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Abstract. We provided in [14] and [15] a semilocal convergence analysis for Newton’s
method on a Banach space setting, by splitting the given operator. In this study, we
improve the error bounds, order of convergence, and simplify the sufficient convergence
conditions. Our results compare favorably with the Newton-Kantorovich theorem for
solving equations.
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1. Introduction

LetX and Y be Banach spaces, let D be an open convex subset ofX , and let F : D 7−→
Y be a Fréchet differentiable function, fixed all throughout this paper. In the sequel, we
will assume that the function F has a splitting

F = f + g, (1.1)

where f , g : D 7−→Y are Fréchet differentiable functions satisfying the condition

F ′(x) = F ′(u0), ∀x ∈ D =⇒ f ′(x) = f ′(u0), ∀x ∈ D. (1.2)

What this means is that the splitting functions f and g should only be nonlinear if the
initial function F is nonlinear. Given any u0 ∈ D and r > 0, U(u0, r) will designate the set
{x ∈ X : ‖x − u0‖ ≤ r}, and U(u0, r) the corresponding interior ball.
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We are interested in the solvability of the equation

F(u) = 0. (1.3)

A large number of problems in applied mathematics and also in engineering are solved
by finding the solutions of certain equations. For example, dynamic systems are mathemat-
ically modeled by difference or differential equations, and their solutions usually represent
the states of the systems. For the sake of simplicity, assume that a time-invariant system
is driven by the equation ẋ = Q(x) (for some suitable operator Q), where x is the state.
Then the equilibrium states are determined by solving equation (1.3). Similar equations
are used in the case of discrete systems. The unknowns of engineering equations can be
functions (difference, differential, and integral equations), vectors (systems of linear or
nonlinear algebraic equations), or real or complex numbers (single algebraic equations
with single unknowns). Except in special cases, the most commonly used solution meth-
ods are iterative — when starting from one or several initial approximations a sequence
is constructed that converges to a solution of the equation. Iteration methods are also
applied for solving optimization problems. In such cases, the iteration sequences converge
to an optimal solution of the problem at hand. Since all of these methods have the same
recursive structure, they can be introduced and discussed in a general framework.

In previous papers co-authored by the first author, see [14, 15], we have provided
(see also Theorems 2.2, 2.3, 3.1 and 3.2) an analysis under weaker sufficient convergent
conditions than the celebrated Newton-Kantorovich theorem for solving equations (see
Theorem 2.1).

Here, we improve the bounds on the distances ‖ xk+1− xk ‖, ‖ xk − x⋆ ‖, (k ≥ 0), and
also simplify the sufficient convergence conditions for Newton method (2.1).

2. Preliminaries

In using the Newton’s method

um+1 = um− F ′(um)
−1 F(um), (2.1)

one of the most important theorems in nonlinear analysis is the following result due —
essentially — to Kantorovich [7].

Theorem 2.1 (The Kantorovich theorem). Suppose that F ′(u0)
−1 exists for some u0 ∈ D,

and that there exists K ≥ 0 and η ≥ 0 such that

‖ F ′(u0)
−1 F(u0) ‖≤ η, (2.2)

‖ F ′(u0)
−1 (F ′(x)− F ′(y)) ‖≤ K ‖ x − y ‖, ∀x , y ∈ D, (2.3)

2 K η ≤ 1. (2.4)

Let

t⋆ =
2 η

1+
p

1− 2 K η
, T⋆ =

2

K
− t⋆,
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and suppose that U(u0, t⋆)⊂ D. Then Eq. (1.3) has a unique solution u in the set U(u0, t⋆)∪
(D∩U(u0, T⋆)), and the Newton iterations (2.1) generate a sequence that converges to u. The

sequence defined iteratively as

t0 = 0, t1 = η, tm+1 = tm+
K (tm− tm−1)

2

2 (1− K tm)
, m= 1, · · ·

converges monotonically to t⋆ and the following majorant error bounds hold:

