = n; gn(k+ 1) = gn(k) if rn(k)< n.

(e) max(k− n, 0)> gn(k)n− 1 if rn(k) = n or gn(k) = 0.

3. A ML(n)BiCG Algorithm

Analogously to the derivation of BiCGStab from BiCG, ML(n)BiCGStab in [39] was
derived from a BiCG-like method named ML(n)BiCG, which was built upon a band Lanczos
process with n left starting vectors and a single right starting vector. In this section, we
present the algorithm of ML(n)BiCG from [39] and summarize some of its properties.

3.1. The Algorithm

Consider the solution of (1.1). Throughout the paper we do not assume that the coef-
ficient matrix A is nonsingular. The iterative solution of singular systems has been exten-
sively studied, see, for instance, [2,5,14,18,35] and the references therein.

Let be given n vectors q1, . . . ,qn ∈ C
N , which we call left starting vectors or shadow

vectors. Define
pk =
�

AH
�gn(k)

qrn(k)
(3.1)

for k = 1,2,3, · · · . The following algorithm for the solution of (1.1) is from [39].

Algorithm 3.1. ML(n)BiCG

1. Choose an initial guess bx0 and n vectors q1,q2, · · · ,qn.

2. Compute br0 = b−Abx0 and set p1 = q1, bg0 = br0.

3. For k = 1,2,3, · · · , until convergence:

4. αk = pH
k
brk−1/p

H
k

Abgk−1;

5. bxk = bxk−1 +αkbgk−1;

6. brk = brk−1 −αkAbgk−1;

7. For s =max(k− n, 0), · · · , k− 1

8. β (k)
s
=−pH

s+1A
�
brk +
∑s−1

t=max(k−n,0) β
(k)
t bgt

��
pH

s+1Abgs;

9. End

10. bgk = brk +
∑k−1

s=max(k−n,0) β
(k)
s
bgs;

11. Compute pk+1 according to (3.1)

12. End

452 Man-Chung Yeung

Algorithm 3.1 consists of exact mathematical formulas for αk,β (k)s ,bxk,brk and bgk ob-
tained in §3 of [39]. Even though the algorithm has not been tested, it is believed to be
numerically instable because of Line 11 in which the shadow vectors are repeatedly multi-
plied by AH , a type of operation which is highly sensitive to round-off errors. The algorithm
is introduced only for the purpose of developing ML(n)BiCGStab algorithms.

Algorithm 3.1 is a variation of the classical BiCG algorithm. The left-hand side (shadow)
Krylov subspace of BiCG is replaced by the block Krylov subspace with n starting vectors
q1,q2, · · · ,qn:

Bk ≡ the space spanned by the first k columns of [Q,AHQ, (AH)2Q, · · ·]
= span{p1,p2, · · · ,pk}

=
∑rn(k)

i=1 Kgn(k)+1(A
H ,qi) +
∑n

i=rn(k)+1Kgn(k)
(AH ,qi),

where Q≡ [q1,q2, · · · ,qn] and

Kt(M,v)≡ span{v,Mv, · · · ,Mt−1v}

for M ∈ CN×N ,v ∈ CN and t ∈ N. Moreover, in ML(n)BiCG, the basis used for Bk is not
chosen to be bi-orthogonal, but simply the set {p1,p2, · · · ,pk}. Therefore, the ML(n)BiCG
algorithm can be viewed as a generalization of a one-sided Lanczos algorithm (see [9,19]).
The likely ill-conditioning of this basis does not matter, as the algorithm is only a technical
tool for deriving ML(n)BiCGStab and this basis disappears in ML(n)BiCGStab because AH

will be absorbed by the residuals and direction vectors of ML(n)BiCGStab. For constructing
the right-hand side basis consisting of residuals brk, we used recurrences that generalize the
coupled two-term recurrences of BiCG, that is, direction vectors bgk are also constructed.

3.2. Properties

Let ν be the degree of the minimal polynomial pmin(λ;A,br0) of br0 with respect to A,
namely, the unique monic polynomial p(λ) of minimum degree such that p(A)br0 = 0, and
let

bSν = [p1,p2, · · · ,pν]
HA[br0,Abr0, · · · ,Aν−1br0]

and
bWν = [p1,p2, · · · ,pν]

H[br0,Abr0, · · · ,Aν−1br0].

Denote by bSl and bWl the l × l leading principal submatrices of bSν and bWν respectively.
We now summarize some useful facts about Algorithm 3.1. They can be derived from the
construction procedure of the algorithm.

Proposition 3.1. In infinite precision arithmetic, if
∏ν

l=1 det(bSl)det(bWl) 6= 0, then Algo-

rithm 3.1 does not break down by zero division for k = 1,2, · · · ,ν , and xν is an exact solution

of (1.1). Moreover, the computed quantities satisfy

(a) bxk ∈ bx0 +Kk(A,br0) and brk = b−Abxk ∈br0+AKk(A,br0) for 1≤ k ≤ ν .

ML(n)BiCGStab: Reformulation, Analysis and Implementation 453

(b) span{br0,br1, · · · ,brk−1} = Kk(A,br0) for 1≤ k ≤ ν .

(c) span{Abr0,Abr1, · · · ,Abrν−1} = Kν(A,br0).

(d) brk ⊥ span{p1,p2, . . . ,pk} and brk 6⊥ pk+1 for 0≤ k ≤ ν − 1.§

(e) span{bg0,bg1, · · · ,bgk−1} = Kk(A,br0) for 1≤ k ≤ ν .

(f) span{Abg0,Abg1, · · · ,Abgν−1} = Kν(A,br0).

(g) Abgk ⊥ span{p1,p2, . . . ,pk} and Abgk 6⊥ pk+1 for 0≤ k ≤ ν − 1.

Because of Proposition 3.1(a) and (d), ML(n)BiCG is an oblique projection Krylov sub-
space method [20].

Remark 3.1.

(i) The matrices bSl and bWl have already appeared in [12, 13] where they were called
moment matrices. Proposition 3.1 can be regarded as a generalization of Theorem 2
in [13] from n= 1 to n> 1.

(ii) Just like BiCG, ML(n)BiCG also has two types of breakdown caused, respectively, by
the failure of the underlying Lanczos process and the nonexistence of the LU factor-
izations of the Hessenberg matrix of the recurrence coefficients. Both types of break-
down are reflected in Algorithm 3.1 by pH

k
Abgk−1 = 0. The condition

∏ν
l=1 det(bWl) 6=

0 guarantees that the underlying Lanczos process works without breakdown by zero
division, and the condition

∏ν
l=1 det(bSl) 6= 0 ensures that the LU factorizations exist.

(iii) det(bSν) 6= 0 implies that pmin(0;A,br0) 6= 0 which, in turn, implies that (1.1) has a
solution lying in bx0 +Kν(A,br0).

The derivation of a ML(n)BiCGStab algorithm will require the following result which,
in the case when n= 1, has been used in CGS and BiCGStab.

Corollary 3.1. Let s ∈ N and

ψgn(s)
(λ) = cgn(s)

λgn(s)+ cgn(s)−1λ
gn(s)−1 + · · ·+ c0

be any polynomial of exact degree gn(s). Then, under the assumptions of Proposition 3.1,

pH
s
brk =

1

cgn(s)

qH
rn(s)
ψgn(s)

(A)brk and pH
s Abgk =

1

cgn(s)

qH
rn(s)

Aψgn(s)
(A)bgk

if 0≤ k ≤ ν − 1 and s ≤ k+ n.

§We say that u ⊥ v if uHv = 0.

454 Man-Chung Yeung

Proof. It is easy to verify that

ps −
1

c̄gn(s)

ψ̄gn(s)
(AH)qrn(s)

∈ Bk

by Proposition 2.1(a) and (3.1), where the overbar denotes complex conjugation. The
corollary then follows from Proposition 3.1(d) and (g). �

Corollary 3.1 essentially says that adding to ps a vector from Bk does not change the
inner products pH

s
brk and pH

s Abgk.
The condition
∏ν

l=1 det(bWl)det(bSl) 6= 0 in Proposition 3.1 holds in all but very excep-
tional examples. In fact, it is a generic property in the following sense.

Lemma 3.1. [13, Prop. 4] If p is a nonzero polynomial in the variables x1, x2, · · · , xk ∈ C,

then {(x1, x2, · · · , xk) ∈ C
k|p(x1, x2, · · · , xk) = 0} is a measure-zero set in Ck.

We apply Lemma 3.1 to det(bWl) and det(bSl), which are polynomials in the elements of
q̄1, · · · , q̄n, to obtain

Lemma 3.2. Let br0 ∈ C
N , br0 6= 0¶ and A ∈ CN×N . Then

(a) {(q1, · · · ,qn) ∈ C
nN |det(bWl) = 0} is measure-zero for 1≤ l ≤ ν .

(b) {(q1, · · · ,qn) ∈ C
nN |det(bSl) = 0} is measure-zero for 1≤ l ≤ ν − 1.

(c) {(q1, · · · ,qn) ∈ C
nN |det(bSν) = 0} is measure-zero if pmin(0;A,br0) 6= 0; det(bSν) = 0

for all (q1, · · · ,qn) ∈ C
nN if pmin(0;A,br0) = 0.

Proof. We only prove Part (c) since the arguments for Parts (a) and (b) are similar. If
pmin(0;A,br0) = 0, then Aνbr0 is a linear combination of Abr0, · · · ,Aν−1br0 or Aνbr0 = 0 in the
case when ν = 1. Hence det(bSν) ≡ 0 no matter what q1, · · · ,qn are. Thus, we assume
pmin(0;A,br0) 6= 0 in the following.

Case n= 1. In this case, pk = (A
H)gn(k)qrn(k)

= (AH)k−1q1 and bSν is a Hankel matrix

bSν =




bs1 bs2 · · · bsν
bs2 bs3 · · · bsν+1
· · · · · · · · · · · ·
bsν bsν+1 · · · bs2ν−1


 , (3.2)

where bst = qH
1 Atbr0 for t = 1,2, · · · , 2ν − 1. Since pmin(0;A,br0) 6= 0, {Abr0,A2br0, · · · ,Aνbr0}

is a linearly independent set. Perform a QR factorization on the N × ν matrix

�
Abr0,A2br0, · · · ,Aνbr0

�
= QR,

¶In Lemma 3.2 and Corollary 3.2, br0 can be any non-zero vector in CN . It is not necessarily a residual vector
like br0 = b−Abx0.

ML(n)BiCGStab: Reformulation, Analysis and Implementation 455

where Q ∈ CN×N is unitary and R ∈ CN×ν is upper triangular with positive main diagonal
elements r11, r22, · · · , rνν . Write

[bs1,bs2, · · · ,bsν ,
...bsν+1, · · · ,bs2ν−1]

= qH
1 [Abr0,A2br0, · · · ,Aνbr0,

... Aν+1br0, · · · ,A2ν−1br0]

= qH
1 [QR,

...Aν+1br0, · · · ,A2ν−1br0]

= θH[R,
... QH[Aν+1br0, · · · ,A2ν−1br0]], (3.3)

where θ = [θ1, · · · ,θN]
T ≡ QHq1. If we set θν = 1 and all other elements of θ to zero,

then (3.3) has the form

[bs1, · · · ,bsν−1,bsν ,
...bsν+1, · · · ,bs2ν−1] = [0, · · · , 0, rνν ,

...∗, · · · ,∗].

For this special choice of θ , we have |det(bSν)| = rννν 6= 0. Thus det(bSl) is a nonzero
polynomial and Part (c) follows from Lemma 3.1.

Case n > 1. The proof of this case can be reduced to that of case n = 1 by setting
qi = (A

H)ki q1 for some appropriate integers ki > 0 where 2 ≤ i ≤ n. As an illustration,
assume that n= 2 and ν = 5. Then, by definition,

bSν = bS5 = [p1,p2, · · · ,p5]
HA[br0,Abr0, · · · ,A4br0]

where [p1,p2, · · · ,p5] = [q1,q2,AHq1,AHq2, (AH)2q1]. If we set q2 = (A
H)3q1, bS5 will be

the Hankel matrix (3.2) with some rows permuted, and the proof of {(q1,q2) ∈ C
2N |det(bS5)

= 0} being a measure-zero set will be reduced to the case n= 1. �

Corollary 3.2. Let br0 ∈ C
N , br0 6= 0 and A ∈ CN×N . Then

�
(q1, · · · ,qn) ∈ C

nN
��
ν∏

l=1

�
det(bWl)det(bSl)

�
= 0
�

is a measure-zero set in CnN if and only if pmin(0;A,br0) 6= 0.

Proof. Note that

� ν∏

l=1

det(bWl)det(bSl) = 0
�
⊂

ν⋃

l=1

��
det(bWl) = 0
	
∪
�

det(bSl) = 0
	�

and a finite union of measure-zero sets is measure-zero. �

Remark 3.2.

(i) Parts (a) and (b) of Lemma 3.2 have been proved in [29, Th. 3] for non-defective A.
Eigenvalues were employed in the proof. In Lemma 3.2, we presented an alternative
proof and removed the constraint of non-defectiveness.

456 Man-Chung Yeung

(ii) pmin(0;A,br0) 6= 0 if and only if the affine subspace bx0 +K(A,br0) contains a solution
of (1.1).

The following theorem then follows from Proposition 3.1 and Corollary 3.2.

Theorem 3.1. If q1, · · · ,qn are vectors with independent and continuous random elements,

Algorithm 3.1 will almost surely work without breakdown by zero division to find a solution

from the affine subspace bx0+K(A,br0) provided that bx0 is chosen such that the affine subspace

contains a solution of (1.1).

Remark 3.2.

(i) If we randomly pick the initial guess bx0 and set q1 = b − Abx0, then Algorithm 3.1
with n = 1, or equivalently in mathematics, the standard BiCG (see §6), will almost
surely solve (1.1) without breakdown by zero division for all, but a certain small
class of, nonsingular A. For details, see [13]. In Theorem 3.1, the vectors q1, · · · ,qn

are independent of bx0.

(ii) The bx0 in Theorem 3.1 is a user-provided vector. It may not be a random vector in
some applications. For example, in cases where a sequence of similar linear systems
is solved, the solution from the previous system may be used as the bx0 for the new
system.

4. A ML(n)BiCGStab Algorithm

A ML(n)BiCGStab algorithm was derived from ML(n)BiCG in [39] (Algorithm 2 with-
out preconditioning and Algorithm 3 with preconditioning in [39]), but the derivation
there is complicated and less inspiring. In this section, we re-derive the algorithm in a
more systematic fashion with the help of index functions.

