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Abstract. This paper is concerned with the numerical approximations of semi-linear

stochastic partial differential equations of elliptic type in multi-dimensions. Conver-

gence analysis and error estimates are presented for the numerical solutions based on

the spectral method. Numerical results demonstrate the good performance of the spec-

tral method.
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1. Introduction

Many natural phenomena and engineering applications are described by stochastic par-

tial differential equations (SPDEs). The study of numerical methods for approximating

stochastic partial differential equations has been an active research area. Some fluid flow

and other engineering related SPDEs were studied using polynomial chaos expansions in

[12,19,20]. In [3,4,6,11,15], traditional finite element methods are applied to SPDEs with

random coefficients. Numerical methods for SPDEs with white noise forcing terms have

also been developed, analyzed, and tested by numerous authors [2,7–10,13,14,16,17].

The main purpose of this paper is to study the numerical approximations by a spectral

method for nonlinear stochastic differential equations of elliptic type driven by an additive

white noise:

∆u(x)− f (u(x)) = g(x)+ Ẇ (x), for x ∈ D, (1.1)
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with boundary condition u(x) = 0 for x ∈ ∂ D. Here D is a bounded open set of Rd ,

g ∈ L2(D), f is a continuous function satisfying certain regularity conditions given in

Section 2, and

Ẇ (x) =
dW

d x
(x)

is a white noise. Buckdahn and Pardoux have proved the existence and uniqueness of

the weak solution for (1.1) in [5]. Besides, this solution is almost surely continuous on

D. In [9] Gyöngy and Martínez considered the finite difference approximation for (1.1).

They converted (1.1) into an integral equation using the Green’s function and obtained the

convergence rates for the approximate solution under certain regularity assumptions on f .

In this paper, the white noise processes are approximated by piecewise constant ran-

dom processes (as in [2] and [7]). First we introduce a rectangular partition of D = [0,1]d .

For each direction of x = (x1, x2, · · · , x d) ∈ D, there exists a partition 0 = x
j

1
< x

j

2
< · · · <

x
j

N+1 = 1 with x
j

l
= (l − 1)h, ∀l ∈ {1, · · · , N + 1},∀ j ∈ {1, · · · , d}, where h = 1/N . Then,

D = [0,1]d is divided into disjointed cells

Di =
n

x ∈ D | x j

l
≤ x j < x

j

l+1
, ∀ j ∈ {1, · · · , d}, ∀ l ∈ {1, · · · , N}

o
, i = 1, · · · , N d ,

and |Di| = 1/N d . A reasonable approximation to dW

d x
(x) is

dcW
d x
(x) = N d

N d∑

i=1

ηi

p
|Di|χi(x), (1.2)

where p
|Di|ηi =

∫

Di

dW (x), for i = 1, · · · , N ,

i.e., ηi ∈ N(0,1) are independent identically distributed random variables, and

χi(x) =

¨
1, if x ∈ Di,

0, otherwise.

Let bu(x) be the approximation of u(x) given by

∆bu(x)− f (bu(x)) = g(x)+ ċW (x), for x ∈ D, (1.3)

with boundary condition bu = 0 for x ∈ ∂ D.

The key to the error analysis of finite element and spectral methods is the regularity of

the solution of the underlying SPDE. Unfortunately, As shown in [2] and other literatures,

the required regularity conditions for the standard error estimates of the finite element

method are not satisfied for the problem (1.1). With discretized process, we will show that

the solution bu of the corresponding SPDE (1.3) has a certain regularity, which allows to

obtain an error estimate.
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The paper is organized as follows. In Section 2, we give several preliminary assump-

tions and lemmas that will be used in the proofs of convergence. In Section 3, we study

the regularity of the solution bu for (1.3) and error estimates between bu and the solution u

of (1.1). In Section 4, we apply a spectral method to (1.3) and present error estimates. In

the last section, several numerical experiments are present.

2. Preliminary assumptions and lemmas

We consider D = [0,1]d , d = 1,2,3, and make the following assumptions on the SPDE

(1.1).