‖ um− um−1 ‖≤ tm − tm−1, (2.5a)

‖ um− u0 ‖≤ tm, (2.5b)

‖ u− um ‖≤ t⋆ − tm. (2.5c)

Several versions of this theorem can be found in a large number of works includ-
ing [4–6, 9]. Extensions of the theorem with improved a-priori and/or a-posteriori error
bounds have been derived by several authors including Ostrowski [9], Gragg & Tapia [6],
Potra [10], Potra & Pták [11] and Yamamoto [16]. One of these results is the following
fundamental generalization of the Kantorovich theorem proved recently by Argyros [1].

Theorem 2.2. Suppose that F ′(u0)
−1 exists for some u0 ∈ D, and there exist constants K ≥

K0 ≥ 0 and η ≥ 0, such that (2.2)-(2.3) hold, and

‖ F ′(u0)
−1 (F ′(x)− F ′(u0)) ‖≤ K0 ‖ x − u0 ‖, ∀x ∈ D. (2.6)

Suppose further that there exists 0≤ θ < 1, such that

(K + K0 θ) η ≤ θ . (2.7)

Then the sequence defined iteratively by

r0 = 0, r1 = η, rm+1 = rm+
K (rm− rm−1)

2

2 (1− K0 rm)
, m = 1, · · · (2.8)

converges monotonically to a real number r⋆. If U(u0, r⋆) ⊂ D, then Eq. (1.3) has a unique

solution u in U(u0, r⋆), and the Newton iterations generated from (2.1) converge to u and

satisfy the majorant error bounds:

‖um− um−1‖ ≤ rm− rm−1,

‖um− u0‖ ≤ rm,

‖u− um‖ ≤ r⋆ − rm.

If there exists T > r⋆ such that U(u0, T ) ⊆ D, and K0 (r⋆ + T ) ≤ 2, then the solution u is

unique in U(u0, T ).



56 I. K. Argyros and S. Hilout

One sees that the basic hypothesis (2.4) of the Kantorovich theorem can be replaced
with the weaker Argyros condition (K0 + K) η ≤ 1, and that the case K0 = K corresponds
to the Kantorovich theorem.

In the present paper we will generalize Theorem 2.2 even further by replacing the
Newton iterations in (2.1) with the generalized Newton scheme

f ′(um) um+1 + g(um+1) = f ′(um) um− f (um), m = 0,1, · · · (2.9)

based on the function splitting (1.1). The generalized Newton scheme (2.9) is a sequence
of partial linearizations based on the splitting (1.1). It has been studied in Uko and Adey-
eye [12] as a possible alternative — in appropriate contexts — to the Newton iterations
(2.1) for the numerical solution of equation (1.3). Our aim in the present paper is to use
the method of majorant sequences and the generalized Newton scheme (2.9) to obtain an
significant generalization of the Kantorovich theorem.

Theorem 2.3. Suppose that F ′(u0)
−1 exists for some u0 ∈ D, and that there exists K ≥ K0 ≥

0, and η ≥ 0, such that (2.2), (2.3), (2.6) hold, and

(4 K0+ K +
p

K2 + 8 K K0) η≤ 4, with strict inequality if K0 = 0. (2.10)

Then the sequence given by (2.8) converges monotonically to a limit t⋆. Let

t⋆⋆ =
2 η

1+
p

1− 2 K0 η
, T⋆⋆ =

2

K0
− t⋆⋆,

and suppose that U(u0, t⋆⋆)⊂ D. Then Eq. (1.3) has a unique solution u in the set U(u0, t⋆⋆)∪
(D ∩ U(u0, T⋆⋆)), and Newton’s method (2.1) generate a sequence that converges to u. More-

over the following estimates hold for all m≥ 1:

‖ um − um−1 ‖≤ rm − rm−1, (2.11a)

‖ um − u0 ‖≤ rm, (2.11b)

‖ u− um ‖≤ t⋆ − rm. (2.11c)

The solution u is also unique in the set U(u0, t⋆⋆), and U(u0, T ) ∩D, whenever T is any

non-negative number such that K0 (t⋆⋆ + T )< 2.