4.1. Notation and Definitions

Let φk(λ) be defined by (1.2). If expressed in terms of the power basis

φk(λ) = c
(k)

k
λk + · · ·+ c

(k)
1 λ+ c

(k)
0 , (4.1)

it is clear that c
(k)

k
= (−1)kω1ω2 · · ·ωk and c

(k)
0 = 1. Thus,

c
(k)

k
= −ωkc

(k−1)
k−1 . (4.2)

In ML(n)BiCGStab, we construct the following vectors: for k ∈ N,

rk = φgn(k)+1(A)brk, uk = φgn(k)
(A)brk, (4.3a)

gk = φgn(k)+1(A)bgk, dk = −ωgn(k)+1Aφgn(k)
(A)bgk, (4.3b)

wk = Agk (4.3c)

ML(n)BiCGStab: Reformulation, Analysis and Implementation 457

and for k = 0, set
r0 =br0 and g0 = bg0. (4.4)

The vector rk will be the residual vector of the approximate solution xk computed by
ML(n)BiCGStab.

4.2. Algorithm Derivation

The derivation parallels the one of BiCGStab from BiCG. We first replace all the in-
ner products pHbr and pHAbg in ML(n)BiCG respectively by the inner products of the forms
qHφ(A)br and qHAφ(A)bg, where φ is the polynomial (1.2). Corollary 3.1 guarantees that
the inner products remain unchanged with such replacements. Then we compile the re-
currences for the new residuals rk and the corresponding iterates. The overall derivation
is best described and verified in stages, and depends on Proposition 2.1 and Corollary 3.1.

The derivation is complicated by the fact that the recurrences in the kth iteration of
ML(n)BiCG involve n terms which stretch from k− n to k− 1. Note that k− n≤ gn(k)n≤
k − 1. The degrees of the φgn(s)

and φgn(s)+1 in (4.3) are increased at gn(k)n + 1 as s

runs from k − n to k − 1 (see, for example, Table 1). Therefore, our first task is to split
up in ML(n)BiCG the loops and the sums of length n into two parts, one from k − n to
gn(k)n− 1 and the other from gn(k)n+ 1 to k− 1. The following Derivation Stage (DS)
#1 is computationally equivalent to Algorithm 3.1 (forgetting Lines 1, 2, 5 and 11).

Derivation Stage #1.

1. For k = 1,2, · · · , until convergence:
2. If rn(k) = 1
3. αk = pH

k
brk−1/p

H
k

Abgk−1;
4. brk = brk−1 −αkAbgk−1;
5. Else
6. αk = pH

k
brk−1/p

H
k

Abgk−1;
7. brk = brk−1 −αkAbgk−1;
8. End
9. If rn(k)< n

10. For s =max(k− n, 0), · · · , gn(k)n− 1

11. β (k)
s
= −pH

s+1A
�
brk +
∑s−1

t=max(k−n,0) β
(k)
t bgt

��
pH

s+1Abgs;

12. End

13. β
(k)

gn(k)n
=−pH

gn(k)n+1A
�
brk +
∑gn(k)n−1

t=max(k−n,0) β
(k)
t bgt

��
pH

gn(k)n+1Abggn(k)n
;

14. For s = gn(k)n+ 1, · · · , k− 1

15. β (k)
s
= −pH

s+1A
�
brk +
∑gn(k)n

t=max(k−n,0) β
(k)
t bgt +
∑s−1

t=gn(k)n+1 β
(k)
t bgt

��
pH

s+1Abgs;

16. End

17. bgk = brk +
∑gn(k)n

s=max(k−n,0) β
(k)
s
bgs +
∑k−1

s=gn(k)n+1 β
(k)
s
bgs;

18. Else

458 Man-Chung Yeung

19. β
(k)

gn(k)n
= −pH

gn(k)n+1Abrk

�
pH

gn(k)n+1Abggn(k)n
;

20. For s = gn(k)n+ 1, · · · , k− 1

21. β (k)
s
=−pH

s+1A
�
brk + β

(k)

gn(k)n
bggn(k)n

+
∑s−1

t=gn(k)n+1 β
(k)
t bgt

��
pH

s+1Abgs;

22. End
23. bgk = brk + β

(k)

gn(k)n
bggn(k)n

+
∑k−1

s=gn(k)n+1 β
(k)
s
bgs;

24. End
25. End

We have adopted the conventions: empty loops are skipped and empty sums are zero.
These conventions will also be applied in the sequel.

In the next stage of the derivation, we replace inner products pHbr and pHAbg by inner
products of the forms qHφ(A)br and qHAφ(A)bg respectively. That is, the factor (AH)gn(k)

that is hidden in the left basis vector pk is moved to the right-hand side space and replaced
by the factor φgn(k)

(A). Formally, by Corollary 3.1 together with (3.1), (4.2) and Propo-
sition 2.1(a), DS#1 can be further transformed into the version below. Explanations are
given after listing.

Derivation Stage #2.

1. For k = 1,2, · · · , until convergence:
2. If rn(k) = 1
3. αk = qH

rn(k)
φgn(k)

(A)brk−1/q
H
rn(k)

Aφgn(k)
(A)bgk−1;

4. φgn(k)
(A)brk = φgn(k)

(A)brk−1−αkAφgn(k)
(A)bgk−1;

5. φgn(k)+1(A)brk = (I−ωgn(k)+1A)φgn(k)
(A)brk;

6. Else
7. αk = qH

rn(k)
φgn(k)

(A)brk−1/q
H
rn(k)

Aφgn(k)
(A)bgk−1;

8. φgn(k)
(A)brk = φgn(k)

(A)brk−1−αkAφgn(k)
(A)bgk−1;

9. φgn(k)+1(A)brk = φgn(k)+1(A)brk−1−αkAφgn(k)+1(A)bgk−1;
10. End
11. If rn(k)< n

12. For s =max(k− n, 0), · · · , gn(k)n− 1

13. β (k)
s
= qH

rn(s+1)

�
φgn(s+1)+1(A)brk −

∑s−1
t=max(k−n,0) β

(k)
t ωgn(s+1)+1

Aφgn(s+1)(A)bgt

��
ωgn(s+1)+1qH

rn(s+1)Aφgn(s+1)(A)bgs;
14. End

15. β
(k)

gn(k)n
= qH

1

�
φgn(k)+1(A)brk −

∑gn(k)n−1
t=max(k−n,0) β

(k)
t ωgn(k)+1

Aφgn(k)
(A)bgt

��
ωgn(k)+1qH

1 Aφgn(k)
(A)bggn(k)n

;
16. For s = gn(k)n+ 1, · · · , k− 1

17. β (k)
s
= qH

rn(s+1)

�
φgn(s+1)+1(A)brk −

∑gn(k)n

t=max(k−n,0) β
(k)
t ωgn(s+1)+1

Aφgn(s+1)(A)bgt −
∑s−1

t=gn(k)n+1 β
(k)
t ωgn(s+1)+1

ML(n)BiCGStab: Reformulation, Analysis and Implementation 459

Aφgn(s+1)(A)bgt

��
ωgn(s+1)+1qH

rn(s+1)Aφgn(s+1)(A)bgs;
18. End
19. ωgn(k)+1Aφgn(k)

(A)bgk =ωgn(k)+1Aφgn(k)
(A)brk

+
∑gn(k)n

s=max(k−n,0) β
(k)
s
ωgn(k)+1Aφgn(k)

(A)bgs +
∑k−1

s=gn(k)n+1

β (k)
s
ωgn(k)+1Aφgn(k)

(A)bgs;

20. φgn(k)+1(A)bgk = φgn(k)+1(A)brk +
∑gn(k)n

s=max(k−n,0) β
(k)
s
φgn(k)+1(A)bgs

+
∑k−1

s=gn(k)n+1 β
(k)
s
φgn(k)+1(A)bgs;

21. Else
22. β

(k)

gn(k)n
= qH

1 φgn(k)+1(A)brk

�
ωgn(k)+1qH

1 Aφgn(k)
(A)bggn(k)n

;
23. For s = gn(k)n+ 1, · · · , k− 1

24. β (k)
s
= qH

rn(s+1)

�
φgn(s+1)+1(A)brk −β

(k)

gn(k)n
ωgn(s+1)+1Aφgn(s+1)

(A)bggn(k)n
−
∑s−1

t=gn(k)n+1 β
(k)
t ωgn(s+1)+1Aφgn(s+1)

(A)bgt

��
ωgn(s+1)+1qH

rn(s+1)Aφgn(s+1)(A)bgs;
25. End
26. φgn(k)+1(A)bgk = φgn(k)+1(A)brk +β

(k)

gn(k)n
φgn(k)+1(A)bggn(k)n

+
∑k−1

s=gn(k)n+1 β
(k)
s
φgn(k)+1(A)bgs;

27. End
28. End

Lines 4, 8, 9, 19, 20 and 26, DS#2, were obtained from Lines 4, 7, 17 and 23,
DS#1, through a multiplication by φgn(k)

(A),φgn(k)+1(A) and ωgn(k)+1Aφgn(k)
(A) respec-

tively. Line 5, DS#2, is a direct result of the definition (1.2) of φ. These lines are prepared
for the updates of the vectors defined in (4.3).

To help understand how DS#1 is turned into DS#2, let us demonstrate (i) the trans-
formation of Line 3, DS#1, into Line 3, DS#2 and (ii) the transformation of the term
pH

gn(k)n+1Abrk in Line 13, DS#1, into the term qH
1 φgn(k)+1(A)brk in Line 15, DS#2, as fol-

lows.

(i) By Corollary 3.1,

αk =
pH

k
brk−1

pH
k

Abgk−1
=

1

c
(gn(k))

gn(k)

qH
rn(k)

φgn(k)
(A)brk−1

1

c
(gn(k))

gn(k)

qH
rn(k)

Aφgn(k)
(A)bgk−1

=
qH

rn(k)
φgn(k)

(A)brk−1

qH
rn(k)

Aφgn(k)
(A)bgk−1

,

where c
(gn(k))

gn(k)
is the leading coefficient of φgn(k)

(λ) (see (4.1)).

(ii) By (3.1) and Proposition 2.1(a), we have

AHpgn(k)n+1 = (A
H)gn(gn(k)n+1)+1qrn(gn(k)n+1)

= (AH)gn((gn(k)+1)n+1)qrn((gn(k)+1)n+1)

= p(gn(k)+1)n+1.

460 Man-Chung Yeung

Hence
pH

gn(k)n+1Abrk = pH
(gn(k)+1)n+1brk.

Since (gn(k)+1)n+1≤ k+ n, an application of Corollary 3.1 to pH
(gn(k)+1)n+1brk thus

yields

pH
gn(k)n+1Abrk =

1

c
(gn((gn(k)+1)n+1))
gn((gn(k)+1)n+1)

qH
rn((gn(k)+1)n+1)φgn((gn(k)+1)n+1)(A)brk

=
1

c
(gn(k)+1)
gn(k)+1

qH
1 φgn(k)+1(A)brk.

The second equation above follows from (2.2). The coefficient 1/c(gn(k)+1)
gn(k)+1 is missed

from Line 15, DS#2, because it was canceled out by the coefficient from the denom-
inator.

Our goal is to establish updating relations for the quantities introduced in (4.3). To
this end, we further transform DS#2 into the following version. This time, we work on
the index function gn with the aid of Proposition 2.1 so that the definitions in (4.3) can be
applied. Again, further explanations are given after the listing.

Derivation Stage #3.

1. For k = 1,2, · · · , until convergence:
2. If rn(k) = 1
3. αk = qH

rn(k)
φgn(k−1)+1(A)brk−1/q

H
rn(k)

Aφgn(k−1)+1(A)bgk−1;
4. φgn(k)

(A)brk = φgn(k−1)+1(A)brk−1−αkAφgn(k−1)+1(A)bgk−1;
5. φgn(k)+1(A)brk = (I−ωgn(k)+1A)φgn(k)

(A)brk;
6. Else
7. αk = qH

rn(k)
φgn(k−1)(A)brk−1/q

H
rn(k)

Aφgn(k−1)(A)bgk−1;
8. φgn(k)

(A)brk = φgn(k−1)(A)brk−1−αkAφgn(k−1)(A)bgk−1;
9. φgn(k)+1(A)brk = φgn(k−1)+1(A)brk−1−αkAφgn(k−1)+1(A)bgk−1;
10. End
11. If rn(k)< n

12. For s =max(k− n, 0), · · · , gn(k)n− 1
13. β (k)

s
= qH

rn(s+1)

�
φgn(k)

(A)brk−∑s−1
t=max(k−n,0) β

(k)
t ωgn(t)+1Aφgn(t)

(A)bgt

��
ωgn(s)+1qH

rn(s+1)Aφgn(s)
(A)bgs;

14. End

15. β
(k)

gn(k)n
= qH

1

�
φgn(k)+1(A)brk −

∑gn(k)n−1
t=max(k−n,0) β

(k)
t ωgn(k)+1

Aφgn(t)+1(A)bgt

��
ωgn(k)+1qH

1 Aφgn(gn(k)n)+1(A)bggn(k)n
;

16. For s = gn(k)n+ 1, · · · , k− 1

17. β (k)
s
= qH

rn(s+1)

�
φgn(k)+1(A)brk −

∑gn(k)n

t=max(k−n,0) β
(k)
t ωgn(k)+1

ML(n)BiCGStab: Reformulation, Analysis and Implementation 461

Aφgn(t)+1(A)bgt −
∑s−1

t=gn(k)n+1 β
(k)
t ωgn(t)+1

Aφgn(t)
(A)bgt

��
ωgn(s)+1qH

rn(s+1)Aφgn(s)
(A)bgs;

18. End
19. ωgn(k)+1Aφgn(k)

(A)bgk =ωgn(k)+1Aφgn(k)
(A)brk

+
∑gn(k)n

s=max(k−n,0) β
(k)
s
ωgn(k)+1Aφgn(s)+1(A)bgs

+
∑k−1

s=gn(k)n+1 β
(k)
s
ωgn(s)+1Aφgn(s)

(A)bgs;

20. φgn(k)+1(A)bgk = φgn(k)+1(A)brk +
∑gn(k)n

s=max(k−n,0) β
(k)
s
(I−ωgn(k)+1A)φgn(s)+1

(A)bgs +
∑k−1

s=gn(k)n+1 β
(k)
s
φgn(s)+1(A)bgs;

21. Else
22. β

(k)

gn(k)n
= qH

1 φgn(k)+1(A)brk

�
ωgn(k)+1qH

1 Aφgn(gn(k)n)+1(A)bggn(k)n
;

23. For s = gn(k)n+ 1, · · · , k− 1

24. β (k)
s
= qH

rn(s+1)

�
φgn(k)+1(A)brk − β

(k)

gn(k)n
ωgn(k)+1Aφgn(gn(k)n)+1(A)bggn(k)n

−
∑s−1

t=gn(k)n+1 β
(k)
t ωgn(t)+1Aφgn(t)

(A)bgt

��
ωgn(s)+1

qH
rn(s+1)Aφgn(s)

(A)bgs;
25. End
26. φgn(k)+1(A)bgk = φgn(k)+1(A)brk + β

(k)

gn(k)n
(I−ωgn(k)+1A)φgn(gn(k)n)+1(A)bggn(k)n

+
∑k−1

s=gn(k)n+1 β
(k)
s
φgn(s)+1(A)bgs;

27. End
28. End

As an example, let us show how the gn(s+ 1) inside the sum
∑s−1

t=max(k−n,0) · · · in Line
13, DS#2, was written as the gn(t) in Line 13, DS#3.

