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Abstract. In this paper we discuss the extension to exponential splitting methods with
respect to time-dependent operators. We concentrate on the Suzuki’s method, which
incorporates ideas to the time-ordered exponential of [3,11,12,34]. We formulate the
methods with respect to higher order by using kernels for an extrapolation scheme. The
advantages include more accurate and less computational intensive schemes to special
time-dependent harmonic oscillator problems. The benefits of the higher order kernels
are given on different numerical examples.
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1. Introduction

In this paper we concentrate on approximation to the solution of the linear evolution
equation, e.g., time-dependent Schrödinger equation,

∂t u= L(t)u = (A(t) + B(t))u, u(0) = u0, (1.1)

where L,A and B are unbounded and time-dependent operators. For such equations, we
concentrate on comparing the higher order methods to Suzuki’s schemes. Here the Suzuki’s
methods apply factorized symplectic algorithms with forward derivatives, see, e.g., [11,
12]. Some preliminary comparison are presented in [3, 11], where the benefits of each
method are outlined.

In our paper, we like to see the drawback of each method, so for the Magnus integrator,
the spiked harmonic oscillator case, see [12] and for the Suzuki‘s method, geometric prop-
erties, which are known to be solved with geometric integrator, e.g. Magnus integrators.
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At least we like to outline an idea to combine the Magnus integrators and the Suzuki‘s
factorization schemes to optimize the methods.

The paper is outlined as follows. In Section 2, we present our Suzuki’s rule for decom-
posing time-ordered integrators. The extrapolation schemes and their generalization are
given in Section 3. In Section 4, we present the error analysis of the multi-product split-
ting based on the extrapolation analysis. The numerical experiments are given in Section
5, here time-dependent problems are discussed. In Section 6, we briefly summarize our
results.

2. Exponential splitting method based on Suzuki’s time-ordered exponential

Instead of the Magnus expansion, see [10], one can also directly implement the time-
ordered exponential as suggested by Suzuki [34]. We deal with a linear evolution equation
given as:

dY

d t
= A(t)Y (t), (2.1)

with solution

Y (t) = exp(Ω(t))Y (0). (2.2)

This can be expressed as:

Y (t) = T
�

exp(

∫ t

0

A(s) ds

�

Y (0) , (2.3)

where the time-ordering operator T is given in [15]. Rewriting (2.3) as

Y (t +∆t) = T
�

exp

∫ t+∆t

t

A(s)ds
�

Y (t). (2.4)

Aside from the conventional expansion

T
 

exp

∫ t+∆t

t

A(s)ds

!

=1+

∫ t+∆t

t

A(s1)ds1+

∫ t+∆t

t

ds1

∫ s1

t

ds2A(s1)A(s2) + · · · , (2.5)

the time-ordered exponential can also be interpreted more intuitively as

T
 

exp

∫ t+∆t

t

A(s)ds

!

= lim
n→∞T

�

e
∆t
n

∑n
i=1 A

�

t+i ∆t
n

��

, (2.6)

= lim
n→∞e

∆t
n

A(t+∆t) · · ·e∆t
n

A
�

t+ 2∆t
n

�

e
∆t
n

A
�

t+∆t
n

�

. (2.7)
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The time-ordering is trivially accomplished in going from (2.6) to (2.7). To enforce latter,
Suzuki introduces the forward time derivative operator

D =

←
∂

∂ t
(2.8)

such that for any two time-dependent functions F(t) and G(t),

F(t)e∆tDG(t) = F(t +∆t)G(t). (2.9)

Trotter’s formula then gives

exp
�

∆t
�

A(t) + D
�

�

= lim
n→∞

�

e
∆t
n

A(t)e
∆t
n

D
�n

,

= lim
n→∞e

∆t
n

A(t+∆t) · · ·e∆t
n

A
�

t+ 2∆t
n

�

e
∆t
n

A
�

t+∆t
n

�

, (2.10)

where property (2.9) has been applied repeatedly and accumulatively. Comparing (2.7)
with (2.10) yields Suzuki’s decomposition of the time ordered exponential [34]

T
 

exp

∫ t+∆t

t

A(s)ds

!