3. Semilocal convergence analysis of Newton’s method

We need two results on majorizing sequences for the Newton’s method (2.1), whose
proofs can be founds [14], and [15] respectively.

Lemma 3.1. Let η ≥ 0, L ≥ L0 ≥ 0, 0≤ θ0 < 1, and suppose:

(L + θ0 L0) η≤ θ0. (3.1)
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Then, scalar sequence {tk} (k ≥ 1) given by:

t0 = 0, t1 = η, tk+1 = tk +
L (tk − tk−1)

2

2 (1− L0 tk)
(3.2)

is well defined, nondecreasing, bounded above by t⋆⋆, and converges to its unique least upper

bound t⋆ ∈ [0, t⋆⋆], where

t⋆⋆ =
2 η

2− θ0
.

Moreover, the following estimates hold for all k ≥ 0:

0≤ tk+1 − tk ≤
�

θ0

2

�

(tk − tk−1)≤
�

θ0

2

�k

η, (3.3a)

0≤ t⋆ − tk ≤
�

θ0

2

�k

t⋆⋆. (3.3b)

Suppose further that M ≥ 0, 0< K0 ≤ M + L, 0≤ θ < 2, and

(4M + Lθ2 + 4K0θ)t
⋆ < 4θ , (3.4a)

4Mθ + Lθ3 + 4K0θ
2 ≤ 8M + 2Lθ2. (3.4b)

Define sequence {vk} (k ≥ 0) by

v0 = 0, v1 = t⋆, vk+1 = vk +
M (vk − vk−1)

2

1− K0 vk +
p

(1− K0 vk)
2− L M (vk − vk−1)

2
(3.5)

is well defined, nondecreasing, bounded above by v⋆⋆, and converges to its unique least upper

bound v⋆ ∈ [0, v⋆⋆], where

v⋆⋆ =
2 η

2− θ .

Moreover, the following estimates hold for all k ≥ 0:

0≤ vk+1− vk ≤
�

θ

2

�

(vk − vk−1)≤
�

θ

2

�k

η, (3.6a)

0≤ v⋆− vk ≤
�

θ

2

�k

v⋆⋆. (3.6b)

Lemma 3.2. Suppose that there exist constants M ≥ 0, L ≥ L0 ≥ 0, η ≥ 0, and 0 ≤ K0 ≤
M + L0, such that:

(L+ 4 L0 +
p

L2 + 8 L0 L) η ≤ 4. (3.7)

The inequality (3.7) is strict if L0 = 0.

Let θ1 = θ
⋆(M , K0, L) be defined as the largest real zero of the cubic function

ρ(θ) = L θ3 + 2 (2 K0 − L) θ2 + 4 M θ − 8 M (3.8)



58 I. K. Argyros and S. Hilout

on the interval [0,2]. If

4 M w1 ≤ (2− L w1) θ
2
1 (3.9)

(this inequality is strict if K0 = 0), then the sequence {wk} (k ≥ 0) given by

w0 = 0, w1 =
2 η

1+
p

1− 2 L0 η
, (3.10a)

wk+1 = wk +
M (wk −wk−1)

2

1− K0 wk +
p

(1− K0 wk)
2 − L M (wk −wk−1)

2
(3.10b)

is well defined, nondecreasing, bounded above by w⋆⋆, and converges to its unique least upper

bound w⋆ ∈ [0, w⋆⋆], where

w⋆⋆ =
2 η

2− θ1
.