If gn(k) = 0, Line 13 of DS#2 is not implemented because of the conventions immedi-
ately following DS#1. So, we assume that gn(k)> 0. Since

max(k− n, 0)≤ s, t ≤ gn(k)n− 1, (4.5)

we have
gn(s+ 1) = gn(k+ 1)− 1= gn(t + 1) (4.6)

by Proposition 2.1(b). Now that gn(k)> 0, max(k− n, 0) = k− n. Hence

k− n≤ t ≤ gn(k)n− 1 (4.7)

by (4.5). Let k = jn+ i as in (2.1). Then (4.7) is

(j− 1)n+ i ≤ t ≤ (j− 1)n+ n− 1

which implies that rn(t) < n. Now, Proposition 2.1(d) yields gn(t + 1) = gn(t) and there-
fore we have gn(s+ 1) = gn(t) by (4.6).

We are now ready to apply the vectors defined in (4.3) and (4.4). Substituting them
into DS#3 leads to the following stage.

Derivation Stage #4.

462 Man-Chung Yeung

1. For k = 1,2, · · · , until convergence:
2. If rn(k) = 1
3. αk = qH

rn(k)
rk−1/q

H
rn(k)

Agk−1;
4. uk = rk−1 −αkAgk−1;
5. rk = −ωgn(k)+1Auk + uk;
6. Else
7. αk =−ωgn(k−1)+1qH

rn(k)
uk−1/q

H
rn(k)

dk−1;
8. uk = uk−1 + (αk/ωgn(k−1)+1)dk−1;
9. rk = rk−1 −αkAgk−1;
10. End
11. If rn(k)< n

12. For s =max(k− n, 0), · · · , gn(k)n− 1

13. β (k)
s
=−qH

rn(s+1)

�
uk +
∑s−1

t=max(k−n,0) β
(k)
t dt

��
qH

rn(s+1)ds;

14. End

15. β
(k)

gn(k)n
= qH

1

�
rk −ωgn(k)+1

∑gn(k)n−1
t=max(k−n,0) β

(k)
t Agt

��
ωgn(k)+1qH

1 Aggn(k)n
;

16. For s = gn(k)n+ 1, · · · , k− 1

17. β (k)
s
=−qH

rn(s+1)

�
rk −ωgn(k)+1

∑gn(k)n

t=max(k−n,0) β
(k)
t Agt+∑s−1

t=gn(k)n+1 β
(k)
t dt

��
qH

rn(s+1)ds;

18. End

19. dk = rk − uk −ωgn(k)+1

∑gn(k)n

s=max(k−n,0) β
(k)
s

Ags +
∑k−1

s=gn(k)n+1 β
(k)
s

ds;

20. gk = rk +
∑gn(k)n

s=max(k−n,0) β
(k)
s
(I−ωgn(k)+1A)gs +

∑k−1
s=gn(k)n+1 β

(k)
s

gs;
21. Else
22. β

(k)

gn(k)n
= qH

1 rk

�
ωgn(k)+1qH

1 Aggn(k)n
;

23. For s = gn(k)n+ 1, · · · , k− 1

24. β (k)
s
=−qH

rn(s+1)

�
rk −ωgn(k)+1β

(k)

gn(k)n
Aggn(k)n

+
∑s−1

t=gn(k)n+1 β
(k)
t dt

��
qH

rn(s+1)ds;

25. End
26. gk = rk +β

(k)

gn(k)n
(I−ωgn(k)+1A)ggn(k)n

+
∑k−1

s=gn(k)n+1 β
(k)
s

gs;
27. End
28. End

We consider rk to be the residual of the kth approximate solution xk. Updating relations
for xk can be obtained from Lines 4, 5 and 9 respectively:

xk =

¨
xk−1+ωgn(k)+1uk +αkgk−1, if rn(k) = 1,
xk−1+αkgk−1, if rn(k)> 1.

(4.8)

After adding (4.8) to DS#4 and simplifying the operations appropriately, we arrive at the
following ML(n)BiCGStab algorithm. Just like BiCGStab, the free parameter ωgn(k)+1 in
Line 5, DS#4, is chosen to minimize the 2-norm of rk.

Algorithm 4.1. ML(n)BiCGStab without preconditioning associated with (4.3)

ML(n)BiCGStab: Reformulation, Analysis and Implementation 463

1. Choose an initial guess x0 and n vectors q1,q2, · · · ,qn.

2. Compute r0 = b−Ax0 and set g0 = r0. Compute w0 = Ag0, c0 = qH
1 w0.

3. For k = 1,2, · · · , until convergence:

4. If rn(k) = 1
5. αk = qH

rn(k)
rk−1/ck−1;

6. uk = rk−1 −αkwk−1;

7. xk = xk−1 +αkgk−1;

8. ωgn(k)+1 = (Auk)
Huk/‖Auk‖

2
2;

9. xk = xk +ωgn(k)+1uk;

10. rk =−ωgn(k)+1Auk + uk;

11. Else

12. eαk =−qH
rn(k)

uk−1/ck−1; % eαk = αk/ωgn(k−1)+1

13. If rn(k)< n

14. uk = uk−1 + eαkdk−1;

15. End

16. xk = xk−1 +ωgn(k−1)+1eαkgk−1;

17. rk = rk−1 −ωgn(k−1)+1eαkwk−1;

18. End

19. If rn(k)< n

20. zd = uk, gk = 0, zw = 0;

21. For s = k− n, · · · , gn(k)n− 1 and gn(k)≥ 1
22. β (k)

s
= −qH

rn(s+1)zd

�
cs;

23. zd = zd +β
(k)
s

ds;

24. gk = gk + β
(k)
s

gs;

25. zw = zw + β
(k)
s

ws;

26. End

27. zw = rk −ωgn(k)+1zw;

28. β
(k)

gn(k)n
= qH

1 zw

�
(ωgn(k)+1cgn(k)n

);

29. zw = zw −ωgn(k)+1β
(k)

gn(k)n
wgn(k)n

;

30. gk = gk + zw +β
(k)

gn(k)n
ggn(k)n

;

31. For s = gn(k)n+ 1, · · · , k− 1
32. β (k)

s
= −qH

rn(s+1)zw

�
cs;

33. gk = gk + β
(k)
s

gs;

34. zw = zw + β
(k)
s

ds;

35. End

36. dk = zw − uk; ck = qH
rn(k+1)dk;

37. wk = Agk;

38. Else

39. β
(k)

gn(k)n
= qH

1 rk

�
(ωgn(k)+1cgn(k)n

);

40. zw = rk −ωgn(k)+1β
(k)

gn(k)n
wgn(k)n

;

41. gk = zw + β
(k)

gn(k)n
ggn(k)n

;

42. For s = gn(k)n+ 1, · · · , k− 1

464 Man-Chung Yeung

43. β (k)
s
=−qH

rn(s+1)zw

�
cs;

44. gk = gk +β
(k)
s

gs;

45. zw = zw +β
(k)
s

ds;

46. End

47. wk = Agk; ck = qH
rn(k+1)wk;

48. End

49.End

Remark 4.1.

(i) Algorithm 4.1 does not compute the quantities uk and dk when rn(k) = n (see Lines
13-15 and Lines 39-47).

(ii) If the uk in Line 6 happens to be zero, then the ωgn(k)+1 in Line 8 and therefore the
xk and rk in Lines 9 and 10 will not be computable. In this case, however, the xk in
Line 7 will be an exact solution to system (1.1) and Algorithm 4.1 stops there.

We now compare Algorithm 4.1 with the ML(n)BiCGStab algorithm in [39]. First, the
definitions of rk, uk and gk are the same in both algorithms, but dk is defined differently.
In [39], dk = φgn(k)

(A)bgk. In exact arithmetic, however, both algorithms compute the
same rk and xk. Second, the derivation of Algorithm 4.1 has been made simpler by using
index functions. As a result, some redundant operations in Algorithm 2 of [39] can be
seen and removed and some arithmetics are simplified. For example, the vectors dk,uk are
computed in every k-iteration in Algorithm 2 of [39]. They are now computed only when
rn(k) < n. Also, the expression of β (k)

gn(k)n
in Line 39 of Algorithm 4.1 is simpler. Some

other minor changes were also made so that the algorithm becomes more efficient.

Computational cost and storage requirement of Algorithm 4.1, obtained based on its
preconditioned version, Algorithm 9.1 in §9, are summarized in Table 2. Since the vec-
tors {q1, . . . ,qn}, {dk−n, . . . ,dgn(k)n−1,dgn(k)n+1, . . . ,dk−1}, {gk−n, . . . ,gk−1} and {wk−n, . . . ,
wgn(k)n

,wk−1} are required in iteration k, they must be stored. When n is large, this storage
is dominant. So, the storage requirement of the algorithm is about 4nN .Table 2: Average
ost per k-iteration of Algorithm 9.1 and its storage requirement. This table does not
ount the
osts in Lines 1-2 of the algorithm.

Preconditioning M−1v 1+ 1/n u± v, αv max(4− 5/n, 0)
Matvec Av 1+ 1/n Saxpy u+αv max(2.5n+ 0.5+ 1/n, 6)

dot product uHv n+ 1+ 2/n Storage A+M+ (4n+ 4)N +O(n)

ML(n)BiCGStab: Reformulation, Analysis and Implementation 465

4.3. Properties

We summarize the properties of Algorithm 4.1 in the following proposition. Since
r0 =br0 by (4.4), ν (see §3.2) is also the degree of pmin(λ;A, r0).

Proposition 4.1. Under the assumptions of Proposition 3.1, ifωgn(k)+1 6= 0 and 1/ωgn(k)+1 6∈
σ(A) for 1 ≤ k ≤ ν − 1, where σ(A) is the spectrum of A, then Algorithm 4.1 does not break

down by zero division for k = 1,2, · · · ,ν , and xν is an exact solution of (1.1). Moreover, the

computed quantities satisfy

(a) xk ∈ x0 +Kgn(k)+k+1(A, r0) and rk = b− Axk ∈ r0 + AKgn(k)+k+1(A, r0) for 1 ≤ k ≤
ν − 1.

(b) rk 6= 0 for 1≤ k ≤ ν − 1 and rν = 0.

(c) rk 6⊥ q1 for 1≤ k ≤ ν − 1 with rn(k) = n.

(d) uk ⊥ span{q1,q2, · · · ,qrn(k)
} and uk 6⊥ qrn(k)+1 for 1≤ k ≤ ν − 1 with rn(k)< n.

(e) dk ⊥ span{q1,q2, · · · ,qrn(k)
} and dk 6⊥ qrn(k)+1 for 1≤ k ≤ ν − 1 with rn(k)< n.

Proof. The divisors in Algorithm 4.1 are ck,‖Auk‖
2
2 and ωgn(k)+1 respectively, where

the ω’s have been assumed to be nonzero. By Proposition 3.1(c), we have Abrk 6= 0 for
1 ≤ k ≤ ν − 1. Since 1/ω 6∈ σ(A) by assumption, φgn(k)

(A) is nonsingular. Hence Auk =

φgn(k)
(A)Abrk 6= 0 (see (4.3) for the first equation). Therefore, ‖Auk‖2 6= 0 for 1 ≤ k ≤

ν − 1.
ck is defined respectively in Lines 36 and 47 in the algorithm. When rn(k) < n, we

have ck = qH
rn(k+1)dk. In this case,

ck =−ωgn(k)+1qH
rn(k+1)Aφgn(k)

(A)bgk = −ωgn(k)+1qH
rn(k+1)Aφgn(k+1)(A)bgk

=−ωgn(k)+1c
(gn(k+1))
gn(k+1) pH

k+1Abgk = −ωgn(k)+1c
(gn(k))

gn(k)
pH

k+1Abgk = c
(gn(k)+1)
gn(k)+1 pH

k+1Abgk,

by (4.3), Proposition 2.1(d), Corollary 3.1, (4.1) and (4.2). Since the ω’s are nonzero by
assumption and pH

k+1Abgk 6= 0 by Proposition 3.1(g), we have c
(gn(k)+1)
gn(k)+1 6= 0 by (4.2) and

hence ck 6= 0. When rn(k) = n, on the other hand,

ck = qH
rn(k+1)wk = qH

rn(k+1)Agk.

In this case,

ck = qH
rn(k+1)Aφgn(k)+1(A)bgk = qH

rn(k+1)Aφgn(k+1)(A)bgk

= c
(gn(k+1))
gn(k+1) pH

k+1Abgk = c
(gn(k)+1)
gn(k)+1 pH

k+1Abgk 6= 0.

Therefore, in either case, we always have ck 6= 0 for 1≤ k ≤ ν−1. Moreover, c0 = qH
1 w0 =

qH
1 Ag0 according to Line 2 of the algorithm. Since p1 = q1 by (3.1) and g0 = bg0 by (4.4),

c0 6= 0 by Proposition 3.1(g).

466 Man-Chung Yeung

Now that ‖Auk‖2 6= 0, ωgn(k)+1 6= 0 for 1 ≤ k ≤ ν − 1 and ck 6= 0 for 0 ≤ k ≤ ν − 1,
Algorithm 4.1 does not break down by zero division in the first ν − 1 iterations. When
k = ν , uk = uν = φgn(ν)

(A)brν = 0 and rk = rν = φgn(ν)+1(A)brν = 0 due to brν = 0 by
Proposition 3.1. If it happens that rn(ν) = 1, then the xk(= xν) in Line 7 is an exact
solution to system (1.1) because its residual uν is zero. So, the algorithm stops there.
Otherwise, the xk(= xν) in Line 16 will be exact with residual rν = 0 and where the
algorithm stops.

Part (a) follows from the definition of rk in (4.3) and Proposition 3.1(a).
Since brk 6= 0 for 1 ≤ k ≤ ν − 1 by Proposition 3.1(b) and φgn(k)+1(A) is nonsingular

due to 1/ω 6∈ σ(A), we have rk = φgn(k)+1(A)brk 6= 0. Therefore, Part (b) holds.
For Part (c), write k = jn+ n with 0≤ j. By (4.3), (4.1) and Corollary 3.1, we have

qH
1 rk = qH

1 φgn(k)+1(A)brk = qH
rn((j+1)n+1)φgn((j+1)n+1)(A)brk

= qH
rn(k+1)φgn(k+1)(A)brk = c

(gn(k+1))
gn(k+1) pH

k+1brk = c
(gn(k)+1)
gn(k)+1 pH

k+1brk.