= exp
�

∆t
�

A(t) + D
�

�

. (2.11)

Thus time-ordering can be accomplished by just adding the operator D. For example, we
have the following second-order splittings

T2(∆t) = e
1
2
∆tDe∆tA(t)e

1
2
∆tD = e∆tA

�

t+ 1
2
∆t
�

. (2.12)

The choice of symmetric products is important, because we archive only odd powers of∆t

T2(∆t) = e∆t(A(t)+D) +∆t3E3 +∆t5E5 + · · · . (2.13)

Every occurrence of the operator edi∆tD, from right to left, updates the current time t to
t + di∆t. If t is the time at the start of the algorithm, then after the first occurrence of

e
1
2
∆tD, time is t + 1

2
∆t. After the second e

1
2
∆tD, time is t +∆t. Thus the leftmost e

1
2
∆tD is

not without effect, it correctly updates the time for the next iteration. For example

T2(∆t)T2(∆t) = e∆tA
�

t+ 3
2
∆t
�

e∆tA
�

t+ 1
2
∆t
�

. (2.14)

Higher order factorization of (2.11) into a single product form

exp
�

∆t
�

A(t) + D
�

�

=
∏

i

eai∆tA(t)edi∆tD (2.15)

will yield higher order algorithms, but at the cost of exponentially growing number of
evaluations of eai∆tA.

To generalize into a Multiproduct expansion, we have:

exp
�

∆t
�

A(t) + D
�

�

=
∑

j

Πic je
ai j∆tA(t)edi j∆tD. (2.16)
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2.1. Additive and multiplicative higher order splitting methods

A method for the derivation of higher order methods with the multiproduct expansion
can be given as following. We have to derive the coefficients:

exp
�

(A+ B)t
�−






m
∑

i=1

ci

ni
∏

j=1

exp(a jAt)exp(b jBt)






= O (tm), (2.17)

where m− 1 is the order of the method and the coefficients have to be derived under the
following conditions:

�

1− f1(a1, · · · , anm
, b1, · · · , bnm

, c1, · · · , cm)
�

= 0, (2.18)
�

(A+ B)− f2(a1, · · · , anm
, b1, · · · , bnm

, c1, · · · , cm)
�

= 0. (2.19)

...

Remark 2.1. With respect to efficient schemes, one have to derive with less additive and
multiplicative terms. By an effective mixture between exponential splitting methods and
extrapolation schemes, higher order methods can be derived.

An Example for a 3rd order is given as:

�

exp((A+ B)t
�− �a exp(1/2At)exp(1/2Bt)exp(1/2At)exp(1/2Bt)

+ b exp(1/2Bt)exp(1/2At)exp(1/2Bt)exp(1/2At)

+ c exp(At)exp(Bt) + d exp(Bt)exp(At)
�

= O (t4). (2.20)

The coefficients are ordered with respect to the operators and derived as:

1− a− c − d − b

+
�

− dB− dA+A+ B− cA− cB − aA− aB − bB − bA
�

t

+
�

− 1/2cA2 − cAB− 1/2cB2 − 1/2dB2 − dBA− 1/2dA2− 1/2bB2

− 3/4bBA− 1/2bA2− 1/4bAB+ 1/2(A+ B)2 − 1/2aA2− 3/4aAB

− 1/2aB2 − 1/4aBA
�

t2

+
�

− 1/16bA2B− 5/16aA2B − 5/16bB2A+ 1/6(A+ B)3

− 1/16aB2A− 1/2dBA2− 1/6cA3 − 5/16aAB2− 1/2cAB2

− 1/6dA3− 1/6cB3 − 1/2dB2A− 1/8bBAB− 1/16bAB2

− 1/6bB3 − 5/16bBA2− 1/6aA3− 1/8aBAB− 1/6bA3− 1/8bABA

− 1/6aB3 − 1/6dB3 − 1/2cA2B− 1/16aBA2− 1/8aABA
�

t3

=O (t4), (2.21)
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which yields
g1 := 1− a− c − d − b = 0;
g21 := 1− a− c − d − b = 0; “A”
g22 := 1− a− c − d − b = 0; “B”
g31 := 1− a− c − d − b = 0; “1/2A2”
g32 := 1− a− c − d − b = 0; “1/2B2”
g33 := −2c− (1/2)b+ 1− (3/2)a = 0; “1/2AB”
g34 := −2d − (3/2)b+ 1− (1/2)a = 0; “1/2BA”
g41 := 1− a− c − d − b = 0; “1/6A3”
g42 := 1− a− c − d − b = 0; “1/6B3”
g43 := 1− (15/8)a− (3/8)b− 3c = 0; “1/6A2B”
g44 := 1− (3/8)a− (15/8)b− 3d = 0; “1/6BA2”
g45 := 1− (3/8)a− (15/8)b− 3d = 0; “1/6B2A”
g46 := 1− (15/8)a− (3/8)b− 3c = 0; “1/6AB2”
g47 := 1− (3/4)a− (3/4)b = 0; “1/6ABA”
g48 := 1− (3/4)a− (3/4)b = 0. “1/6BAB”

Solving the linear equation system gives

d = d , c = −1/3− d , b = −2d + 1/3, a = 1+ 2d ,

where we have chosen a = b = 4/6, c = d = −1/6.

2.2. Examples of multiproduct expansions

Second Order. For a kernel of second order splitting methods, e.g.,

T2(∆t) =
1

2

�

exp(A∆t)exp(B∆t) + exp(B∆t)exp(A∆t)
�

. (2.22)

Fourth Order. For a kernel of fourth order splitting methods, e.g., see [14],

T4(∆t) = exp

�

τã

2
A

�

exp
�τ

2
B
�

exp

�

τp
3

Ã

�

exp
�τ

2
B
�

exp

�

τã

2
A

�

,

Ã= A+
τ2

24
(2
p

3− 3)[B, [B,A]], ã = 1− 1/
p

3. (2.23)

Higher order reconstruction by Taylor expansion, see Subsection 2.1, gives

T4(∆t) =
2

3
exp

�

1

2
Aτ

�

exp

�

1

2
Bτ

�

exp

�

1

2
Aτ

�

exp

�

1

2
Bτ

�

+
2

3
exp

�

1

2
Bτ

�

exp

�

1

2
Aτ

�

exp

�

1

2
Bτ

�

exp

�

1

2
Aτ

�

− 1

6
exp(Aτ)exp(Bτ)− 1

6
exp(Bτ)exp(Aτ). (2.24)
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2.3. Symplecticity

The symplecticity and unitarity are important for applications to Hamiltonian prob-
lems. Based on the work of [6], we have the following theorem.

Theorem 2.1. ([6]) If the basic 2n-th order method Tn is symmetric and symplectic, then
by applying polynomic extrapolation it is possible to construct integration methods of order
2(n+ l), l = 1, · · · , n, which are symplectic up to the order 4n+ 1.

3. Extrapolation scheme

In this section we apply the extrapolation scheme to our higher order splitting kernels.

3.1. Extrapolation to a second-order kernel

Recently, it has been shown that, once one has the second order algorithm (2.12),
arbitrary higher order algorithms can be built from the multi-product expansion∗ of (2.11),
with only quadratically growing number of exponentials at high orders. For example,

T4(∆t) =− 1

3
T2(∆t) +

4

3
T 2

2

�

∆t

2

�

, (3.1)

T6(∆t) =
1

24
T2(∆t)− 16

15
T 2

2

�

∆t

2

�

+
81

40
T 3

2

�

∆t

3

�

, (3.2)

T8(∆t) =− 1

360
T2(∆t) +

16

45
T 2

2

�

∆t

2

�

− 729

280
T 3

2

�

∆t

3

�

+
1024

315
T 4

2

�

∆t

4

�

, (3.3)

T10(∆t) =
1

8640
T2(∆t)− 64

945
T 2

2

�

∆t

2

�

+
6561

4480
T 3

2

�

∆t

3

�

− 16384

2835
T 4

2

�

∆t

4

�

+
390625

72576
T 5

2

�

∆t

5

�

. (3.4)

In the case of A(t) = T + V (t), the second-order algorithm is then

T2(∆t) = e∆tA
�

t+ 1
2
∆t
�

= e
1
2
∆tT e∆tV

�

t+∆t
2

�

e
1
2
∆tT + O (∆t3). (3.5)

For the error terms we have the following estimates:

exp

��△t

2

�

T

�

exp(△tV )exp

��△t

2

�

T

�

=exp(△t(T + V ) +△t3E3 +△t5E5 + · · · ), (3.6)

with

E3 =−
�

1

24

�

[T T V ]−
�

1

12

�

[V T V ], (3.7)
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E5 =

�

7

5760

�

[T T T T V ] +

�

1

480

�

[T T V T V ] +

�

1

360

�

[V T T T V ]

+

�

1

120

�

[V T V T V ], (3.8)

where [T T V ] = [T, [T, V ]] and [T T T T V ] = [T, [T, [T, [T, V ]]]] etc., denotes the nested
commutators.