Moreover, the following estimates hold for all k ≥ 0:

0≤ wk+1 −wk ≤
�

θ1

2

�

(wk −wk−1) ≤
�

θ1

2

�k

η, (3.11a)

0≤ w⋆ −wk ≤
�

θ1

2

�k

w⋆⋆. (3.11b)

In the next result, we show that under the same sufficient convergence condition (3.7)
(which always weaker than (3.1) unless L0 = L) for Newton’s method (2.1), we can im-
prove upon the linear error estimates (3.3) and (3.11), and show instead the quadratic
convergence of the majorizing sequence {tn}.
Lemma 3.3. Assume there exist constants L0 ≥ 0, L ≥ 0, and η ≥ 0, such that

q0 = L η ≤ 1

2
, (3.12)

where

L =
1

8

�

L + 4 L0 +
p

L2 + 8 L0 L

�

. (3.13)

The inequality in (3.12) is strict if L0 = 0. Then, the sequence {tk} (k ≥ 0) given by

t0 = 0, t1 = η, tk+1 = tk +
L1 (tk − tk−1)

2

2 (1− L0 tk)
, (k ≥ 1), (3.14)

is well defined, nondecreasing, bounded above by t⋆⋆, and converges to its unique least upper

bound t⋆ ∈ [0, t⋆⋆], where

L1 =

¨

L0, if k = 1,
L, if k > 1,

t⋆⋆ =
2 η

2− δ , (3.15a)

1≤ δ = 4 L

L +
p

L2 + 8 L0 L
< 2 for L0 6= 0. (3.15b)
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Moreover the following estimates hold:

L0 t⋆ < 1, (3.16a)

0≤ tk+1− tk ≤
δ

2
(tk − tk−1)≤ · · · ≤

�

δ

2

�k

η, (k ≥ 1), (3.16b)

tk+1− tk ≤
�

δ

2

�k

(2 q0)
2k−1 η, (k ≥ 0), (3.16c)

0≤ t⋆ − tk ≤
�

δ

2

�k (2 q0)
2k−1 η

1− (2 q0)
2k

, (2 q0 < 1), (k ≥ 0). (3.16d)

Proof. If L0 = 0, then (3.16a) holds trivially. In this case, for L > 0, an induction
argument shows that

tk+1 − tk =
2

L
(2 q0)

2k

, (k ≥ 0),

and therefore

tk+1 = t1 + (t2 − t1) + · · ·+ (tk+1− tk) =
2

L

k
∑

m=0

(2 q0)
2m

,

t⋆ = lim
k→∞

tk =
2

L

∞
∑

k=0

(2 q0)
2k

.

Clearly, this series converges, (as k ≤ 2k and 2 q0 < 1), and is bounded above by the
number

2

L

∞
∑

k=0

(2 q0)
k =

4

L (2− L η)
.

If L = 0, then in view of (3.14), 0 ≤ L0 ≤ L, we deduce that L0 = 0 and t⋆ = tk = η

(k ≥ 1).
In the rest of the proof, we assume that L0 > 0. The result until estimate (3.16b)

follows from Lemma 1 in [2] (see also [1, 3]).
Note that in particular Newton-Kantorovich-type convergence condition (3.12) is given

in [2, page 387, Case 3 for δ given by (3.15b). The factor η is missing from the left hand
side of the inequality three lines before the end of page 387].

In order for us to show (3.16c) we need the estimate:

1− (δ/2)k+1

1− δ/2 η ≤ 1

L0

�

1−
�

δ

2

�k−1 L

4 L

�

, (k ≥ 1). (3.17)

For k = 1, (3.17) becomes
�

1+
δ

2

�

η ≤ 4 L− L

4 L L0
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or using (3.15b) gives

�

1+
2 L

L +
p

L2 + 8 L0 L

�

η ≤ 4 L0 − L +
p

L2 + 8 L0 L

L0 (4 L0 + L +
p

L2 + 8 L0 L)
.