Now Part (c) follows from Proposition 3.1(d) and c
(gn(k)+1)
gn(k)+1 6= 0.

For the proof of Part (d), we first note that Algorithm 4.1 does not compute uk when
rn(k) = n (see Lines 13 - 15). Write k = jn+ i as in (2.1) and let 1 ≤ t ≤ i < n. Then
rn(k) = i, gn(k) = j = gn(jn+ t) and rn(jn+ t) = t. Now, by (4.3) and Corollary 3.1, we
have

qH
t uk = qH

t φgn(k)
(A)brk = qH

rn(jn+t)
φgn(jn+t)(A)brk = c

(gn(jn+t))

gn(jn+t)
pH

jn+tbrk.

Since pH
jn+t
brk = 0 by Proposition 3.1(d), qH

t uk = 0 for 1≤ t ≤ i. Similarly,

qH
i+1uk = c

(gn(k))

gn(k)
pH

jn+i+1brk = c
(gn(k))

gn(k)
pH

k+1brk

(the validity of the first equation requires i < n). Because of Proposition 3.1(d) and
c
(gn(k))

gn(k)
6= 0, qH

i+1uk 6= 0.
Similar to the quantity uk, Algorithm 4.1 does not compute dk when rn(k) = n (see

Lines 39 - 47). By (4.3), dk = −ωgn(k)+1Aφgn(k)
(A)bgk and the proof of Part (e) is parallel

to that of Part (d). �

The conditions of ωgn(k)+1 6= 0 and 1/ωgn(k)+1 6∈ σ(A) can be easily made satisfied.
For example, one can add some small random noise to ωgn(k)+1 after it is computed. The
following theorem then holds from Proposition 4.1, Corollary 3.2 and Remark 3.2(ii).

Theorem 4.1. If q1, · · · ,qn are vectors with independent and continuous random elements

and if some small and continuous random number is added to ωgn(k)+1 after it is computed,

then Algorithm 4.1 will work almost surely without breakdown by zero division to find a

solution of (1.1) from the affine subspace x0 +K(A, r0) provided that x0 is chosen such that

the affine subspace contains a solution to (1.1).

Proposition 4.1 indicates that exact solution can only be found at iteration k = ν . It
is possible, however, that ‖rk‖2 can become very small for some k < ν . In practice, we
terminate the algorithm when ‖rk‖2 falls within a given tolerance.

ML(n)BiCGStab: Reformulation, Analysis and Implementation 467

Theorem 4.1 guarantees that an exact breakdown is almost impossible. However,
ML(n)BiCGStab can encounter a near breakdown in its implementation. Besides the two
types of breakdown of ML(n)BiCG, ML(n)BiCGStab has one more type of breakdown
caused by ωgn(k)+1. In more details, the divisors in Algorithm 4.1 are ck,‖Auk‖

2
2 and

ωgn(k)+1. If ‖Auk‖2 ≈ 0, then ωgn(k)+1 ≈ ∞ and a breakdown due to the overflow of
ωgn(k)+1 occurs. It can be shown (see the proof of Proposition 4.1) that

ck = c
(gn(k)+1)
gn(k)+1 pH

k+1Abgk,

where c
(gn(k)+1)
gn(k)+1 is the leading coefficient of φgn(k)+1(λ) (see (4.1)). So, ck is a quantity

that relates to ωgn(k)+1 and the ML(n)BiCG divisor pH
k+1Abgk. Thus, either ωgn(k)+1 ≈ 0 or

pH
k+1Abgk ≈ 0 can cause ck ≈ 0.

A breakdown-free ML(n)BiCGStab algorithm was derived in [17].

5. A Second ML(n)BiCGStab Algorithm

If we write k = jn+ i as in (2.1), then the rk defined by (4.3) become

r jn+i = φ j+1(A)br jn+i (5.1)

where i = 1,2, · · · , n and j = 0,1,2, · · · . (5.1) increases the degree of the polynomial φ
by 1 at the beginning of every cycle (see §1 for the definition of a cycle). For example,
consider n= 3. Then (5.1) implies that

r1 = φ1(A)br1, r4 = φ2(A)br4, r7 = φ3(A)br7,
r2 = φ1(A)br2, r5 = φ2(A)br5, r8 = φ3(A)br8,
r3 = φ1(A)br3, r6 = φ2(A)br6, r9 = φ3(A)br9.

Iteration k = 4 is the first iteration of the second cycle and the degree of φ is increased
from 1 to 2 there.

One can define rk by increasing the degree of φ by one anywhere within a cycle.
Increasing the degree of φ at a different moment in a cycle gives a different value for
ω and hence a different polynomial φ. So the resulting algorithms are different. As
an illustration, let us increase the degree at the end of a cycle and derive the algorithm
associated with it.

5.1. Notation and Definitions

Let φk(λ) be defined as in (1.2). For k ∈ N, define

rk = φgn(k+1)(A)brk, gk = φgn(k+1)(A)bgk,
uk = φgn(k)

(A)brk, wk = Agk
(5.2)

and set
r0 =br0 and g0 = bg0. (5.3)

468 Man-Chung Yeung

We remark that rk = uk when rn(k)< n since gn(k+ 1) = gn(k) in this case.
Definition (5.2) increases the degree of φ at the end of a cycle. To see this, let n = 3.

Then (5.2) yields

r1 = φ0(A)br1, r4 = φ1(A)br4, r7 = φ2(A)br7,
r2 = φ0(A)br2, r5 = φ1(A)br5, r8 = φ2(A)br8,
r3 = φ1(A)br3, r6 = φ2(A)br6, r9 = φ3(A)br9.

5.2. Algorithm Derivation

To derive the algorithm associated with (5.2), we first transform Algorithm 3.1 (forget-
ting Lines 1, 2, 5 and 11) into the following version which is computationally equivalent
to Algorithm 3.1, but is more convenient for us to apply Proposition 2.1.

Derivation Stage #5.

1. For k = 1,2, · · · , until convergence:
2. αk = pH

k
brk−1/p

H
k

Abgk−1;
3. If rn(k)< n

4. brk = brk−1 −αkAbgk−1;
5. For s =max(k− n, 0), · · · , gn(k)n− 1

6. β (k)
s
=−pH

s+1A
�
brk +
∑s−1

t=max(k−n,0) β
(k)
t bgt

��
pH

s+1Abgs;

7. End
8. For s = gn(k)n, · · · , k− 1

9. β (k)
s
=−pH

s+1A
�
brk +
∑gn(k)n−1

t=max(k−n,0) β
(k)
t bgt +
∑s−1

t=gn(k)n
β
(k)
t bgt

��
pH

s+1Abgs;

10. End

11. bgk = brk +
∑gn(k)n−1

s=max(k−n,0) β
(k)
s
bgs +
∑k−1

s=gn(k)n
β (k)

s
bgs;

12. Else
13. brk = brk−1 −αkAbgk−1;
14. For s = gn(k)n, · · · , k− 1

15. β (k)
s
=−pH

s+1A
�
brk +
∑s−1

t=gn(k)n
β
(k)
t bgt

��
pH

s+1Abgs;

16. End

17. bgk = brk +
∑k−1

s=gn(k)n
β (k)

s
bgs;

18. End
19. End

Then we transform DS#5 as follows by Corollary 3.1.

Derivation Stage #6.

1. For k = 1,2, · · · , until convergence:
2. αk = qH

rn(k)
φgn(k)

(A)brk−1/q
H
rn(k)

Aφgn(k)
(A)bgk−1;

ML(n)BiCGStab: Reformulation, Analysis and Implementation 469

3. If rn(k)< n

4. φgn(k)
(A)brk = φgn(k)

(A)brk−1 −αkAφgn(k)
(A)bgk−1;

5. For s =max(k− n, 0), · · · , gn(k)n− 1

6. β (k)
s
= qH

rn(s+1)

�
φgn(s+1)+1(A)brk − ωgn(s+1)+1

∑s−1
t=max(k−n,0) β

(k)
t

Aφgn(s+1)(A)bgt

��
ωgn(s+1)+1qH

rn(s+1)Aφgn(s+1)(A)bgs;
7. End
8. For s = gn(k)n, · · · , k− 1

9. β (k)
s
= −qH

rn(s+1)A
�
φgn(s+1)(A)brk +

∑gn(k)n−1
t=max(k−n,0) β

(k)
t φgn(s+1)(A)bgt

+
∑s−1

t=gn(k)n
β
(k)
t φgn(s+1)(A)bgt

��
qH

rn(s+1)Aφgn(s+1)(A)bgs;

10. End

11. φgn(k+1)(A)bgk = φgn(k+1)(A)brk + (I−ωgn(k+1)A)
∑gn(k)n−1

s=max(k−n,0) β
(k)
s
φgn(k+1)−1(A)bgs

+
∑k−1

s=gn(k)n
β (k)

s
φgn(k+1)(A)bgs;

12. Else
13. φgn(k)

(A)brk = φgn(k)
(A)brk−1 −αkAφgn(k)

(A)bgk−1;
14. φgn(k+1)(A)brk = (I−ωgn(k+1)A)φgn(k+1)−1(A)brk;
15. For s = gn(k)n, · · · , k− 1

16. β (k)
s
= qH

rn(s+1)

�
φgn(s+1)+1(A)brk −ωgn(s+1)+1

∑s−1
t=gn(k)n

β
(k)
t

Aφgn(s+1)(A)bgt

��
ωgn(s+1)+1qH

rn(s+1)Aφgn(s+1)(A)bgs;
17. End
18. φgn(k+1)(A)bgk = φgn(k+1)(A)brk + (I−ωgn(k+1)A)

∑k−1
s=gn(k)n

β (k)
s
φgn(k+1)−1(A)bgs;

19. End
20. End

Lines 4, 11, 13 and 18, DS#6, were obtained from Lines 4, 11, 13 and 17, DS#5, by
multiplying them with φgn(k)

(A) and φgn(k+1)(A) respectively. Line 14, DS#6, is a direct
result of the definition (1.2) of φ.

Now we use Proposition 2.1 to write DS#6 as

Derivation Stage #7.

1. For k = 1,2, · · · , until convergence:
2. αk = qH

rn(k)
φgn(k)

(A)brk−1/q
H
rn(k)

Aφgn(k)
(A)bgk−1;

3. If rn(k)< n

4. φgn(k+1)(A)brk = φgn(k)
(A)brk−1−αkAφgn(k)

(A)bgk−1;
5. For s =max(k− n, 0), · · · , gn(k)n− 1

6. β (k)
s
= qH

rn(s+1)

�
φgn(k+1)(A)brk − ωgn(k+1)

∑s−1
t=max(k−n,0)

β
(k)
t Aφgn(t+1)(A)bgt

��
ωgn(k+1)q

H
rn(s+1)Aφgn(s+1)(A)bgs;

7. End

470 Man-Chung Yeung

8. For s = gn(k)n, · · · , k− 1

9. β (k)
s
=−qH

rn(s+1)A
�
φgn(k+1)(A)brk +

∑gn(k)n−1
t=max(k−n,0) β

(k)
t φgn(t+1)+1(A)bgt

+
∑s−1

t=gn(k)n
β
(k)
t φgn(t+1)(A)bgt

��
qH

rn(s+1)Aφgn(s+1)(A)bgs;

10. End

11. φgn(k+1)(A)bgk = φgn(k+1)(A)brk + (I−ωgn(k+1)A)
∑gn(k)n−1

s=max(k−n,0) β
(k)
s
φgn(s+1)(A)bgs

+
∑k−1

s=gn(k)n
β (k)

s
φgn(s+1)(A)bgs;

12. Else
13. φgn(k)

(A)brk = φgn(k)
(A)brk−1−αkAφgn(k)

(A)bgk−1;
14. φgn(k+1)(A)brk = (I−ωgn(k+1)A)φgn(k)

(A)brk;
15. For s = gn(k)n, · · · , k− 1

16. β (k)
s
= qH

rn(s+1)

�
φgn(k+1)(A)brk −ωgn(k+1)

∑s−1
t=gn(k)n

β
(k)
t

Aφgn(t+1)(A)bgt

��
ωgn(k+1)q

H
rn(s+1)Aφgn(s+1)(A)bgs;

17. End

18. φgn(k+1)(A)bgk = φgn(k+1)(A)brk + (I−ωgn(k+1)A)
∑k−1

s=gn(k)n
β (k)

s
φgn(s+1)(A)bgs;

19. End
20.End

We remark that the term φgn(t+1)+1(A)bgt in the first sum in Line 9 can be further
written as

φgn(t+1)+1(A)bgt = (I−ωgn(t+1)+1A)φgn(t+1)(A)bgt

= (I−ωgn(k+1)A)φgn(t+1)(A)bgt .
(5.4)

Substituting (5.4) and (5.2) into DS#7 then yields a set of updating relations of the
vectors defined by (5.2).

Derivation Stage #8.

1. For k = 1,2, · · · , until convergence:
2. αk = qH

rn(k)
rk−1/q

H
rn(k)

wk−1;
3. If rn(k)< n

4. rk = rk−1 −αkwk−1;
5. For s =max(k− n, 0), · · · , gn(k)n− 1

6. β (k)
s
= qH

rn(s+1)

�
rk − ωgn(k+1)

∑s−1
t=max(k−n,0) β

(k)
t wt

��
ωgn(k+1)q

H
rn(s+1)ws;

7. End
8. For s = gn(k)n, · · · , k− 1

9. β (k)
s
=−qH

rn(s+1)

�
Ark +
∑gn(k)n−1

t=max(k−n,0) β
(k)
t (I−ωgn(k+1)A)wt

+
∑s−1

t=gn(k)n
β
(k)
t wt

��
qH

rn(s+1)ws;

10. End

11. gk = rk −ωgn(k+1)

∑gn(k)n−1
s=max(k−n,0) β

(k)
s

ws +
∑gn(k)n−1

s=max(k−n,0) β
(k)
s

gs +
∑k−1

s=gn(k)n
β (k)

s
gs;

ML(n)BiCGStab: Reformulation, Analysis and Implementation 471

12. Else
13. uk = rk−1 −αkwk−1;
14. rk = (I−ωgn(k+1)A)uk;
15. For s = gn(k)n, · · · , k− 1

16. β (k)
s
= qH

rn(s+1)

�
rk −ωgn(k+1)

∑s−1
t=gn(k)n

β
(k)
t wt

��
ωgn(k+1)q

H
rn(s+1)ws;

17. End

18. gk = rk −ωgn(k+1)

∑k−1
s=gn(k)n

β (k)
s

ws +
∑k−1

s=gn(k)n
β (k)

s
gs;

19. End
20. End

DS#8 does not contain any update about wk. For the updates, we multiply the equa-
tions in Lines 11 and 18 by A to get

wk =A(rk −ωgn(k+1)

gn(k)n−1∑

s=max(k−n,0)

β (k)s ws) +

gn(k)n−1∑

s=max(k−n,0)

β (k)s ws

+

k−1∑

s=gn(k)n

β (k)s ws (5.5)

if rn(k)< n, and

wk = A(rk −ωgn(k+1)

k−1∑

s=gn(k)n

β (k)s ws) +

k−1∑

s=gn(k)n

β (k)s ws (5.6)

if rn(k) = n.
Again, we consider rk to be a residual. To be consistent with Lines 4, 13 and 14, we

update the approximate solution xk as

xk =

¨
xk−1+αkgk−1, if rn(k)< n,
ωgn(k+1)uk + xk−1+αkgk−1, if rn(k) = n.