Assumption 2.1. The function f in (1.1) is of the form f (x) = f1(x)+ f2(x), where f1 is a

continuous non-decreasing and bounded function, | f1(x)| ≤ M and f2 is a Lipschitz function

with a Lipschitz constant L. Such function f satisfies the one-sided Lipschitz condition,

(x − y)( f (x)− f (y))≥ −L(x − y)2, ∀ x , y ∈ R. (2.1)

The numerical procedures are applied to the following weak and integral formulations

of (1.1):

∫

D

u(x)∆φ(x)d x −

∫

D

f (u(x))φ(x)d x =

∫

D

g(x)φ(x)d x +

∫

D

φ(x)dW(x), (2.2)

for any φ ∈ C2(D). The solution of (1.1) can be written as

u(x) =

∫

D

k(x , y) f (u(y))d y +

∫

D

k(x , y)g(y)d y +

∫

D

k(x , y)dW (y), (2.3)

where x , y ∈ D. The last integral is understood in Ito’s sense and k(x , y) is the Green’s

function associated with the elliptic equation ∆v(x) = ψ(x) with zero boundary condi-

tions. This means that the solution can be expressed as

v(x) =

∫

D

k(x , y)ψ(y)d y for any ψ ∈ L2(D).

Gyöngy and Martínez [9] expanded k(x , y) in sine Fourier series on [0,1]d ,

k(x , y) =
∑

α∈{1,2,··· }d

−2d

π2|α|2
ϕα(x)ϕα(y), ϕα(x) = ϕα1

(x1) · · ·ϕαd
(xd), (2.4)

where ϕαi
(x i) = sin(αiπx i), and series converges in L2(D, y) uniformly in x . They have

proved that the kernel k has properties in the next lemma.
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Lemma 2.1. i) There exists a positive constant C1 depending only on the dimension d such

that

∫

D

|k(x , y)|2d y ≤ C1. (2.5)

ii) For every ǫ > 0, there exists a constant C(d ,ǫ), such that

∫

D

|k(x , y)− k(z, y)|2d y ≤ C(d ,ǫ)|x − z|4γ(d,ǫ), (2.6)

where γ(d ,ǫ) is given by

γ(d ,ǫ) =





1

2
, if d = 1,

1

2
− ǫ, if d = 2,

1

4
− ǫ, if d = 3,

(2.7)

and

C(d ,ǫ) = C(d)



∑

α∈I d

1

|α|d+ǫ




2

.

iii) There exists a positive constant a such that

∫

D

�∫

D

k(x , y)φ(y)d y

�
φ(x)d x ≤−a

∫

D

�∫

D

k(x , y)φ(y)d y

�2

d x . (2.8)

It is well known that for every u ∈W
2,p

0 (D), there exists a constant CR > 0 such that [1]

‖u‖2,p,D ≤ CR|∆u|0,p,D, ‖u‖1,p,D ≤ CR|∇u|0,p,D. (2.9)

In this paper we assume that the Lipschitz constant L has the following restriction.

Assumption 2.2. The Lipschitz constant L in (2.1) satisfies

L <min{a, C−2
R },

where a and CR is the constant appearing in (2.8) and (2.9) respectively.

The condition CR L < 1 and C2
R L < 1 are technical conditions used in the proofs of the

main results (Theorem 3.1 and Theorem 4.1). By inequality (2.9), we know that CR ≥ 1,

thus, C−2
R ≤ C−1

R .
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3. The approximate problem

The approximate white noise processes are used to improve the regularity of the solu-

tion, so that standard analysis techniques in the spectral method can be applied. In this

section, we study the regularity of the solution bu for the approximate problem (1.3) and

error estimates between bu and the solution u of the original problem (1.1).

The weak formulation of (1.3) is given by

(bu,∆v)− ( f (bu), v) = (g, v) +

�
dcW
d x

, v

�
, ∀ v ∈ H2

0(D). (3.1)

And the integral form of solution for (1.3) can be written as

bu(x) =
∫

D

k(x , y) f (bu(y))d y +

∫

D

k(x , y)g(y)d y +

∫

D

k(x , y)dcW (y). (3.2)

In the following, we consider the regularity of the solution bu and give error estimates

between the solution u of (1.1) and bu. For this purpose, we collect some results in the

next lemmas. Let E be the expectation and C be a positive constant whose value may be

different from line to line.