In view of (3.12), it suffices to show that

L0 (4 L0 + L +
p

L2 + 8 L0 L) (3 L +
p

L2 + 8 L0 L)

(L+
p

L2 + 8 L0 L) (4 L0 − L+
p

L2 + 8 L0 L)
≤ 2 L,

which is true as equality.
Let us now assume estimate (3.17) is true for all integers smaller or equal to k. We

must show (3.17) holds for k being k+ 1 that

1− (δ/2)k+2

1− δ/2 η≤ 1

L0

�

1−
�

δ

2

�k L

4 L

�

, (k ≥ 1). (3.18a)

or
�

1+
δ

2
+

�

δ

2

�2

+ · · ·+
�

δ

2

�k+1
�

η ≤ 1

L0

�

1−
�

δ

2

�k L

4 L

�

. (3.18b)

We use the induction hypothesis to show (3.20c). It suffices

1

L0

�

1−
�

δ

2

�k−1 L

4 L

�

+

�

δ

2

�k+1

η ≤ 1

L0

�

1−
�

δ

2

�k L

4 L

�

, (3.19a)

or

�

δ

2

�k+1

η ≤ 1

L0

�
�

δ

2

�k−1

−
�

δ

2

�k
�

L

4 L
, (3.19b)

or δ2 η ≤ L (2− δ)
2 L L0

. (3.19c)

In view of (3.12) it now suffices to show that

2 L L0 δ
2

L (2− δ) ≤ 2 L,

which holds as equality by the choice of δ given by (3.15b). This completes the induction
for the estimate (3.17).

We shall show (3.16c) using induction on k ≥ 0: estimate (3.16c) is true for k = 0 by
(3.12), (3.14), and (3.15b). In order to show estimate (3.16c) for k = 1, by noting that

t2 − t1 =
L (t1 − t0)

2

2 (1− L0 t1)
,
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it suffices to observe

L η2

2 (1− L0η)
≤ δ L η2, (3.20a)

or
L

1− L0η
≤ 16 L L

L+
p

L2 + 8 L0 L
, (η 6= 0), (3.20b)

or η ≤ 1

L0



1− L +
p

L2 + 8 L0 L

16 L



 , (L0 6= 0, L 6= 0). (3.20c)

It follows from (3.12) that

η ≤ 4

L+ 4 L0 +
p

L2 + 8 L0 L
. (3.21)

It then suffices to show that

4

L + 4 L0 +
p

L2 + 8 L0 L
≤ 1

L0



1− L +
p

L2 + 8 L0 L

8 L



 , (3.22a)

or
L +
p

L2 + 8 L0 L

8 L
≤ 1− 4 L0

L+ 4 L0 +
p

L2 + 8 L0 L
, (3.22b)

or
L +
p

L2 + 8 L0 L

8 L
≤ L+
p

L2 + 8 L0 L

L + 4 L0 +
p

L2 + 8 L0 L
, (3.22c)

which is true as equality.
Let us assume (3.16c) holds for all integers smaller or equal to k. We shall show (3.16c)

holds for k being replaced by k+ 1.
Using (3.14), and the induction hypothesis, we have in turn

tk+2 − tk+1 =
L

2 (1− L0 tk+1)
(tk+1 − tk)

2

≤ L

2 (1− L0 tk+1)

�

(δ/2)k (2 q0)
2k−1η
�2

≤ L

2 (1− L0 tk+1)

�

(δ/2)k−1 (2 q0)
−1η
�
�

(δ/2)k+1 (2 q0)
2k+1−1η
�

≤ (δ/2)k+1 (2 q0)
2k+1−1η, (3.23)

where we have used the fact

L

2 (1− L0 tk+1)

�

(δ/2)k−1 (2 q0)
−1η
�

≤ 1, (k ≥ 1). (3.24)
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Indeed, we can show instead of (3.24):

tk+1 ≤
1

L0

�

1− (δ/2)k−1 L

4 L

�

,

is true. First, by (3.16b), and the induction hypothesis:

tk+1 ≤ tk +
δ

2
(tk − tk−1)