(5.7)

Now adding (5.5)-(5.7) to DS#8 and simplifying the operations appropriately, we then
arrive at the following algorithm. The free parameter ωgn(k+1) is chosen to minimize the
2-norm of rk.

Algorithm 5.1. ML(n)BiCGStab without preconditioning associated with (5.2)

1. Choose an initial guess x0 and n vectors q1,q2, · · · ,qn.

2. Compute r0 = b−Ax0 and g0 = r0, w0 = Ag0, c0 = qH
1 w0.

3. For k = 1,2, · · · , until convergence:

4. αk = qH
rn(k)

rk−1/ck−1;

5. If rn(k)< n

6. xk = xk−1 +αkgk−1;

472 Man-Chung Yeung

7. rk = rk−1 −αkwk−1;

8. zw = rk, gk = 0;

9. For s =max(k− n, 0), · · · , gn(k)n− 1
10. β̃ (k)

s
=−qH

rn(s+1)zw

�
cs; % β̃ (k)

s
=−β (k)

s
ωgn(k+1)

11. zw = zw + β̃
(k)
s

ws;

12. gk = gk + β̃
(k)
s

gs;

13. End

14. gk = zw −
1

ωgn(k+1)
gk; wk = Agk;

15. For s = gn(k)n, · · · , k− 1
16. β (k)

s
=−qH

rn(s+1)wk

�
cs;

17. wk =wk + β
(k)
s

ws;

18. gk = gk +β
(k)
s

gs;

19. End

20. Else

21. xk = xk−1 +αkgk−1;

22. uk = rk−1 −αkwk−1;

23. ωgn(k+1) = (Auk)
Huk/‖Auk‖

2
2;

24. xk = xk +ωgn(k+1)uk;

25. rk =−ωgn(k+1)Auk + uk;

26. zw = rk, gk = 0;

27. For s = gn(k)n, · · · , k− 1
28. β̃ (k)

s
=−qH

rn(s+1)zw

�
cs; % β̃ (k)

s
=−β (k)

s
ωgn(k+1)

29. zw = zw + β̃
(k)
s

ws;

30. gk = gk + β̃
(k)
s

gs;

31. End

32. gk = zw −
1

ωgn(k+1)
gk; wk = Agk;

33. End

34. ck = qH
rn(k+1)wk;

35.End

We remark that (i) the algorithm does not compute uk when rn(k)< n. In fact, uk = rk

when rn(k) < n (see the remark right after (5.3)); (ii) if the uk in Line 22 happens to be
zero, then the xk in Line 21 will be the exact solution to system (1.1) and the algorithm
stops there.

The cost and storage requirement, obtained from its preconditioned version, Algo-
rithm 9.2 in §9, are listed in Table 3. Compared to Algorithm 4.1, Algorithm 5.1 saves
about 20% in saxpy. Since only three sets of vectors {q1, · · · ,qn}, {gk−n, · · · ,gk−1} and
{wk−n, · · · ,wk−1} are needed in iteration k, the storage is about 3nN besides storing A and
M.

ML(n)BiCGStab: Reformulation, Analysis and Implementation 473Table 3: Average
ost per k-iteration of Algorithm 9.2 and its storage requirement. This table does not
ount the
osts in Lines 1-2 of the algorithm.
Preconditioning M−1v 1+ 1/n u± v, αv 1

Matvec Av 1+ 1/n Saxpy u+αv 2n+ 2+ 2/n
dot product uHv n+ 1+ 2/n Storage A+M+ (3n+ 5)N +O(n)

5.3. Properties

We summarize the properties about Algorithm 5.1 below. Their proofs are similar to
those in Proposition 4.1. Since r0 =br0 by (5.3), ν is also the degree of pmin(λ;A, r0).

Proposition 5.1. Under the assumptions of Proposition 3.1, ifωgn(k+1) 6= 0 and 1/ωgn(k+1) 6∈
σ(A) for 1 ≤ k ≤ ν − 1, then Algorithm 5.1 does not break down by zero division for k =

1,2, · · · ,ν , and the approximate solution xν at step k = ν is exact to the system (1.1).
Moreover, the computed quantities satisfy

(a) xk ∈ x0+span{r0,Ar0, . . . ,Agn(k+1)+k−1r0} and rk = b−Axk ∈ r0+span{Ar0,A2r0, . . . ,
Agn(k+1)+kr0} for 1≤ k ≤ ν − 1.

(b) rk 6= 0 for 1≤ k ≤ ν − 1; rν = 0.

(c) rk ⊥ span{q1,q2, · · · ,qrn(k)
} and rk 6⊥ qrn(k)+1 for 1 ≤ k ≤ ν − 1 with rn(k) < n;

rk 6⊥ q1 for 1≤ k ≤ ν − 1 with rn(k) = n.

(d) uk ⊥ span{q1,q2, · · · ,qn} for 1≤ k ≤ ν with rn(k) = n.

(e) Agk ⊥ span{q1,q2, · · · ,qrn(k)
} and Agk 6⊥ qrn(k)+1 for 1 ≤ k ≤ ν − 1 with rn(k) < n;

Agk 6⊥ q1 for 1≤ k ≤ ν − 1 with rn(k) = n.

6. Relations to Some Existing Methods

In this section, we discuss the relations of ML(n)BiCGStab with the FOM, BiCGStab
and IDR(s) methods under the assumptions of Proposition 3.1.

6.1. Algorithm 4.1

1. Relation with FOM [21]. Consider the case where n ≥ ν . In this case, gn(k) = 0 and
rn(k) = k for k = 1,2, · · · ,ν .‖ Hence pk = qk by (3.1). If we choose qk = brk−1 in
Algorithm 3.1 (it is possible since brk−1 is computed before qk is used), then the bxk

and brk computed by the algorithm satisfy
¨
bxk ∈ bx0 + span{br0,Abr0, . . . ,Ak−1br0},
brk ⊥ span{br0,br1, . . . ,brk−1}

(6.1)

‖We are only concerned about the first ν iterations since ML(n)BiCG and ML(n)BiCGStab converge at the ν -th
iteration.

474 Man-Chung Yeung

for 1 ≤ k ≤ ν by Proposition 3.1(a), (d). (6.1) is what the FOM approximate solu-
tion xFOM

k
needs to satisfy. Therefore, when n ≥ ν and with the choice qk = brk−1,

Algorithm 3.1 is mathematically equivalent to FOM.

Now, from (4.3), the rk computed by Algorithm 4.1 satisfies

rk = φgn(k)+1(A)brk = φ1(A)brk = (I−ω1A)brk.

Note that uk = φgn(k)
(A)brk = φ0(A)brk = brk. Thus, for 1 ≤ k ≤ ν , rk is the factor

I−ω1A times the FOM residual uk if we set q1 = r0 and qk+1 = uk in Algorithm
4.1.∗∗

2. Relation with BiCGStab [31]. When n = 1, we have gn(k) = k− 1 and rn(k) = 1 for

k ∈ N. Hence pk =
�

AH
�k−1

q1 by (3.1). By Proposition 3.1(a) and (d), the bxk and
brk computed by Algorithm 3.1 satisfy

¨
bxk ∈ bx0 + span{br0,Abr0, . . . ,Ak−1br0}

brk ⊥ span{q1,AHq1, . . . ,
�

AH
�k−1

q1}
(6.2)

for 1 ≤ k ≤ ν . (6.2) is what the BiCG approximate solution xBiCG
k

needs to satisfy.
Therefore, when n= 1, Algorithm 3.1 is mathematically equivalent to BiCG.

Now, from (4.3), the rk computed by Algorithm 4.1 satisfies

rk = φgn(k)+1(A)brk = φk(A)brk

which is the definition of the BiCGStab residuals. Thus Algorithm 4.1 is mathemati-
cally equivalent to BiCGStab when n= 1.

3. Relation with IDR(s) [30]. Write k = jn+ i as in (2.1) with 1 ≤ i ≤ n, 0 ≤ j. Let
G0 = K(A, r0) be the complete Krylov subspace and let S = span{q1,q2, · · · ,qn}

⊥.
Define the Sonneveld spaces

G j+1 = (I−ω j+1A)(G j ∩ S) = (I−ωgn(k)+1A)(G j ∩ S)

for j = 0,1,2, · · · . By (4.3), we have

r jn+i = φ j+1(A)br jn+i = (I−ω j+1A)φ j(A)br jn+i = (I−ω j+1A)u jn+i.

From Proposition 4.1(d), u jn+i 6⊥ qi+1 if i < n. Hence u jn+i 6∈ G j ∩ S and therefore
r jn+i 6∈ G j+1 when i < n. From this point of view, Algorithm 4.1 is not a IDR(n)
algorithm.

∗∗In [39], a remark immediately following Theorem 4.1 states that, when n ≥ ν and with the choice that
q1 = φ1(A

H)φ1(A)r0 and qk = φ1(A
H)rk−1 for k ≥ 2, the xk and rk computed by Algorithm 2 (which is

mathematically equivalent to Algorithm 4.1 of this paper) will satisfies (6.1) and therefore Algorithm 2 is a
FOM. The argument there about the remark is not correct. The author remembers that the referees of [39]
were skeptical about that argument.

ML(n)BiCGStab: Reformulation, Analysis and Implementation 475

However, if we regard r jn+i with 1≤ i < n as auxiliary vectors and instead, consider
the followings as residuals

u jn+1, · · · , u jn+n−1, r jn+n (6.3)

where j = 0,1,2, · · · . Then Algorithm 4.1 is a IDR(n) algorithm — the parameter ω,
however, is different from the ω of the IDR algorithm in [30] since they are selected
to minimize the norm of different residuals. In fact, by (3.1) and Proposition 3.1(d),
we have ¨

φt(A)br jn+i ∈ S if 1≤ i < n and 0≤ t < j,
φt(A)br jn+n ∈ S if 0≤ t ≤ j.

Thus, by induction on t,
¨
φt(A)br jn+i ∈Gt ∩ S if 1≤ i < n and 0≤ t < j,
φt(A)br jn+n ∈Gt ∩ S if 0≤ t ≤ j.

Therefore, by (4.3),




u jn+i =bri ∈ G0 if 1≤ i < n, j = 0,
u jn+i = (I−ω jA)φ j−1(A)br jn+i ∈G j if 1≤ i < n, 1≤ j,
r jn+n = (I−ω j+1A)φ j(A)br jn+n ∈G j+1.

(6.4)

So, the residuals in (6.3) lie in the Sonneveld spaces G j.

That (6.4) holds becomes obvious if one applies the following result from [24] and
Proposition 3.1(d),

G j = {φ j(A)v |v⊥ span{p1,p2, · · · ,p jn} }. (6.5)

An early discussion of the relation between ML(n)BiCGStab and IDR(s) was made
in [30].

6.2. Algorithm 5.1

1. Relation with FOM. When n ≥ ν , gn(k) = 0 and rn(k) = k for 1 ≤ k ≤ ν and
Algorithm 3.1, with the choice qk = brk−1, is a FOM algorithm as seen in §6.1. Now,
from (5.2), the rk computed by Algorithm 5.1 satisfies

rk = φgn(k+1)(A)brk = φ0(A)brk =brk.

Thus Algorithm 5.1 is a FOM algorithm when we set qk = rk−1.

2. Relation with BiCGStab. When n= 1, we have gn(k) = k− 1 and rn(k) = 1 for k ∈ N
and Algorithm 3.1 is a BiCG algorithm. From (5.2), the rk computed by Algorithm
5.1 satisfies

rk = φgn(k+1)(A)brk = φk(A)brk

which is the definition of the BiCGStab residuals. Thus Algorithm 5.1 is mathemati-
cally equivalent to BiCGStab.

476 Man-Chung Yeung

3. Relation with IDR(s). Write k = jn+ i as in (2.1) with 1 ≤ i ≤ n, 0 ≤ j. By (5.2), we
have

r jn+i = φgn(jn+i+1)(A)br jn+i =

¨
φ j(A)br jn+i if 1≤ i < n,
φ j+1(A)br jn+i if i = n.

Thus, (6.5) and Proposition 3.1(d) yield

r jn+i ∈

¨
G j if 1≤ i < n,
G j+1 if i = n.

So, the residuals computed by Algorithm 5.1 lie in the G spaces and therefore it is a
IDR(n) algorithm.

7. Implementation Issues

A preconditioned ML(n)BiCGStab algorithm can be obtained by applying either Algo-
rithm 4.1 or Algorithm 5.1 to the system

AM−1y= b

where M is nonsingular, then recovering x through x = M−1y. The resulting algorithms,
Algorithm 9.1 and Algorithm 9.2, together with their Matlab codes are presented in §9. To
avoid calling the index functions rn(k) and gn(k) every k-iteration, we have split the k-loop
into a i-loop and a j-loop where i, j, k are related by (2.1) with 1≤ i ≤ n, 0≤ j. Moreover,
we have optimized the operations as much as possible in the resulting preconditioned
algorithms.

Since we have compared ML(n)BiCGStab with some existing methods in [39], we will
only concentrate on the performance of ML(n)BiCGStab itself. The following test data
were downloaded from Matrix Market at http://math.nist.gov/MatrixMarket/.

1. e20r0100, DRIVCAV Fluid Dynamics. e20r0100 contains a 4241× 4241 real unsym-
metric matrix A with 131,556 nonzero entries and a real right-hand side b.

2. qc2534, H2PLUS Quantum Chemistry, NEP Collection. qc2534 contains a 2534×
2534 complex symmetric indefinite matrix with 463,360 nonzero entries, but does
not provide the right-hand side b. Following [24], we set b = A1 with 1= [1, ,1, · · · ,
1]T .

3. utm5940, TOKAMAK Nuclear Physics (Plasmas). utm5940 contains a 5940× 5940
real unsymmetric matrix A with 83,842 nonzero entries and a real right-hand side
b.