Lemma 3.1. There exists a positive constant C such that

E





∫

D

k(x , y)dW (x)−

∫

D

k(x , y)dcW (x)]





2

L2
≤ C(d ,ǫ)h4γ(d,ǫ),

where γ(d ,ǫ) is as in (2.7).

Proof. By using (2.6) and the Hölder inequality, we have

E





∫

D

k(x , y)dW (x)−

∫

D

k(x , y)dcW (x)]





2

L2

= E

∫

D




N d∑

i=1

∫

Di

 
k(x , y)−

1

|Di|

∫

Di

k(z, y)dz

!
dW (x)




2

d y

=

∫

D

N d∑

i=1

∫

Di

 
1

|Di|

∫

Di

(k(x , y)− k(z, y))dz

!2

d x d y

≤
N d∑

i=1

∫

Di

1

|Di|

∫

Di

∫

D

(k(x , y)− k(z, y))2d y dz d x

≤ N d
N d∑

i=1

∫

Di

∫

Di

C(d ,ǫ)|x − z|4γ(d,ǫ)dz d x ≤ C(d ,ǫ)h4γ(d,ǫ).

The proof is complete. �
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It is apparent that dcW
d x
∈ L2(D) almost surely. However, the following lemma shows

that ‖ dcW
d x
‖L2 is unbounded as N →∞.

Lemma 3.2. White noise approximation processes defined in (1.2) satisfies

E

�



dcW
d x





2

L2

�
= N d .

Proof. As a piecewise constant function, dcW
d x
∈ L2(D). Moreover,

E

�∫

D

(
dcW
d x
)2d x

�
= E




N d∑

i=1

1

|Di|2

∫

Di

η2
i |Di|d y


=

N d∑

i=1

1= N d .

The proof is complete. �

3.1. Regularity

In this subsection, we consider the regularity of the solution bu of the approximate

problem (1.3).

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold. The solution bu for (1.3) satisfies

bu ∈ H2 ∩H1
0 and

E|bu|2
H2 ≤ CN d ,

where C depends only on M, L, CR and f (0), ‖g‖L2 .

Proof. From Assumption 2.1, we have

‖ f (x1)− f (x2)‖L2 ≤ ‖ f1(x1)− f1(x2)‖L2 + ‖ f2(x1)− f2(x2)‖L2

≤ 2M + L‖x1 − x2‖L2 . (3.3)

Based on (1.3), (3.3), Young inequality and (2.9), we have

‖∆bu‖2
L2 = ( f (bu)− f (0),∆bu) +

�
f (0)+ g(x)+

dcW
d x

,∆bu
�

≤ (2M + L‖bu‖L2)‖∆bu‖L2 + C(ǫ)‖ f (0)+ g(x)+
dcW
d x
‖2

L2 + ǫ‖∆bu‖2L2

≤ CR L‖∆bu‖2
L2 + 2ǫ‖∆bu‖2

L2 + C(ǫ)

�
M2 + | f (0)|2+ ‖g(x)‖2

L2 + ‖
dcW
d x
‖2

L2

�
.

Letting ǫ =
1−CR L

4
and using Assumption 2.2, we obtain

‖∆bu‖2
L2 ≤ C(ǫ)

�
M2 + | f (0)|2+ ‖g(x)‖2

L2 + ‖
dcW
d x
‖2

L2

�
.



44 Y. Cao and L. Yin

Then it follows from Lemma 3.2 that

E|bu|2
H2 = E‖∆bu‖2

L2 ≤ CN d .

The proof is complete. �

3.2. Error estimates

In this subsection, we consider the error estimates between the solution bu of the ap-

proximate problem (1.3) and the solution u of the original problem (1.1).

Theorem 3.2. Assume that Assumptions 2.1 and 2.2 hold. Let u and bu be the solution of

(1.1) and (1.3), respectively. Then, there exists a positive constant h0, such that for h< h0,

E‖u− bu‖2
L2 ≤ Ch2γ(d,ǫ),

where γ(d ,ǫ) is given by (2.7), and C is independent of u and h.