This is for the case we have [V V T V ] = 0. So an error bound is given as:

||E3||=












−
�

1

24

�

[T T V ]−
�

1

12

�

[V T V ]













≤ 1

24
||T 2||||V ||+ 1

12
||T 2||||V 2||, (3.9)

||E5||=












�

7

5760

�

[T T T T V ] +

�

1

480

�

[T T V T V ] +

�

1

360

�

[V T T T V ]

+

�

1

120

�

[V T V T V ]













≤
�

7

5760

�

||T 4||||V ||+
�

1

180

�

||T 3||||V2||+
�

1

120

�

||T 2||||V 3||. (3.10)

The Multiproduct expansion can be derived similarly. More generally, for a given set of n
distinct whole numbers k1, k2, · · · , kn, one can form a 2n-order approximation of eh(A+B)
via

exp(A+ B) =
n
∑

i=1

ciT ki
2

� h

ki

�

+ e2n+1(h2n+1E2n+1). (3.11)

3.2. Generalization

The expansion coefficients ci are determined by a specially simple Vandermonde equa-
tion, where the generalization is a shift of the special case of m= 0:

3.2.1. Generalization to even kernels

Here we can construct extrapolations with the kernels: T2,T4,T6 etc., i.e. m = 0,1,2, · · ·
Lemma 3.1. The closed form of the coefficients for the extrapolation is given as with closed
form solutions

ci =
k2m

i
∑n

j=1 k2
j

n
∏

j=1(6=i)

k2
i

k2
i − k2

j

(3.12)

and error coefficient

e2m+2n+1 = (−1)n−1 k2m
i

∑n
j=1 k2

j

n
∏

i=1

1

k2
i

. (3.13)
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Here we have closed forms (3.15) and (3.16) and are the keys to the multi-product expansion
and its error analysis, see [6].

Proof. The proof is done with the Vandermonde equation:















1 1 1 · · · 1
k−2m−2

1 k−2m−2
2 k−2m−2

2 · · · k−2m−2
n

k−2m−4
1 k−2m−4

2 k−2m−4
2 · · · k−2m−4

n
· · · · · · · · · · · · · · ·

k−2m−2n
1 k−2m−2n

2 k−2m−2n
2 · · · k−2m−2n

n





























c1

c2

c3

· · ·
cn















=















1
0
0
· · ·
0















. (3.14)

The proof is complete by using the induction with the assumption of Eq. (3.11). �

3.2.2. Generalization to odd and prime number kernels

Here we can construct extrapolations with the kernels: T2,T3,T5 etc., i.e. m = 0,1,2, · · · .

Lemma 3.2. The closed form of the coefficients for the extrapolation is given as with closed
form solutions

ci =
ka m

i
∑n

j=1 ka
j

n
∏

j=1(6=i)

ka
i

ka
i − ka

j

(3.15)

and error coefficient

ea m+a n+1 = (−1)n−1
ka m

i
∑n

j=1 ka
j

n
∏

i=1

1

ka
i

. (3.16)

Here we have closed forms (3.15) and (3.16) and are the keys to the multi-product expansion
and its error analysis, see [6].

Proof. The proof is also done with the Vandermonde equation:















1 1 1 · · · 1
k−am−a

1 k−am−a
2 k−am−a

2 · · · k−am−a
n

k−am−2a
1 k−am−2a

2 k−am−2a
2 · · · k−am−2a

n
· · · · · · · · · · · · · · ·

k−am−an
1 k−am−an

2 k−am−an
2 · · · k−am−an

n





























c1

c2

c3

· · ·
cn















=















1
0
0
· · ·
0















. (3.17)

Complete induction with the assumption of Eq. (3.15) completes the proof. �

The higher order extrapolation allows to start with more accurate kernels. The higher
accuracy starts in a higher order form.
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Example 3.1. A 8th order algorithm from an even 4th order kernel function is given as:

c1 =
k6

1

(k2
1 − k2

2)(k
2
1 − k2

3)(k
2
1 + k2

2 + k2
3)