≤ t1 +
δ

2
(t1 − t0) + · · ·+

δ

2
(tk − tk−1)

≤ η+ (δ/2) η+ · · ·+ (δ/2)k η

=
1− (δ/2)k+1

1− δ/2 η

≤ 1

L0

�

1− (δ/2)k−1 L

4 L

�

. (3.25)

That completes the induction for estimate (3.16c). Using estimate (3.20c) for j ≥ k,
we obtain in turn for 2 q0 < 1:

t j+1 − tk = (t j+1 − t j) + (t j − t j−1) + · · ·+ (tk+1− tk)

≤
�

(δ/2) j (2 q0)
2 j−1 + (δ/2) j−1 (2 q0)

2 j−1−1 + · · ·+ (δ/2)k (2 q0)
2k−1
�

η

≤
�

1+ (2 q0)
2k

+
�

(2 q0)
2k
�2
+ · · ·
� �

δ

2

�k

(2 q0)
2k−1 η

=

�

δ

2

�k (2 q0)
2k−1 η

1− (2 q0)
2k

. (3.26)

Estimate (3.16d) follows from (3.26) by letting j −→ ∞. This completes the proof of
Lemma 3.3. �

Remark 3.1. The sufficient convergence conditions (3.4a), (3.4b), (3.8), and (3.9) for se-
quences {vk}, {wk}, respectively are not so easy to verify in general, and their convergence
is only linear. In view of Lemma 3.3, we can recover the quadratic convergence.

Let us define sequences {vk}, {wk}, {zk}, {zk} for k ≥ 1:

v0 = 0, v1 = t⋆, vk+1 = vk +
M (vk − vk−1)

2

1− K0 vk

, (3.27a)

w0 = 0, w1 =
2 η

1+
p

1− 2 L0 η
, wk+1 = wk +

M (wk −wk−1)
2

1− K0 wk

, (3.27b)

z0 = 0, z1 = t⋆, zk+1 = zk +

p
L M (zk − zk−1)

2

1− K0 zk

, (3.27c)

z0 = 0, z1 = w1, zk+1 = zk +

p
L M (zk − zk−1)

2

1− K0 zk

. (3.27d)
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Note that under hypotheses of Lemmas 3.1 and 3.2, sequences {vk}, {wk} can replace {vk},
{wk}, respectively. However, an inductive argument shows:

vk ≤ vk, (3.28a)

0≤ vk+1− vk ≤ vk+1− vk, (3.28b)

0≤ v⋆− vk ≤ v⋆− vk, (3.28c)

v⋆ ≤ v⋆, wk ≤ wk, (3.28d)

0≤ wk+1 −wk ≤ wk+1−wk, (3.28e)

0≤ w⋆ −wk ≤ w⋆ −wk, (3.28f)

w⋆ ≤ w⋆, (3.28g)

where
v⋆ = lim

k→∞
vk, w⋆ = lim

k→∞
wk.

Let us define constants:

α= L + 4L0 +
p

L2 + 8L0 L, (3.29a)

β = 2
�

K + 2K0+
p

M2 + 4K0M
�

, (3.29b)

γ= 2
�p

LM + 2K0+

Æ

LM + 4K0

p
LM

�

, λ=
1

8
max{α,β ,γ}, (3.29c)

α1 =
1

2

�

L

θ0
+ L0

�

η

t⋆
, θ0 6= 0, t⋆ 6= 0, (3.29d)

β1 =
1

2

�

2M

θ2
+ K0

�

, θ2 ∈ (0,1), (3.29e)

γ1 =
1

2

�

2
p

LM

θ3
+ K0

�

, θ3 ∈ (0,1), (3.29f)

θ4 =max{θ0,θ2,θ3}, λ1 =
1

2
max{α1,β1,γ1}, (3.29g)

δ1 =
M

M +
p

M2 + 4K0M
, δ0 =max{δ,δ1,δ2}, (3.29h)