Proof. From (2.3) and (3.2), we have

u(x)− bu(x)

=

∫

D

k(x , y)[ f (u(y))− f (bu(y))]d y +

∫

D

k(x , y)[dW (y)− dcW (y)]. (3.4)

Multiplying both sides by f (u(x))− f (bu(x)), applying Assumption 2.1, (2.8), and integrat-

ing over D, we obtain

−L‖u− bu‖2
L2 ≤

∫

D

(u(x)− bu(x))[ f (u(x))− f (bu(x))]d x

=

∫

D

∫

D

k(x , y)[ f (u(y))− f (bu(y))]d y[ f (u(x))− f (bu(x))]d x

+

∫

D

�∫

D

k(x , y)[dW (y)− dcW (y)]
�
[ f (u(x))− f (bu(x))]d x

≤ −a

∫

D

�∫

D

k(x , y)[ f (u(y))− f (bu(y))]d y

�2

d x

+





∫

D

k(x , y)[dW (y)− dcW (y)]





L2
‖ f (u)− f (bu)‖L2 .
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Applying (3.4) into the right hand of the above inequality, we have

−L‖u− bu‖2
L2 ≤ −a

∫

D

�
u(x)− bu(x)−

∫

D

k(x , y)[dW (y)− dcW (y)]
�2

d x

+





∫

D

k(x , y)[dW (y)− dcW (y)]





L2
‖ f (u)− f (bu)‖L2

≤ −a‖u− bu‖2
L2 − a‖T (x)‖2

L2 + 2a‖u− bu‖L2‖T (x)‖L2

+ ‖T (x)‖L2

�
2M + L‖u− bu‖L2

�
,

where

T (x) =

∫

D

k(x , y)[dW (y)− dcW (y)]. (3.5)

This simplifies to

(a− L)‖u− bu‖2
L2 ≤ (2a+ L)‖u− bu‖L2‖T (x)‖L2 + 2M‖T (x)‖L2.

We also have by Lemma 3.1

E‖T (x)‖2
L2 ≤ C(d ,ǫ)h4γ(d,ǫ). (3.6)

Thus, we obtain by using (3.6)

(a− L)E‖u− bu‖2
L2

≤ (2a+ L)E(‖u− bu‖2
L2)

1/2E(‖T (x)‖2
L2)

1/2 + 2M E(‖T (x)‖2
L2)

1/2

≤ (2a+ L)C(d ,ǫ)h2γ(d,ǫ)E(‖u− bu‖2
L2)

1/2 + 2MC(d ,ǫ)h2γ(d,ǫ). (3.7)

By (3.7) and the facts that L < a,

h< h0 =

�
8M(a− L)

(2a+ L)2

� 1

2γ(d ,ǫ)

,

we obtain

E(‖u− bu‖2
L2)≤ Ch2γ(d,ǫ).

The proof is complete. �

In the particular case that f has only its Lipschitz part, i.e., f is a Lipschitz function,

the convergence rate of the approximation bu to the solution u is slighter better.

Theorem 3.3. Suppose f1 = 0, i.e., f satisfies the Lipchitz condition

| f (x1)− f (x2)| ≤ L|x1 − x2|,

and Lipchitz constant L satisfies C1 L < 1, where C1 is a constant in (2.5). Then

E‖u− bu‖2
L2 ≤ Ch4γ(d,ǫ),

where γ(d ,ǫ) is as in (2.7), and C is independent of u and h.
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Proof. From (2.3), (3.2), Hölder inequality, and (2.5), we have

|u(x)− bu(x)|

≤

�����

∫

D

k(x , y)[ f (u(y))− f (bu(y))]d y

�����+
�����

∫

D

k(x , y)[dW (y)− dcW (y)]
�����

≤ C
1/2
1

�∫

D

[ f (u(y))− f (bu(y))]2d y

�1/2

+

�����

∫

D

k(x , y)[dW (y)− dcW (y)]
����� . (3.8)

Squaring both sides of (3.8) and integrating over D, together with Hölder inequality and

Lipchitz condition, we get that

‖u(x)− bu(x)‖2
L2 ≤ C1‖ f (u)− f (bu)‖2

L2 + ‖T (x)‖
2
L2 + 2C

1/2
1 ‖ f (u)− f (bu)‖L2‖T (x)‖L2

≤ C1 L(1+ ǫ)‖u− bu‖2
L2 + (1+ C(ǫ))‖T (x)‖2

L2,

where the function T is given by (3.5). Set ǫ =
1−C1 L

2
. It follows from Lemma 3.1 and the

fact that C1 L < 1

E‖u− bu‖2
L2 ≤ C E‖T (x)‖2

L2 ≤ Ch4γ(d,ǫ).