, (3.18)

c2 =
k6

2

(k2
2 − k2

1)(k
2
2 − k2

3)(k
2
1 + k2

2 + k2
3)

, (3.19)

c3 =
k6

3

(k2
3 − k2

1)(k
2
3 − k2

2)(k
2
1 + k2

2 + k2
3)

. (3.20)

Remark 3.1. While Magnus expansion are designed as nice higher order splitting methods,
they have also some drawbacks. One of a fundamental weakness of the Magnus approach
is that when we apply time integration, we ended up with many terms and all of them
are still in the exponential. When we apply to split them, we reach all these terms into
individual exponentials. The splitting is then far more laborious than Suzuki’s method,
while having only two operators to split.

Remark 3.2. We stated, that at higher order, say beyond the sixth order, even direct split-
ting using Suzuki’s method will become inefficient because the number of exponentials will
grow exponentially with orders.

Here we can improve the Suzuki’s method with multi product expansion. So our multi-
product expansion has a niche, while the number of exponential operators now only grows
quadratically. We see in experiments that 6th, 8th and 10th order calculations have brilliant
accuracy. The 10th order is so accurate that we are running into machine precision problem
with using only double precision.

4. Error analysis of the multi-product expansion

While extrapolation methods are well-known to many differential equations, there is a
nearly no work done to apply to operators.

While extrapolation methods are known in all details, see [31], we concentrate on
applying our results to the operator equations. The multi-product expansion is discussed
in [13]. Here our method is based on the Richard-Aitken-Neville extrapolation [20].

We assume that

Γl
k =

n
∑

i+0

|γni| ≤ Πn
i=1

1+ |ci|
|1− ci |

,

and ci are the coefficients of the multi-product expansion.
We have the following stability results to our multi-product scheme.

Theorem 4.1. 1.) The process that generates {T l
2 (

h
k
)}nl=1 is stable in that

sup
j
Γl

k =

n
∑

i

|ρni| <∞. (4.1)
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2.) Under the condition of monotonicity we have further

lim
n→∞ sup

i
|ρni| ≤

n
∏

i=1

1+ |ci |
|1− ci |

<∞, (4.2)

where the coefficients ci are given in (3.15). Here we have consequently a process that
supk Γ

l
k <∞.

Proof. 1.) Based on the derivation of the coefficients via the Vandermonde equation the
product is bounded. 2.) Some argument as in 1.) can be used. �

The convergence analysis based on a Richardson extrapolation process, see [31] and
[13]. Here we have a linear increase of only n+ 1 additional force-evaluation, instead of
2n+ 2 for Romberg’s extrapolation.

Theorem 4.2. 1.) The process that generates {T l
2 (

h
k
)}nl=1 is convergent and we have a com-

plete expansion, in that
�

T l
2

�

h

k

��n

l=1
− exp

�

h(A+ B)
�

=e2n+1(h
2n+1E2n+1) = O (h2n+1), as n→∞. (4.3)

where E2n+1 are higher order commutators of A and B.
2.) The process that generates {T l

2 (
h
k
)}nl=1 is convergent and we have a complete asymp-

totic expansion, in that
�

T l
2

�

h

k

��n

l=1
− exp

�

h(A+ B)
� ≈ O(h2n+1), as n→∞. (4.4)

Proof. 1.) Based on the derivation of the coefficients via the Vandermonde equation the
product is bounded and we have:

n
∑

k=1

ckT k
2

�

h

k

�

=

n
∑

k=1

ck

�

exp((A+ B)h)− (k−2h3E3 + k−4h5E5 + · · · )
�

=

n
∑

k=1

ck

 

exp((A+ B)h)−
n
∑

i

k−2ih2i+1E2i+1

!

=

 

exp((A+ B)h)−
n
∑

k=1

ck

n
∑

i

k−2ih2i+1E2i+1

!