All computing was done in Matlab Version 7.1 on a Windows XP machine with a Pen-
tium 4 processor. I LU(0) preconditioner (p.294, [20]) was used in all the experiments.
For e20r0100, the U-factor of the I LU(0) decomposition of A has some zeros along its

ML(n)BiCGStab: Reformulation, Analysis and Implementation 477

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 it

er
at

io
ns

 n
ee

de
d

to
 c

on
ve

rg
e

Parameter n (a)

BiCGSTAB: dashed

Algorithm 9.1: x−mark

Algorithm 9.2: o−mark

E20R0100

0 10 20 30 40 50 60 70 80 90 100
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

T
ru

e
re

la
tiv

e
er

ro
r

Parameter n (b)

10−7: solid

Algorithm 9.1: x−mark

Algorithm 9.2: o−mark

E20R0100

Figure 1: e20r0100: (a) Graphs of Iconv(n) against n. BiCGStab took 2620 iterations/5240 MVs to
onverge. Full GMRES
onverged with 308 MVs. (b) Graphs of E(n) against n.
main diagonal. In that experiment, we replaced those zeros by 1 so that the U-factor was
invertible.

In all the experiments, initial guess was x0 = 0 with the stopping criterion ‖rk‖2/‖b‖2 <
10−7 where rk was the computed residual. Except where specified, shadow vectors Q =

[q1,q2, · · · ,qn] were chosen to be Q = [r0, randn(N , n− 1)] for e20r0100 and utm5940

and Q= [r0, randn(N , n− 1)+ sqr t(−1) ∗ randn(N , n− 1)] for qc2534.
Moreover, for the convenience of our presentation, we introduce the following func-

tions:

(a) Tconv(n) is the time that a ML(n)BiCGStab algorithm takes to converge.

(b) Iconv(n) is the number of k-iterations (not iteration cycles) that a ML(n)BiCGStab
algorithm takes to converge.

(c) E(n)≡ ‖b−Ax‖2/‖b‖2 is the true relative error of x where x is the computed solution
output by a ML(n)BiCGStab algorithm when it converges.

7.1. Stability

We plot the graphs of Iconv(n) in Figures 1(a), 2(a) and 3(a). For e20r0100 and qc2534,
Iconv(n) decreases as n increases. However, the Iconv(n) for utm5940 behaves very irregu-
larly due to some of the ω’s are too small.

The graphs of E(n) are plotted in Figures 1(b), 2(b) and 3(b). It can be seen that the
computed relative errors ‖rk‖2/‖b‖2 by Algorithm 9.2 can significantly diverge from its
exact counterpart ‖b−Axk‖2/‖b‖2. By contrast, the computed ‖rk‖2/‖b‖2 by Algorithm 9.1
well approximate their corresponding true ones. Thus, from this point of view, we consider
that Algorithm 9.1 is numerically more stable than Algorithm 9.2. One explanation about
this difference in stability is the following. Recall that wk = Agk by definition (see (4.3)
and (5.2)). In Algorithm 4.1, wk is updated by wk = Agk (see Lines 37 and 47) for all k.
In Algorithm 5.1, however, wk is updated by wk = Agk only when rn(k) = n (see Line 32).

478 Man-Chung Yeung

0 10 20 30 40 50 60 70 80 90 100
220

240

260

280

300

320

340

360

N
um

be
r

of
 it

er
at

io
ns

 n
ee

de
d

to
 c

on
ve

rg
e

Parameter n (a)

BiCGSTAB: dashed

Algorithm 9.1: x−mark

Algorithm 9.2: o−mark

QC2534

0 10 20 30 40 50 60 70 80 90 100
10

−8

10
−7

10
−6

10
−5

T
ru

e
re

la
tiv

e
er

ro
r

Parameter n (b)

10−7: solid

Algorithm 9.1: x−mark

Algorithm 9.2: o−mark

QC2534

Figure 2: q
2534: (a) Graphs of Iconv(n) against n. BiCGStab took 329 iterations/658 MVs to
onverge.Full GMRES
onverged with 439 MVs. (b) Graphs of E(n) against n.
0 10 20 30 40 50 60 70 80 90 100

180

200

220

240

260

280

300

320

340

N
um

be
r

of
 it

er
at

io
ns

 n
ee

de
d

to
 c

on
ve

rg
e

Parameter n (a)

BiCGSTAB: dashed

Algorithm 9.1: x−mark

Algorithm 9.2: o−mark

UTM5940

0 10 20 30 40 50 60 70 80 90 100
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

T
ru

e
re

la
tiv

e
er

ro
r

Parameter n (b)

10−7: solid

Algorithm 9.1: x−mark

Algorithm 9.2: o−mark

UTM5940

Figure 3: utm5940: (a) Graphs of Iconv(n) against n. BiCGStab took 228 iterations/455 MVs to
onverge. Full GMRES
onverged with 176 MVs. (b) Graphs of E(n) against n.
As a result, the rk’s computed by Algorithm 4.1 (see Lines 6, 10 and 17) are closer to the
true residuals b−Axk than those computed by Algorithm 5.1. This observation has led to a
ML(n)BiCGStab algorithm which updates wk by wk = Agk for all k, has less computational
cost than Algorithm 5.1, but involves AH in its implementation. See [37] for details.

We remark that the issues of divergence of computed residuals and corresponding rem-
edy techniques were discussed in details in [26,33].

7.2. Choice of n

In this and the following subsections, we will focus on Algorithm 9.1.
From the experiments in [39] and this paper, we have observed that ML(n)BiCGStab

behaves more and more robust as n is increased. So, for an ill-conditioned system, we
would tend to suggest a large n for ML(n)BiCGStab. On the other hand, ML(n)BiCGStab
minimizes ‖rk‖2 once every n k-iterations. Notice that the convergence of a well-conditioned
system is usually accelerated by the minimization steps. So, when a problem is well-
conditioned, we would suggest a small n.

ML(n)BiCGStab: Reformulation, Analysis and Implementation 479

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

T
im

e
ne

ed
ed

 to
 c

on
ve

rg
e

in
 s

ec
on

ds

Parameter n (a)

Algorithm 9.1: x−mark

E20R0100

0 10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

9

10

11

12

T
im

e
ne

ed
ed

 to
 c

on
ve

rg
e

in
 s

ec
on

ds

Parameter n (b)

Algorithm 9.1: x−mark

QC2534

Figure 4: Graphs of Tconv(n) of Algorithm 9.1 against n. (a) e20r0100: Tconv(n) rea
hes its minimum at
n= 22. (b) q
2534: Tconv(n) rea
hes its minimum at n = 8.

In [30,34], it is suggested to fix s at 4 or 8 for the general use of IDR(s). This idea also
applies to ML(n)BiCGStab.

In the case where a sequence of linear systems is solved, one can fix the parameter
n for the overall solution process or alternatively one can choose n dynamically based on
the information obtained from the solution of previous systems. We once tested the Matlab
code of Algorithm 9.1 in §9.1, translated into Fortran and with n= 9, κ= 0 (see §7.3 for κ)
and I LU(0) preconditioners, on the standard oil reservoir simulation test data called SPE9
at University of Calgary. We found that ML(n)BiCGStab reduced the total computational
time by over 70% when compared to BiCGStab. A later test on SPE9 with Code #4 in §9.3,
at Jinan University, showed that a 60% reduction in time could be reached. Code #4 is a
design of an automatic selection of n during the solution process of a sequence of linear
systems. It tries to minimize the time per k-iteration of ML(n)BiCGStab.

We also plot the graphs of Tconv(n) in Figures 4 and 5(a) to provide more information
on how n affects the performance of ML(n)BiCGStab.

7.3. Choice of ω

The standard choice for ω j+1 in Algorithm 9.1 (see Line 8) is

ω j+1 = (Aeu jn+1)
Hu jn+1/‖Aeu jn+1‖

2
2. (7.1)

This choice of ω j+1 minimizes the 2-norm of r jn+1 = −ω j+1Aeu jn+1 + u jn+1 (see Line 10),
but sometimes can cause instability due to that it can be very small during an execution.
The following remedy to guard ω j+1 away from zero has been proposed in [25]:

ω j+1 = (Aeu jn+1)
Hu jn+1/‖Aeu jn+1‖

2
2;

ρ = (Aeu jn+1)
Hu jn+1/(‖Aeu jn+1‖2 ‖u jn+1‖2);

if |ρ|< κ, ω j+1 = κω j+1/|ρ|; end
(7.2)

where κ is a user-defined parameter. In Figures 5(b) and 6(a), we compare the perfor-
mances of Algorithm 9.1 with (7.1) and (7.2) respectively (we only plot the results of

480 Man-Chung Yeung

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

5

T
im

e
ne

ed
ed

 to
 c

on
ve

rg
e

in
 s

ec
on

ds

Parameter n (a)

Algorithm 9.1: x−mark

UTM5940

0 10 20 30 40 50 60 70 80 90 100
220

240

260

280

300

320

340

360

N
um

be
r

of
 it

er
at

io
ns

 n
ee

de
d

to
 c

on
ve

rg
e

Parameter n (b)

ω with (7.1): x mark

ω with (7.2): o mark

QC2534

Figure 5: (a) utm5940: Graph of Tconv(n) of Algorithm 9.1 against n. Tconv(n) rea
hes its minimum at
n = 6. (b) q
2534: Graphs of Iconv(n) of Algorithm 9.1 against n with
hoi
es (7.1) and (7.2) for ωrespe
tively. In this experiment, we pi
ked κ = 0.7.

0 10 20 30 40 50 60 70 80 90 100
180

200

220

240

260

280

300

320

340

N
um

be
r

of
 it

er
at

io
ns

 n
ee

de
d

to
 c

on
ve

rg
e

Parameter n (a)

ω with (7.1): x mark

ω with (7.2): o mark

UTM5940

0 10 20 30 40 50 60 70 80 90 100
200

220

240

260

280

300

320

340

360

N
um

be
r

of
 it

er
at

io
ns

 n
ee

de
d

to
 c

on
ve

rg
e

Parameter n (b)

Q with (7.3): x−mark

Q with (7.5): o−mark

UTM5940

Figure 6: utm5940: (a) Graphs of Iconv(n) of Algorithm 9.1 against n with
hoi
es (7.1) and (7.2) for
ω respe
tively. In this experiment, we pi
ked κ= 0.7. (b) Graphs of Iconv(n) of Algorithm 9.1 against nwith
hoi
es (7.3) and (7.5) for Q respe
tively.
qc2534 and utm5940. The result of e20r0100 with κ = 0.1 is analogous to Figure 5(b)).
Also, see the numerical experiments in [30] for more information about (7.2).

7.4. Choice of q’s

We usually pick

Q= [r0, randn(N , n− 1)] (7.3)

for a real problem and

Q= [r0, randn(N , n− 1) + sqr t(−1) ∗ randn(N , n− 1)] (7.4)

for a complex problem. In our experiments, however, we observed a comparable perfor-
mance when we chose

Q= [r0, si gn(randn(N , n− 1))] (7.5)

ML(n)BiCGStab: Reformulation, Analysis and Implementation 481

or
Q= [r0, si gn(randn(N , n− 1))+ sqr t(−1) ∗ si gn(randn(N , n− 1))]. (7.6)

See Figure 6(b) (we only plot the result of utm5940 for saving space).
The advantages of (7.5) and (7.6) over (7.3) and (7.4) are that (i) the storage of Q

is substantially reduced. In fact, we just need to store the random signs (except its first
column); (ii) an inner product with qi, 2 ≤ i ≤ n, is now reduced to a sum without
involving scalar multiplications.

For other choices for Q, one is referred to [30].

8. Conclusions

With the help of index functions, we re-derived the ML(n)BiCGStab algorithm in [39]
in a more systematic way. This time, we have been able to find out and remove some
redundant operations so that the algorithm becomes more efficient. We also recognized
that there were n ways to define the ML(n)BiCGStab residual rk. Each of the definitions
leads to a different algorithm. We presented two definitions together with their associated
algorithms, namely, (i) definition (4.3), increasing the degree of φ at the beginning of an
iteration cycle, and the associated Algorithm 4.1; (ii) definition (5.2), increasing the degree
of φ at the end of an iteration cycle, and the associated Algorithm 5.1. By comparison,
Algorithm 5.1 is cheaper in storage and computational cost, faster to converge, but less
stable. For other definitions of rk that increase the degree of φ somewhere within a cycle,
we expect that the associated algorithms would lie between Algorithms 4.1 and 5.1 in
computational cost, storage and performance.

We showed that the Lanczos-based BiCG/BiCGStab and the Arnoldi-based FOM are the
extreme cases of ML(n)BiCG /ML(n)BiCGStab.

In this paper, we did not assume that A is a nonsingular matrix. When a singular system
(1.1) is solved, selecting an appropriate initial guess bx0 is a crucial step. If bx0 is selected
such that the affine subspace bx0 + K(A,br0) contains a solution of (1.1), ML(n)BiCG will
almost surely converge (see Theorem 3.1). Otherwise, we shall have pmin(0,A,br0) = 0
(see Remark 3.2(ii)) which yields det(bSν) = 0 (see Lemma 3.2(c)). In this case, in the last
iteration k = ν , the LU-factorization in the construction of ML(n)BiCG does not exist (see
Remark 3.1(ii)). As a result, it is likely that ‖brν‖2 blows up to∞.†† A similar remark also
applies to ML(n)BiCGStab.

In the solution of a sequence of linear systems where BiCGStab is convergent through-
out the sequence, the parameter n in ML(n)BiCGStab can be chosen dynamically.

9. Appendix

In this section, we present the preconditioned ML(n)BiCGStab algorithms together with
their Matlab codes.

††Lemma 3.2, together with Remark 3.1(ii), indicates that ML(n)BiCG will run almost surely without encoun-
tering zero division from iteration k = 1 to iteration k = ν − 1 in any situation.

482 Man-Chung Yeung

9.1. ML(n)BiCGStab with Definition (4.3)

Algorithm 9.1 is a preconditioned version of Algorithm 4.1.

Algorithm 9.1. ML(n)BiCGStab with preconditioning associated with definition

(4.3).