The proof is complete. �

4. Spectral method and error estimates

In this section, we consider the spectral approximation for (1.3) and the corresponding

error estimates. Let V = H2(D)∩H1
0(D), and SN be a N -dimensional subspace of V defined

as

SN = Span
n
φ~k(x) = φk1

(x1) · · ·φkd
(x d), ~k ∈ {1,2, · · · , N}d

o
,

where φk j
(x j) = sin(πk j x

j), ~k = {k1, · · · , kd}. So if v ∈ SN , it can be expressed

v(x) =
∑

~k∈{1,2,··· ,N}d

v̂~k φ~k(x),

where v̂~k are constants. From the definition of SN , it is easy to see that if v ∈ SN , then

∆v ∈ SN .

Let PN : L2(D)→ SN be the orthogonal projection operator of V to SN , defined by

(PN u, v) = (u, v), ∀ v ∈ SN . (4.1)

We collect some properties of the orthogonal projection operator PN in the next lemma.
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Lemma 4.1. The orthogonal projection operator PN : L2→ SN has following properties,

(i) ‖PN‖L2 = 1.

(ii) ∆PNu = PN∆u, ∀ u ∈ V.

(iii) There exists a constant C, such that

‖u− PN u‖L2 ≤ CN−2|u|H2 , ∀ u ∈ V.

Proof. (i) and (ii) are obvious. (iii) is proved in [18] for periodic functions. Using the

odd periodic extension of V , the proof in [18] can be adopted to prove (iii). �

The spectral method for (1.3) is to find buN ∈ SN ⊂ V , such that

(buN ,∆v)− ( f (buN ), v) = (g(x), v)+

�
dcW
d x

, v

�
, ∀ v ∈ SN . (4.2)

In the following, we estimate the L2 error between bu and buN . We already have the orthog-

onal projection operator error bu− PNbu, from Lemma 4.1. Thus, we only need to estimate

the error PNbu− buN .

Theorem 4.1. If Assumptions 2.1 and 2.2 hold, then the approximation buN defined in (4.2)

has the following approximation property,

E‖PNbu− buN‖
2
H1 ≤ Ch2−d/2,

where C is independent of bu and h.

Proof. By (3.1) and (4.1), the solution bu of (1.3) satisfies

(PNbu,∆v)− ( f (bu), v) = (g(x), v)+

�
dcW
d x

, v

�
, ∀ v ∈ SN . (4.3)

Let θ = PNbu− buN ∈ SN . Subtracting (4.3) from (4.2), we have

−(∇θ ,∇v) = ( f (bu)− f (buN ), v), ∀ v ∈ SN . (4.4)

Set v = θ ∈ SN and we get by (2.1)

−(∇θ ,∇θ) = ( f (bu)− f (PNbu− θ),θ)
= ( f (bu)− f (PNbu− θ),bu− (PNbu− θ))− ( f (bu)− f (PNbu− θ),bu− PNbu)
≥ −L‖bu− PNbu+ θ‖2L2 − ( f (bu)− f (PNbu− θ),bu− PNbu).