=O (h2n+1), as n→∞, (4.5)

where the coefficients are given in (3.15).
2.) Some argument as in 1.) can be applied; see also [31]. �

Lemma 4.1. We assume ||A(t)|| to be bounded in the interval t ∈ (0, T ). Then T2 is non-
singular for sufficiently small △t.
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Proof. We use our assumption |A(t)| is to be bounded in the interval 0 < t < T . So
we can find ||A(t)||< C for 0 < t < T . Therefore T2 is always non-singular for sufficiently
small△t. �

Theorem 4.3. We assume T2 is non-singular as in Lemma 4.1. If T2 is non-singular, then the
entire MPE is non-singular and we have a uniform convergence.

Proof. Since

T2 = exp

�

△tA

�

t +
△t

2

��

(4.6)

for sufficient △t ≪ 1, we can derive

T2 = 1+△t A(t). (4.7)

If we assume the boundedness of ||A(t)|| in small △t, T2 is nonsingular and bounded and
we have uniform convergence, see [33]. �

Remark 4.1. With the uniform convergence of the MPE method, we are more general than
for the Magnus series with a convergence radius, see [28].

5. Numerical examples

In the following section, we deal with experiments to verify the benefits of our meth-
ods. At the beginning, we propose introductory examples to compare the methods. Then
applications to differential equations with stiffness and time-dependent parameters are
done.

5.1. An 2× 2 ODE system

We deal in the first with an ODE and separate the complex operator in two simpler
operators. Consider

∂tu1 = −λ1u1 +λ2u2, (5.1a)

∂tu2 = λ1u1 −λ2u2, (5.1b)

u1(0) = u10 , u2(0) = u20 (initial conditions), (5.1c)

where λ1,λ2 ∈ R+ are the decay factors and u10,u20 ∈ R+. We have the time-interval
t ∈ [0, T].

We rewrite the Eqs. (5.1a)-(5.1b) in operator notation:

∂tu = A(t)u+ B(t)u, (5.2)

where u1(0) = u10 = 1, u2(0) = u20 = 1 are the initial conditions, where we have λ1(t) = t
and λ2(t) = t2.
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And our spitted operators are

A=

�

−λ1 λ2

0 0

�

, B =

�

0 0
λ1 −λ2

�

. (5.3)
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The concrete parameters for the experiments are given as: λ1 = 0.05, λ2 = 0.01,
T = 1.0, u0 = (1,1)t . The L1-error is computed as:

er rnum,L1
=

N
∑

k=1

�

�uexact(tk)− unum(tk)
�

�, (5.4a)

where tk = k∆t, where t0, t1, · · · and △t = 0.1. The Lmax -error is computed as:

er rnum,max =
N

max
k=1

�

�uexact(tk)− unum(tk)
�

�, (5.4b)

where tk = k∆t, where t0, t1, · · · and ∆t = 0.1.
In the first steps we apply the AB (method 1.)), Strang (method 2.)) and 3rd-order

(method 3.)) and 4th-order-splitting (method 4.)), see Section 2 and compared with the
unsplitted solutions. The numerical results for the exponential splitting methods are given
in Fig. 1. We see the benefit of the higher order methods with respect to reduce the
computational error.

In a next series we apply the extrapolation schemes to our exponential splitting kernels
of second and fourth-order.

The numerical results of a second-order kernel are given in Fig. 2. With the second-
order kernel, we can improve the numerical error step by step to the machine precision.
Strong reductions are obtained between the second and fourth-order method. Here a
balance to the amount of computational time and higher order method is at least optimal.

The numerical results of a fourth-order kernel are given in Fig. 3. With the fourth-
order kernel, we can really accelerate the convergence rates to machine precision, which
is about 10−13. Very fast accelerations are obtained to the fourth and sixth-order method.
Here we have an improvement to a fourth-order method done with an extrapolation with
a second-order kernel, while we have at least less terms to compute.

Remark 5.1. The numerical experiment present the benefit of the higher order kernel,
while large time steps can be chosen to obtain small errors. Additionally extrapolation
steps are cheap to obtain and can be embedded to a splitting schemes of 4th order.

5.2. An 10× 10 ODE system

We deal in the first with an ODE and separate the complex operator in two simpler
operators. Consider

∂tu1 = −λ1,1u1 +λ2,1u2 + · · ·+λ10,1u10, (5.5a)

∂tu2 = λ1,2u1 −λ2,2(t)u2 + · · ·+λ10,2u10, (5.5b)

...