δ2 =

p
LM

p
LM +
p

LM + 4K0
p

LM
. (3.29i)

Then simply using Lemmas 3.1 and 3.2 on sequences {vk}, {wk} for

L0 = K0, L = 2 M , η = t⋆,

L0 = K0, L = 2
p

L M , η = w1,

respectively, we arrive at:
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Lemma 3.4. Suppose that

(i) There exist nonnegative constants η, L0, L, t⋆, K0, M, θ0 ∈ (0,1), θ2 ∈ (0,1), θ3 ∈
(0,1), with t⋆ 6= 0, 0≤ L0 ≤ L, K0 ≤ 2 M, M ≤ L, such that

q1 = λ1t⋆ ≤ 1

2
, (3.30)

where t⋆ is given in Lemma 3.1, and λ1 is given by (3.29g). The inequality in (3.30) is

strict if L0 = 0, or K0 = 0. Then, the conclusions of Lemma 3.3 hold with q1, λ, t⋆, θ4,

{vk}, v⋆, v⋆⋆, replacing q0, L, η, δ, {tk}, t⋆, t⋆⋆, respectively, where, t⋆⋆ was given in

Lemma 3.1, and θ4, v⋆, v⋆⋆ in Remark 3.1.

(ii) There exist nonnegative constants L0, L, w1, K0, M, with 0 ≤ L0 ≤ L, K0 ≤ 2 M,

M ≤ L, such that:

q2 = λ w1 ≤
1

2
, (3.31)

The inequality in (3.31) is strict if L0 = 0, or K0 = 0. Then, the conclusions of Lemma

3.3 hold with q2, λ, w1, δ0, {wk}, w⋆, w⋆⋆, replacing q0, L, η, δ, {tk}, t⋆, t⋆⋆,

respectively, where, t⋆⋆ was given in Lemma 3.2, and w⋆, w⋆⋆ in Remark 3.1.

Proof. Sequences {zk}and {zk} are nonnegative by (3.27c) and (3.27d), respectively.
Therefore, the quantities under the radicals in (3.5), and (3.10a) are nonnegative, since

(1− K0vk)
2− LM(vk − vk−1)

2 ≥ (1− K0zk)
2 − LM(zk − zk−1)

2 ≥ 0, (k ≥ 1), (3.32)

(1− K0wk)
2− LM(wk −wk−1)

2 ≥ (1− K0zk)
2 − LM(zk − zk−1)

2 ≥ 0, (k ≥ 1), (3.33)

by the definition of sequences {vk}, {wk}, {zk}, {zk}, M ≤ K , and the estimates for all
k ≥ 0:

vk ≤ zk, wk ≤ zk, (3.34a)

vk+1− vk ≤ zk+1− zk, (3.34b)

wk+1 −wk ≤ zk+1− zk. (3.34c)

This completes the proof of Lemma 3.4. �

Hence, we arrived at the concluding result.

Lemma 3.5. Under hypotheses of (i) Lemmas 3.1 and 3.4, or (ii) Lemmas 3.2 and 3.4, the

convergence of majorizing sequences {vk}, {wk} is quadratic, and estimates (3.28) hold.

Several applications can also be found in [3].

Theorem 3.1. Suppose that F ′(u0)
−1 exists for some u0 ∈ D, and there exist constants M ≥ 0,

L ≥ 0, 0 ≤ θ < 2, and η ≥ 0, such that 0 < K0 ≤ M + L, and conditions (1.1), (1.2), (2.2),
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(2.3), (2.6) and (2.7) hold. Let the wm be defined as in (3.10) and let w⋆ be its limit. Suppose

further that condition (3.4) hold, and

‖ F ′(u0)
−1 ( f ′(x)− f ′(y)) ‖ ≤ M ‖ x − y ‖, ∀x , y ∈ D, (3.35a)