Then by Young and Hölder inequalities, (3.3) and (2.9), we have

‖∇θ‖2
L2

≤ L(1+ ǫ)‖θ‖2
L2 + L(1+ C(ǫ))‖bu− PNbu‖2L2 + ‖ f (bu)− f (PNbu− θ)‖L2‖bu− PNbu‖L2

≤ C2
R L(1+ ǫ)‖∇θ‖2

L2 + L(1+ C(ǫ))‖bu− PNbu‖2L2

+ (2M + L‖bu− PNbu‖L2 + L‖θ‖L2)‖bu− PNbu‖L2

≤ C2
R L(1+ 2ǫ)‖∇θ‖2

L2 + 2L(1+ C(ǫ))‖bu− PNbu‖2L2 + 2M‖bu− PNbu‖L2 .
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It follows from Assumption 2.2 and Lemma 4.1

‖∇θ‖2
L2 ≤ 2C L(1+ C(ǫ))‖bu− PNbu‖2L2 + 2C M‖bu− PNbu‖L2

≤ Ch4|bu|2
H2 + Ch2|bu|H2 . (4.5)

By (2.9) and Theorem 3.1, we obtain

E‖θ‖2
H1 ≤ E(C2

R‖∇θ‖
2
L2)≤ Ch4E|bu|2

H2 + Ch2(E|bu|2
H2)

1/2

≤ Ch4−d + Ch2−d/2 ≤ Ch2−d/2.

The proof is complete. �

As a direct consequence of Theorem 4.1 and Lemma 4.1 (iii), the following conver-

gence result for the approximations buN by the spectral method is presented.

Theorem 4.2. If Assumptions 2.1 and 2.2 hold, then the approximation buN defined in (4.2)

converges to the solution bu of (1.3) in the mean of the L2-norm

E‖bu− buN‖
2
L2 ≤ C

�
h4−d + h2−d/2

�
,

where C is dependent only on M, L, CR, f (0), ‖g‖L2 .

In the particular case that f has only its Lipschitz part, the convergence rate of the

approximation buN to the solution bu is slighter better.

Theorem 4.3. Suppose f satisfies the Lipchitz condition

| f (x1)− f (x2)| ≤ L|x1− x2|,

and Lipchitz constant L satisfies C2
R L < 1, where CR is a constant in (2.9). The approximation

buN defined in (4.2) converge to the solution bu of (1.3) in the mean of the L2-norm

E‖bu− buN‖
2
L2 ≤ Ch4−d ,

where C is dependent only on M, L, CR, f (0), ‖g‖L2 .

Proof. It is similar to the frontal proof of the Theorem 4.1, we can obtain (4.4). Then

set v = θ = PNbu− buN ∈ SN , we have

(∇θ ,∇θ) = −( f (bu)− f (buN ),θ)

≤ L‖bu− buN‖L2‖θ‖L2

≤ L‖θ‖2
L2 + L‖bu− PNbu‖L2‖θ‖L2

≤ C2
R L‖∇θ‖2

L2 + CCR Lh2|bu|H2‖∇θ‖L2 ,

where the last inequality is obtained by (2.9) and Lemma 4.1 (iii). It follows from C2
R L < 1

|θ |H1 ≤ Ch2|bu|H2 .
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Then we get by (2.9) and Theorem 3.1,

E‖PNbu− buN‖
2
H1 = E‖θ‖2

H1 ≤ C2
R E|θ |2

H1 ≤ Ch4E|bu|2
H2 ≤ Ch4−d .

At last, we have that by Lemma 4.1 and Theorem 3.1,

E‖bu− buN‖
2
L2 ≤ 2(E‖bu− PNbu‖2L2 + E‖PNbu− buN‖

2
L2)

≤ Ch4E|bu|2
H2 + Ch4−d

≤ Ch4−d .

The proof is complete. �

Finally we can obtain the error estimate of the approximate solution buN to the exact

solution u of (1.1) in the next theorem.

Theorem 4.4. i) Assume that Assumptions 2.1 and 2.2 hold. Let u be the solution of (1.1)

and buN be the numerical solution defined by (4.2). Then

E‖u− buN‖
2
L2 ≤ Ch2γ(d,ǫ),

where γ(d ,ǫ) is given by (2.7), and C is independent of u and h.

ii) Furthermore if f1 = 0, i.e., f is a Lipchitz function such that

| f (x1)− f (x2)| ≤ L|x1 − x2|,

and the Lipchitz constant L satisfies L <min{C−2
R , C−1

1
}, then the approximation buN converge

to the exact solution u in the mean of the L2-norm,

E‖u− buN‖
2
L2 ≤ Ch4γ(d,ǫ),

where γ(d ,ǫ) is as in (2.7), and C is independent of u and h.