1. Choose an initial guess x0 and n vectors q1,q2, · · · ,qn.
2. Compute r0 = b−Ax0 and set g0 = r0.

Compute eg0 =M−1g0, w0 = Aeg0, c0 = qH
1 w0 and e0 = qH

1 r0.
3. For j = 0,1,2, · · ·
4. α jn+1 = e(j−1)n+n/c(j−1)n+n;
5. u jn+1 = r(j−1)n+n −α jn+1w(j−1)n+n;
6. x jn+1 = x(j−1)n+n +α jn+1eg(j−1)n+n;
7. eu jn+1 =M−1u jn+1;
8. ω j+1 = (Aeu jn+1)

Hu jn+1/‖Aeu jn+1‖
2
2;

9. x jn+1 = x jn+1 +ω j+1eu jn+1;
10. r jn+1 =−ω j+1Aeu jn+1 + u jn+1;
11. For i = 1,2, · · · , n− 1
12. f jn+i = qH

i+1u jn+i;
13. If j ≥ 1
14. β

(jn+i)

(j−1)n+i
=− f jn+i

�
c(j−1)n+i ;

15. If i ≤ n− 2
16. zd = u jn+i + β

(jn+i)

(j−1)n+i
d(j−1)n+i;

17. g jn+i = β
(jn+i)

(j−1)n+i
g(j−1)n+i ;

18. zw = β
(jn+i)

(j−1)n+i
w(j−1)n+i ;

19. β
(jn+i)

(j−1)n+i+1 = −qH
i+2zd

�
c(j−1)n+i+1;

20. For s = i+ 1, · · · , n− 2
21. zd = zd +β

(jn+i)

(j−1)n+s
d(j−1)n+s;

22. g jn+i = g jn+i +β
(jn+i)

(j−1)n+s
g(j−1)n+s;

23. zw = zw + β
(jn+i)

(j−1)n+s
w(j−1)n+s;

24. β
(jn+i)

(j−1)n+s+1 = −qH
s+2zd

�
c(j−1)n+s+1;

25. End
26. g jn+i = g jn+i +β

(jn+i)

(j−1)n+n−1g(j−1)n+n−1;

27. zw = zw +β
(jn+i)

(j−1)n+n−1w(j−1)n+n−1;
28. zw = r jn+i −ω j+1zw;
29. Else
30. g jn+i = β

(jn+i)

(j−1)n+n−1g(j−1)n+n−1;

31. zw = r jn+i −ω j+1β
(jn+i)

(j−1)n+n−1w(j−1)n+n−1;
32. End
33. β

(jn+i)

(j−1)n+n
= qH

1 zw

�
(ω j+1c(j−1)n+n);

34. zw = zw −ω j+1β
(jn+i)

(j−1)n+n
w(j−1)n+n;

ML(n)BiCGStab: Reformulation, Analysis and Implementation 483

35. g jn+i = g jn+i + zw + β
(jn+i)

(j−1)n+n
g(j−1)n+n;

36. Else
37. β

(jn+i)

(j−1)n+n
= qH

1 r jn+i

�
(ω j+1c(j−1)n+n);

38. zw = r jn+i −ω j+1β
(jn+i)

(j−1)n+n
w(j−1)n+n;

39. g jn+i = zw +β
(jn+i)

(j−1)n+n
g(j−1)n+n;

40. End
41. For s = 1, · · · , i − 1
42. β

(jn+i)

jn+s
=−qH

s+1zw

�
c jn+s;

43. g jn+i = g jn+i + β
(jn+i)

jn+s
g jn+s;

44. zw = zw +β
(jn+i)

jn+s
d jn+s;

45. End
46. If i < n− 1
47. d jn+i = zw − u jn+i;
48. c jn+i = qH

i+1d jn+i;
49. eα jn+i+1 =− f jn+i/c jn+i ; % eα jn+i+1 = α jn+i+1/ω j+1
50. u jn+i+1 = u jn+i + eα jn+i+1d jn+i;
51. Else
52. c jn+i = qH

i+1(zw − u jn+i);
53. eα jn+i+1 =− f jn+i/c jn+i ; % eα jn+i+1 = α jn+i+1/ω j+1

54. End
55. eg jn+i =M−1g jn+i ; w jn+i = Aeg jn+i;
56. x jn+i+1 = x jn+i +ω j+1eα jn+i+1eg jn+i;
57. r jn+i+1 = r jn+i −ω j+1eα jn+i+1w jn+i;
58. End
59. e jn+n = qH

1 r jn+n; β (jn+n)

(j−1)n+n
= e jn+n

�
(ω j+1c(j−1)n+n);

60. zw = r jn+n −ω j+1β
(jn+n)

(j−1)n+n
w(j−1)n+n;

61. g jn+n = zw + β
(jn+n)

(j−1)n+n
g(j−1)n+n;

62. If n≥ 2
63. β

(jn+n)

jn+1 =−qH
2 zw

�
c jn+1;

64. For s = 1, · · · , n− 2
65. g jn+n = g jn+n +β

(jn+n)

jn+s
g jn+s;

66. zw = zw +β
(jn+n)

jn+s
d jn+s;

67. β
(jn+n)

jn+s+1 =−qH
s+2zw

�
c jn+s+1;

68. End
69. g jn+n = g jn+n +β

(jn+n)

jn+n−1g jn+n−1;
70. End
71. eg jn+n =M−1g jn+n; w jn+n = Aeg jn+n;
72. c jn+n = qH

1 w jn+n;
73. End

Code #1: Matlab code of Algorithm 9.1

484 Man-Chung Yeung

1. function [x , er r, i ter, f lag] = ml bicgstab(A, x , b,Q, M , max_i t, tol, kappa)

2.
3. % input: A: N-by-N matrix. M : N-by-N preconditioner matrix.
4. % Q: N-by-n auxiliary matrix [q1, · · · ,qn]. x: initial guess.
5. % b: right hand side vector. max_i t: maximum number of iterations.
6. % tol: error tolerance.
7. % kappa: (real number in [0,1]) minimization step controller:
8. % kappa = 0, standard minimization
9. % kappa > 0, Sleijpen-van der Vorst minimization
10.%output: x: solution computed. er r: error norm. i ter: number of iterations performed.
11.% f lag: = 0, solution found to tolerance
12.% = 1, no convergence given max_i t iterations
13.% =−1, breakdown.
14.% storage:D: N × (n− 2) matrix defined only when n> 2.
15.% G,Q,W : N × n matrices. A, M : N × N matrices.
16.% x , r, g_t,u, z, b: N × 1 matrices. c: 1× n matrix.
17.
18. N = size(A, 2); n= size(Q, 2);
19. G = zeros(N , n); W = zeros(N , n); % initialize work spaces
20. if n> 2, D = zeros(N , n− 2); end
21. c = zeros(1, n); % end initialization
22.
23. i ter = 0; f lag = 1; bnrm2= norm(b);
24. if bnrm2 == 0.0, bnrm2= 1.0; end
25.
26. r = b− A∗ x; er r = norm(r)/bnrm2;
27. if er r < tol, f lag = 0; return, end
28.
29. G(:, n) = r; g_t = M\r; W (:, n) = A∗ g_t; c(n) =Q(:, 1)′ ∗W (:, n);
30. if c(n) == 0, f lag =−1; return, end
31. e = Q(:, 1)′ ∗ r;
32.
33. for j = 0 : max_i t

34. alpha = e/c(n); x = x + alpha ∗ g_t;
35. u = r − alpha ∗W (:, n); er r = norm(u)/bnrm2;
36. if er r < tol, f lag = 0; i ter = i ter + 1; return, end
37.
38. g_t = M\u; z = A∗ g_t; omega = z′ ∗ z;
39. if omega == 0, f lag =−1; return, end
40. rho = z′ ∗ u; omega = rho/omega;
41. if kappa > 0
42. rho = rho/(norm(z) ∗ norm(u)); abs_rho = abs(rho);
43. if (abs_rho < kappa) & (abs_rho ∼= 0), omega = omega ∗ kappa/abs_rho;

end
44. end

ML(n)BiCGStab: Reformulation, Analysis and Implementation 485

45. x = x + omega ∗ g_t; r = −omega ∗ z + u;
46. er r = norm(r)/bnrm2; i ter = i ter + 1;
47. if er r < tol, f lag = 0; return, end
48. if i ter >= max_i t, return, end
49. 50. rc = omega ∗ c(n);
51. if rc == 0, f lag =−1; return, end
52. for i = 1 : n− 1
53. f =Q(:, i + 1)′ ∗ u;
54. if j >= 1
55. beta = − f /c(i);
56. if i <= n− 2
57. D(:, i) = u+ beta ∗ D(:, i); G(:, i) = beta ∗ G(:, i);
58. W(:, i) = beta ∗W(:, i); beta =−Q(:, i + 2)′ ∗ D(:, i)/c(i + 1);
59. for s = i + 1 : n− 2
60. D(:, i) = D(:, i) + beta ∗ D(:, s);
61. G(:, i) = G(:, i) + beta ∗ G(:, s);
62. W (:, i) =W (:, i) + beta ∗W (:, s);
63. beta =−Q(:, s+ 2)′ ∗ D(:, i)/c(s+ 1);
64. end
65. G(:, i) = G(:, i) + beta ∗ G(:, n− 1);
66. W(:, i) =W (:, i) + beta ∗W(:, n− 1);
67. W(:, i) = r − omega ∗W (:, i);
68. else
69. G(:, n− 1) = beta ∗ G(:, n− 1);
70. W(:, n− 1) = r − (omega ∗ beta) ∗W (:, n− 1);
71. end
72. beta = Q(:, 1)′ ∗W (:, i)/rc;
73. W (:, i) =W (:, i)− (omega ∗ beta) ∗W(:, n);
74. G(:, i) = G(:, i) +W (:, i) + beta ∗ G(:, n);
75. else
76. beta = Q(:, 1)′ ∗ r/rc;
77. W (:, i) = r − (omega ∗ beta) ∗W(:, n);
78. G(:, i) =W (:, i) + beta ∗ G(:, n);
79. end
80. for s = 1 : i − 1
81. beta = −Q(:, s+ 1)′ ∗W(:, i)/c(s);
82. G(:, i) = G(:, i) + beta ∗ G(:, s); W (:, i) =W (:, i) + beta ∗ D(:, s);
83. end
84. if i < n− 1
85. D(:, i) =W (:, i)− u; c(i) =Q(:, i + 1)′ ∗ D(:, i);
86. if c(i) == 0, f lag =−1; return, end
87. alpha = − f /c(i); u = u+ alpha ∗ D(:, i);
88. else
89. c(i) = Q(:, i + 1)′ ∗ (W (:, i)− u);
90. if c(i) == 0, f lag =−1; return, end
91. alpha = − f /c(i);

486 Man-Chung Yeung

92. end
93. g_t = M\G(:, i); W (:, i) = A∗ g_t;
94. alpha = omega ∗ alpha; x = x + alpha ∗ g_t; r = r − alpha ∗W (:, i);
95. er r = norm(r)/bnrm2; i ter = i ter + 1;
96. if er r < tol, f lag = 0; return, end
97. if i ter >= max_i t, return, end
98. end
99. e = Q(:, 1)′ ∗ r; beta = e/rc; W (:, n) = r − (omega ∗ beta) ∗W (:, n);
100. G(:, n) =W (:, n) + beta ∗ G(:, n);
101. if n>= 2
102. beta = −Q(:, 2)′ ∗W (:, n)/c(1);
103. for s = 1 : n− 2
104. G(:, n) = G(:, n) + beta ∗ G(:, s); W (:, n) =W (:, n) + beta ∗ D(:, s);
105. beta =−Q(:, s+ 2)′ ∗W (:, n)/c(s+ 1);
106. end
107. G(:, n) = G(:, n) + beta ∗ G(:, n− 1);
108. end
109. g_t = M\G(:, n); W (:, n) = A∗ g_t; c(n) = Q(:, 1)′ ∗W (:, n);
110. if c(n) == 0, f lag = −1; return, end
111. end

9.2. ML(n)BiCGStab with Definition (5.2)

Algorithm 9.2 is a preconditioned version of Algorithm 5.1.

Algorithm 9.2 ML(n)BiCGStab with preconditioning associated with definition

(5.2).

1. Choose an initial guess x0 and n vectors q1,q2, · · · ,qn.
2. Compute r0 = b−Ax0, eg0 =M−1r0, w0 = Aeg0, c0 = qH

1 w0 and e0 = qH
1 r0.

3. For j = 0,1,2, · · ·
4. For i = 1,2, · · · , n− 1
5. α jn+i = e jn+i−1/c jn+i−1;
6. x jn+i = x jn+i−1 +α jn+ieg jn+i−1; % eg=M−1g

7. r jn+i = r jn+i−1 −α jn+iw jn+i−1;
8. e jn+i = qH

i+1r jn+i;
9. If j ≥ 1
10. β̃

(jn+i)

(j−1)n+i
=−e jn+i

�
c(j−1)n+i ; % β̃

(jn+i)

(j−1)n+i
=−ω jβ

(jn+i)

(j−1)n+i

11. zw = r jn+i + β̃
(jn+i)

(j−1)n+i
w(j−1)n+i;

12. eg jn+i = β̃
(jn+i)

(j−1)n+i
eg(j−1)n+i ;

13. For s = i + 1, · · · , n− 1
14. β̃

(jn+i)

(j−1)n+s
=−qH

s+1zw

�
c(j−1)n+s; % β̃

(jn+i)

(j−1)n+s
=−ω jβ

(jn+i)

(j−1)n+s

ML(n)BiCGStab: Reformulation, Analysis and Implementation 487

15. zw = zw + β̃
(jn+i)

(j−1)n+s
w(j−1)n+s;

16. eg jn+i = eg jn+i + β̃
(jn+i)

(j−1)n+s
eg(j−1)n+s;

17. End

18. eg jn+i =M−1zw −
1

ω j

eg jn+i;

19. Else
20. eg jn+i =M−1r jn+i;
21. End
22. w jn+i = Aeg jn+i ;
23. For s = 0, · · · , i − 1
24. β

(jn+i)

jn+s
=−qH

s+1w jn+i

�
c jn+s;

25. w jn+i = w jn+i +β
(jn+i)

jn+s
w jn+s;

26. eg jn+i = eg jn+i + β
(jn+i)

jn+s
eg jn+s;

27. End
28. c jn+i = qH

i+1w jn+i;
29. End
30. α jn+n = e jn+n−1/c jn+n−1;
31. x jn+n = x jn+n−1 +α jn+neg jn+n−1;
32. u jn+n = r jn+n−1 −α jn+nw jn+n−1;
33. eu jn+n =M−1u jn+n;
34. ω j+1 = (Aeu jn+n)

Hu jn+n/‖Aeu jn+n‖
2
2;

35. x jn+n = x jn+n +ω j+1eu jn+n;
36. r jn+n =−ω j+1Aeu jn+n + u jn+n;
37. e jn+n = qH

1 r jn+n;
38. β̃

(jn+n)

(j−1)n+n
=−e jn+n

�
c(j−1)n+n; % β̃

(jn+n)

(j−1)n+n
=−ω j+1β

(jn+n)

(j−1)n+n

39. zw = r jn+n + β̃
(jn+n)

(j−1)n+n
w(j−1)n+n;

40. eg jn+n = β̃
(jn+n)

(j−1)n+n
eg(j−1)n+n;

41. For s = 1, · · · , n− 1
42. β̃

(jn+n)

jn+s
=−qH

s+1zw

�
c jn+s; % β̃

(jn+n)

jn+s
= −ω j+1β

(jn+n)

jn+s

43. zw = zw + β̃
(jn+n)

jn+s
w jn+s;

44. eg jn+n = eg jn+n + β̃
(jn+n)

jn+s
eg jn+s;

45. End

46. eg jn+n =M−1zw −
1

ω j+1
eg jn+n; w jn+n = Aeg jn+n;

47. c jn+n = qH
1 w jn+n;

48.End

Code #2: Matlab code of Algorithm 9.2

1. function [x , er r, i ter, f lag] = ml bicgstab(A, x , b,Q, M , max_i t, tol, kappa)

2.