‖ F ′(u0)
−1 (g′(x)− g′(y)) ‖ ≤ L ‖ x − y ‖, ∀x , y ∈ D. (3.35b)

If U(u0, w⋆) ⊂ D, then Eq. (1.3) has a solution u in U(u0, w⋆), and the iterates {um}
generated from the generalized Newton scheme (2.9) converge to u, and satisfy the error

estimates for all m≥ 1:

‖ um− um−1 ‖≤ wm −wm−1, (3.36a)

‖ um− u0 ‖≤ wm, (3.36b)

‖ u− um ‖≤ w⋆ −wm. (3.36c)

If R≥ w⋆ and K0 (w
⋆ +R)≤ 2, then the solution u is unique in the set D ∩ U(u0,R).

Theorem 3.2. Suppose that there exist constants M ≥ 0, L ≥ L0 ≥ 0, and η ≥ 0 such that

0≤ K0 ≤ M + L0, and (2.2), (2.6), (3.7), (3.9) and (3.35) hold. Let

r⋆ =
2 η

1+
p

1− 2 K0 η
, R⋆ =

2

K0
− r⋆.

If U(u0, w⋆)⊂ D, then Eq. (1.3) has a unique solution u in U(u0, w⋆), and the iterates gener-

ated from the generalized Newton scheme (2.9) converge to u and satisfy the error estimates

for all m≥ 1:

‖ um− um−1 ‖≤ wm −wm−1, (3.37a)

‖ um− u0 ‖≤ wm, (3.37b)

‖ u− um ‖≤ w⋆ −wm, (3.37c)

where {wm} and w⋆ are given in Lemma 3.2.

The solution u is also unique in sets D∩ (U(u0, r⋆)∪ U(u0,R⋆)), and D∩U(u0, T ), where

T is any nonnegative number such that:

K0 (r⋆+ T )< 2. (3.38)

Example 3.1. Let X = Y = R, D = (−1,1), and u0 = 0. Define F by

F(x) = 9 x4+ 10 x − 0.95. (3.39)

(a) The constants employed in Theorem 2.2 are K = 10.8, K0 = 3.6, η = 0.095. An
examination of the graph of the function θ 7→ (K+K0 θ) η−θ shows that condition
(2.7) does not hold for any θ ∈ [0,2]. Therefore the conditions of Theorem 2.2 do
not hold. However, if we introduce the splitting

F(x) = f (x)+ g(x) (3.40)
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with f (x) = x4, g(x) = 8x4+10x−0.95. Then the constants employed in Theorem
3.1 are M = 1.2, M0 = 0.4, L0 = 3.2, L = 9.6. An examination of the graphs of the
functions

θ 7→ (L+ L0 θ) − θ ,

θ 7→ (4 M + L θ2 + 4 K0 θ) w1 − 4 θ ,

θ 7→ 4 M θ + L θ3 + 4 K0 θ
2 − 8 M − 2 L θ2

shows that conditions of Theorem 3.1 hold with

θ = 1, 1.310344828< θ < 2, w1 = lim
m→∞αm ≈ 0.2176326776574304,

where

α0 = 0, α1 = η, αm+1 = αm+
L (αm−αm−1)

2

2 (1− L0 αm)
.

(b) The constants K , K0, and η of Theorem 2.3 are the same that (a). It is easy to verify
that the conditions of Theorem 2.3 do not hold and – a priori – that the hypotheses
of the Kantorovich theorem [7] do not hold. However, if we introduce the splitting
(3.40), then, the constants employed in Theorem 3.2 are M = 1.2, L0 = 3.2, L = 9.6,
and η = 0.095. Since θ ⋆(M , K0, L) = 1, it is easy to verify that the conditions of
Theorem 3.2 hold and that there exists a unique solution u of equation (1.3) such
that |u| ≤ 0.116844052.

Acknowledgments The authors would like to thank the referees for the helpful sugges-
tions.
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