5. Numerical experiments

In this section, we present numerical examples to demonstrate our theoretical results

in the previous sections. We will consider both 1D and 2D linear problems.

The independent identically distributed random variables ηi ∈ N(0,1) shall be sim-

ulated by using the random number generator of Matlab. Theoretically, the number of

samples M should be chosen so that the error generated by the Monte Carlo method is in

the same magnitude of the errors generated by spectral approximation. We shall use the

Monte Carlo method to examine the following two types of errors

e1= ‖E(u)− E(buN )‖L2,

e2= |E(‖buN‖
2
L2)− E(‖bu2N‖

2
L2)|,
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to check our theoretical error estimates. Obviously these errors can be controlled by the

error E(‖u− buN‖
2
L2), but not equivalent to it. Nevertheless they could provide good indi-

cations about how the error E(‖u− buN‖
2
L2) behaves. Let ū be the exact solution without

white noise and ūN be the spectral approximate solution in the absence of the white noise.

We also shall examine the error

e3= ‖ū− ūN‖L2.

Example 5.1. Let D = [0,1] and exact solution be ū(x) = sin2(πx) in the absence of the

white noise. And consider f (u) = 0, we have E(u) = ū. The 1D white noise is approxi-

mated by piecewise constant random processes as show in Fig. 1. We have that h = 1/N

= 0.25, 0.125, 0.0625, 0.03125 for N = 4, 8, 16, 32. The computational results are

displayed in Table 1.
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Figure 1: The approximations of white noise for partition N = 4, 8, 16, 32 in 1D domain [0, 1].Table 1: Errors and 
onvergen
e rates for 1D test.
M N e1 Rate e2 Rate e3 Rate

4000 4 1.5497e-2 - 2.2289e-3 - 1.5544e-2 -

16000 8 2.7758e-3 2.48 7.1688e-4 1.64 2.7023e-3 2.52

64000 16 5.5010e-4 2.34 1.6483e-4 2.12 4.7648e-4 2.50

256000 32 1.2111e-4 2.18 7.0149e-5 1.23 8.4188e-5 2.50

Example 5.2. Let D = [0,1]× [0,1] and exact solution be ū(x , y) = sin2(πx) sin2(πy) in

the absence of the white noise. And consider f (u) = 0, we have E(u) = ū. The 2D white

noise is approximated by piecewise constant random processes for N = 2,4,8,16 as show

in Fig. 2. The computational results are displayed in Table 2.
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Figure 2: The approximations of white noise for partition N = 2, 4, 8, 16 in 2D domain [0, 1]× [0, 1].
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onvergen
e rates for 2D test.
M N e1 Rate e2 Rate e3 Rate

2000 2 1.1016e-1 - 1.1299e-2 - 1.1025e-1 -

8000 4 1.3482e-2 3.03 9.0304e-4 3.65 1.3459e-2 3.03

32000 8 2.3406e-3 2.53 3.4261e-4 1.40 2.3402e-3 2.52

128000 16 4.3778e-4 2.42 1.0407e-4 1.72 4.1265e-4 2.50

In the two numerical examples, exact solutions without noise are very smooth and

periodic functions, errors e3 are caused by the spectral method. The numbers of samples M

are displayed in the first columns of the tables. We evaluate E(buN ) by using the Monte Carlo

method to examine errors e1 to see if we have used enough samples. The convergence rates

of e1 are close to the convergence rates of e3 in the tables, which implies that our sample

sizes are good enough to ensure the accuracy of the Monte Carlo method. From Theorem

4.4 ii), the error (E‖u− ûN‖
2
L2) has second-order or less than second-order convergence

rate for one or two dimensional case, respectively. Numerical results in the Tables 1 and 2

show that most of convergence rates for e2 are less than second-order. We believe that this

is due to the sample errors rather than the spectral errors. Of cause that e1 and e2 are not

equivalent to the error in Theorem 4.4. They just provide some indications.

6. Conclusions

Our work extended the work of [2, 7] from one-dimension to multi-dimensions and

from linear problems to nonlinear problems. Future research on this subject includes nu-

merical experiences for SPDEs with multiplicative noise forcing terms.
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