488 Man-Chung Yeung

3. % The input/output arguments are described as in Code #1.
4. % storage: c: 1× n matrix. x , r, b,u_t, z: N-by-1 matrices.
5. % A, M : N-by-N matrices. Q, G,W : N-by-n matrices.
6.
7. N = size(A, 2); n= size(Q, 2);
8. G = zeros(N , n); W = zeros(N , n); % initialize work spaces
9. c = zeros(1, n); % end initialization
10.
11. i ter = 0; f lag = 1; bnrm2= norm(b);
12. if bnrm2== 0.0, bnrm2= 1.0; end
13. r = b− A∗ x; er r = norm(r)/bnrm2;
14. if er r < tol, f lag = 0; return, end
15.
16. G(:, 1) = M\r; W (:, 1) = A∗ G(:, 1); c(1) =Q(:, 1)′ ∗W (:, 1);
17. if c(1) == 0, f lag = −1; return, end
18. e = Q(:, 1)′ ∗ r;
19.
20. for j = 0 : max_i t

21. for i = 1 : n− 1
22. alpha = e/c(i); x = x + alpha ∗ G(:, i); r = r − alpha ∗W (:, i);
23. er r = norm(r)/bnrm2; i ter = i ter + 1;
24. if er r < tol, f lag = 0; return, end
25. if i ter >= max_i t, return, end
26.
27. e =Q(:, i + 1)′ ∗ r;
28. if j >= 1
29. beta =−e/c(i + 1); W (:, i + 1) = r + beta ∗W (:, i + 1);
30. G(:, i + 1) = beta ∗ G(:, i + 1);
31. for s = i + 1 : n− 1
32. beta =−Q(:, s+ 1)′ ∗W(:, i + 1)/c(s+ 1);
33. W (:, i + 1) =W (:, i + 1) + beta ∗W(:, s+ 1);
34. G(:, i + 1) = G(:, i + 1) + beta ∗ G(:, s+ 1);
35. end
36. G(:, i + 1) = (M\W (:, i + 1))− (1/omega) ∗ G(:, i + 1);
37. else
38. G(:, i + 1) = M\r;
39. end
40. W(:, i + 1) = A∗ G(:, i + 1);
41. for s = 0 : i − 1
42. beta =−Q(:, s+ 1)′ ∗W (:, i + 1)/c(s+ 1);
43. W (:, i + 1) =W (:, i + 1) + beta ∗W (:, s+ 1);
44. G(:, i + 1) = G(:, i + 1) + beta ∗ G(:, s+ 1);
45. end
46. c(i+ 1) = Q(:, i + 1)′ ∗W (:, i + 1);
47. if c(i+ 1) == 0, f lag =−1; return, end
48. end

ML(n)BiCGStab: Reformulation, Analysis and Implementation 489

49. alpha = e/c(n); x = x + alpha ∗ G(:, n);
50. r = r − alpha ∗W(:, n); er r = norm(r)/bnrm2;
51. if er r < tol, f lag = 0; i ter = i ter + 1; return, end
52. u_t = M\r; z = A∗ u_t; omega = z′ ∗ z;
53. if omega == 0, f lag =−1; return, end
54. rho = z′ ∗ r; omega = rho/omega;
55. if kappa > 0
56. rho = rho/(norm(z) ∗ norm(r)); abs_rho = abs(rho);
57. if (abs_rho < kappa) & (abs_rho ∼= 0)
58. omega = omega ∗ kappa/abs_rho;
59. end
60. end
61. if omega == 0, f lag =−1; return, end
62. x = x + omega ∗ u_t; r = r − omega ∗ z;
63. er r = norm(r)/bnrm2; i ter = i ter + 1;
64. if er r < tol, f lag = 0; return, end
65. if i ter >= max_i t, return, end
66.
67. e =Q(:, 1)′ ∗ r; beta =−e/c(1);
68. W (:, 1) = r + beta ∗W (:, 1); G(:, 1) = beta ∗ G(:, 1);
69. for s = 1 : n− 1
70. beta =−Q(:, s+ 1)′ ∗W (:, 1)/c(s+ 1);
71. W (:, 1) =W (:, 1) + beta ∗W (:, s+ 1);
72. G(:, 1) = G(:, 1) + beta ∗ G(:, s+ 1);
73. end
74. G(:, 1) = (M\W (:, 1))− (1/omega) ∗ G(:, 1); W (:, 1) = A∗ G(:, 1);
75. c(1) =Q(:, 1)′ ∗W (:, 1);
76. if c(1) == 0, f lag =−1; return, end
77. end

9.3. Sample Executions of ML(n)BiCGStab

We provide two sample executions: Code #3 for a single system and Code #4 for a
sequence of systems.

Code #3: A sample run of ML(n)BiCGstab

1. N = 100; A= randn(N); M = randn(N); b = randn(N , 1);
2. n= 10; tol = 10−7; max_i t = 3 ∗ N ; kappa = 0; % or, say, kappa = 0.7
3. Q = si gn(randn(N , n)); x = zeros(N , 1); Q(:, 1) = b− A∗ x;
4. [x , er r, i ter, f lag] = ml bicgstab(A, x , b,Q, M , max_i t, tol, kappa);

Code #4: Solution of a sequence of linear systems

490 Man-Chung Yeung

1. % Suppose ml(n)bicgstab is used to solve a sequence of m systems Aix= bi with
2. % preconditioners Mi . This code dynamically searches for n in an user-provided
3. % interval [n_min, n_max] so that the time per iteration is as small as possible.
4.
5. n_min= 2; n_max = 20; step = 3; % step size, an integer >= 1.
6. max_i t = 3 ∗ N ; tol = 10−7; kappa = 0; % or, say, kappa = 0.7
7. Q = si gn(randn(N , n_max)); % a random sign shadow matrix.
8. n= 10; % initial value for n, an integer picked from [n_min, n_max].
9. walk = 1; % walk = 1, search forward; =−1, search backward.
10. t1= in f ; % solution time of the previous system.
11.
12. for i = 1 : m

13. x = zeros(N , 1); % choose an initial guess for the ith system.
14. Q(:, 1) = bi − Ai ∗ x;
15. tic
16. [x , er r, i ter, f lag] = ml bicgstab(Ai , x , bi ,Q(:, 1 : n), Mi , max_i t, tol, kappa);
17. t2= toc / iter; % time per iteration of the current system.
18. if walk == 1
19. if t2< t1
20. n= min(n+ step, n_max); t1= t2;
21. else
22. n= max(n− step, n_min); t1= t2; walk = −1;
23. end
24. else
25. if t2< t1
26. n= max(n− step, n_min); t1= t2;
27. else
28. n= min(n+ step, n_max); t1= t2; walk = 1;
29. end
30. end
31. end

Acknowledgements The index functions were introduced by Prof. Daniel Boley in [38].
Without the index functions, this research work would have become too complicated to
be possible. The author is grateful to Prof. Martin Gutknecht for reading the manuscript
carefully, helping him revise it and pointing out some useful references. Special thanks go
to Prof. Martin Gijzen, Prof. Peter Sonneveld and Dr. Jens-Peter M. Zemke for their reading
of the whole manuscript and making helpful comments and suggestions. The author also
acknowledges Dr. Jens-Peter M. Zemke for the helpful communications and up-to-date
information about Krylov subspace methods. The author is grateful to the referees for
many valuable suggestions that improve this paper. The author is grateful to his Ph.D.
advisor Prof. Tony Chan for guiding him into the field of Krylov subspace methods. The
method was originally named MLBiCGStab(n) by him. The current and more accurate
name was from Prof. Henk A. van der Vorst. Part of this work was done during the visit of

ML(n)BiCGStab: Reformulation, Analysis and Implementation 491

the author at Delft University of Technology, The Netherlands, in June 2009.

References

[1] J. ALIAGA, D. BOLEY, R. FREUND AND V. HERNÁNDEZ, A Lanczos-type method for multiple starting

vectors, Math. Comp. 69 (2000), pp. 1577-1601.
[2] P. N. BROWN AND H. F. WALKER, GMRES on (nearly) singular systems, SIAM J. Matrix Anal.

Appl., 18(1997), pp. 37-51.
[3] A. EL GUENNOUNI, K. JBILOU AND H. SADOK, A block version of BiCGSTAB for linear systems with

multiple right-hand sides, ETNA 16 (2003), pp. 129-142.
[4] R. FLETCHER, Conjugate Gradient Methods for Indefinite Systems, volume 506 of Lecture Notes

Math., pp. 73-89. Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[5] A. GAUL, M. GUTKNECHT, J. LIESEN AND R. NABBEN, Deflated and augmented Krylov subspace

methods: basic facts and a breakdown-free deflated MINRES, Preprint, DFG Research Center
Matheon, 2011.

[6] M. H. GUTKNECHT, A completed theory of the unsymmetric Lanczos process and related algo-

rithms. Part I., SIAM J. Matrix Anal. Appl. 1992, 13:594-639.
[7] ——, Variants of BICGStab for matrices with complex spectrum, SIAM J. Sci. Comput., 14

(1993), pp. 1020–1033.
[8] ——, A completed theory of the unsymmetric Lanczos process and related algorithms. Part II.,

SIAM J. Matrix Anal. Appl. 1994, 15:15-58.
[9] ——, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta Numerica, 6

(1997), pp. 271-397.
[10] ——, IDR Explained, ETNA 36 (2010), pp. 126–148.
[11] R. HORN AND C. JOHNSON, Matrix Analysis, Cambridge University Press, 1985.
[12] W. D. JOUBERT, Generalized Conjugate Gradient and Lanczos Methods for the Solution of Non-

symmetric Systems of Linear Equations, Ph.D. Thesis and Tech. Report CNA-238, Center for
Numerical Analysis, University of Texas, Austin, TX, 1990.

[13] ——, Lanczos methods for the solution of nonsymmetric systems of linear equations, SIAM
Journal on Matrix Analysis and Applications 1992; 13:926-943.

[14] E. F. KAASSCHIETER, Preconditioned conjugate gradients for solving singular systems, Journal of
Computational and Applied Mathematics 1988; 24:265-275.

[15] C. LANCZOS, Solution of systems of linear equations by minimized iterations, J. Research Nat.
Bureau of Standards, 49 (1952), pp. 33–53.

[16] D. O’LEARY, The block conjugate gradient algorithm and related methods, Linear Algebra Appl.,
29(1980), pp. 293-322.

[17] K. MORIYA AND T. NODERA, Breakdown-free ML(k)BiCGStab algorithm for non-Hermitian linear

systems, O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3483, pp. 978-988, 2005.
[18] L. REICHEL AND Q. YE, Breakdown-free GMRES for singular systems, SIAM Journal on Matrix

Analysis and Applications 2005; 26:1001-1021.
[19] Y. SAAD, The Lanczos biorthogonalization algorithm and other oblique projection methods for

solving large unsymmetric systems, SIAM Journal on Numerical Analysis, 19(1982), pp. 485-
506.

[20] ——, Iterative methods for sparse linear systems, 2nd edition, SIAM, Philadelphia, PA, 2003.
[21] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[22] Y. SAAD AND H. A. VAN DER VORST, Iterative solution of linear systems in the 20-th century, J.

Comp. and Appl. Math., 123(1-2):1-33, 2000.

492 Man-Chung Yeung

[23] G. L. G. SLEIJPEN AND D. R. FOKKEMA, BiCGSTAB(l) for linear equations involving unsymmetric

matrices with complex spectrum, ETNA, 1:11-32, 1993.
[24] G. L.G. SLEIJPEN, P. SONNEVELD, AND M. B. VAN GIJZEN, Bi-CGSTAB as an induced dimension

reduction method, Applied Numerical Mathematics. Vol 60, pp. 1100-1114, 2010.
[25] G. L. G. SLEIJPEN AND H. A. VAN DER VORST, Maintaining convergence properties of BiCGSTAB

methods in finite precision arithmetic, Numer. Algorithms, 10 (1995), pp. 203–223.
[26] ——, Reliable updated residuals in hybrid Bi-CG methods, Computing, 56 (1996), pp. 141–

163.
[27] G. L. G. SLEIJPEN, H. A. VAN DER VORST, AND D. R. FOKKEMA, BiCGstab(l) and other hybrid Bi-CG

methods, Numerical Algorithms, 7 (1994), pp. 75-109. Received Oct. 29, 1993.
[28] P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci.

Statist. Comput., 10 (1989), pp. 36–52.
[29] P. SONNEVELD AND M. VAN GIJZEN, IDR(s): a family of simple and fast algorithms for solving

large nonsymmetric linear systems, Delft University of Technology, Reports of the Department
of Applied Mathematical Analysis, Report 07-07.

[30] ——, IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear

systems, SIAM J. Sci. Comput. Vol. 31, No. 2, pp. 1035-1062.
[31] H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 12 (1992), pp. 631–
644.

[32] ——, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cam-
bridge, April 2003.

[33] H. VAN DER VORST AND Q. YE, Residual Replacement Strategies for Krylov Subspace Iterative

Methods for the Convergence of True Residuals, SIAM J. Sci. Comput., 22 (2000):836-852.
[34] M. VAN GIJZEN AND P. SONNEVELD, An elegant IDR(s) variant that efficiently exploits bi-

orthogonality properties, to appear in ACM Trans. Math. Software.
[35] Y. WEI AND H. WU, Convergence properties of Krylov subspace methods for singular linear systems

with arbitrary index, Journal of Computational and Applied Mathematics 2000; 114:305-318.
[36] P. WESSELING AND P. SONNEVELD, Numerical experiments with a multiple grid and a precondi-

tioned Lanczos type method, in Approximation methods for Navier-Stokes problems (Proc.
Sympos., Univ. Paderborn, Paderborn, 1979), vol. 771 of Lecture Notes in Math., Springer,
Berlin, 1980, pp. 543-562.

[37] M. YEUNG, An introduction to ML(n)BiCGStab, available at http://arxiv.org/abs/1106.3678.
Proceedings of Boundary Elements and Other Mesh Reduction Methods XXXIV, edited by
Brebbia & Poljak 2012, WITpress.

[38] M. YEUNG AND D. BOLEY, Transpose-free multiple Lanczos and its application in Padé approxi-

mation, Journal of Computational and Applied Mathematics, Vol 177/1 pp. 101-127, 2005.
[39] M. YEUNG AND T. CHAN, ML(k)BiCGSTAB: A BiCGSTAB variant based on multiple Lanczos start-

ing vectors, SIAM J. Sci. Comput., Vol. 21, No. 4, pp. 1263-1290, 1999.
[40] S.-L. ZHANG, GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsym-

metric linear systems, SIAM J. Sci. Comput., 18:537-551, 1997.