∂tu10 = λ1,10u1 +λ2,10(t)u2 + · · · −λ10,10u10, (5.5c)

u1(0) = u1,0, · · · , u10(0) = u10,0, (initial conditions), (5.5d)
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where λ1(t) ∈ R+ and λ2(t) ∈ R+ are the decay factors and u1,0, · · · ,u10,0 ∈ R+. We have
the time-interval t ∈ [0, T].

We rewrite Eqs. (5.5a)-(5.5d) in operator notation, we concentrate us to the following
equations:

∂tu= A(t)u+ B(t)u, (5.6)

where u1(0) = u10 = 1, u2(0) = u20 = 1 are the initial conditions, where we have λ1(t) = t
and λ2(t) = t2.

The spitted operators are

A=







−λ1,1(t) · · · λ10,1(t)
λ1,5(t) · · · λ10,5(t)

0 · · · 0






, B =







0 · · · 0
λ1,6(t) · · · λ10,6(t)
λ1,10(t) · · · −λ10,10(t)






. (5.7)

The parameters are given as:

λ1,1 = 0.09, λ2,1 = 0.01, · · · λ10,1 = 0.01,
...

λ1,10 = 0.01, · · · λ9,10 = 0.01, λ10,10 = 0.09.

The higher order schemes with method 1.) − 4.) are presented in Fig. 4. We see the
same bahaviour as for lower ODE systems. With higher order schemes, we can really
accelerate the convergence rates to machine precision, which is about 10−13. Accelerations
are obtained with second-order methods. Here we have an improvement to at least 4th-
order method and can balance the computational time to the higher order precision, while
we have at least less terms to compute an higher order method.

Remark 5.2. In the numerical experiment we have compared different higher order
schemes. With higher order kernels as starting scheme for the extrapolation, we have
obtained the best results. Additionally extrapolation steps are cheap to do and increase to
higher order schemes.

5.3. A non-singular matrix case

To assess the convergence of the Multi-product expansion with that of the Magnus
series, consider the well known example [27] of

A(t) =

�

2 t
0 −1

�

. (5.8)

The exact solution to (2.1) with Y (0) = I is

Y (t) =

�

e2t f (t)
0 e−t

�

, (5.9)
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with

f (t) =
1

9
e−t(e3t − 1− 3t) (5.10a)

=
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

420
+

31t8

40320
+

t9

6720
+

13t10

403200
+

13t11

178200
+ · · · . (5.10b)

For the Magnus expansion, one has the series

Ω(t) =

�

2t g(t)
0 −t

�

, (5.11)
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with, up to the 10th-order,

g(t) =
1

2
t2 − 1

4
t3 +

3

80
t5 − 9

1120
t7 +

81

44800
t9 + · · · (5.12a)

→ t(e3t − 1− 3t)

3(e3t − 1)
. (5.12b)

Exponentiating (5.11) yields (5.9) with

f (t) =te−t (e3t − 1)

�

1

6
− 1

12
t +

1

80
t3 − 3

1120
t5 +

27

44800
t7 + · · ·

�

(5.13a)

→te−t (e3t − 1)

�

1

9t
− 1

3(e3t − 1)

�

. (5.13b)

Whereas the exact solution (5.10) is an entire function of t, the Magnus series (5.12a) and
(5.13a) only converge for |t| < 2

3
π due to the pole at t = 2

3
πi. The Magnus series (5.13a)

is plot in Fig. 5 as blue lines. The pole at |t| = 2
3
π ≈ 2 is clearly visible. Here we obtain

an improvement with the multi-product expansion methods, while we have more precise
results. Such precision is obtained by an analytical approach of the function f (t).

From (2.12), by setting ∆t = t and t = 0, we have

T2(t) = exp

�

t

�

2 1
2

t
0 −1

��

=

�

e2t f2(t)
0 e−t

�

(5.14a)

with

f2(t) =
1

6
te−t(e3t − 1). (5.14b)

This is identical to first term of the Magnus series (5.13a) and is an entire function of t.
Since higher order MPE uses only powers of T2, higher order MPE approximations are also
entire functions of t. Thus up to the 10th-order, one finds

f4(t) = te−t

 

e3t − 5

18
+

2e
3t
2

9

!

, (5.15a)

f6(t) = te−t

�

11e3t − 109

360
+

9

40
(e2t + et)− 8

45
e

3t
2

�

, (5.15b)

f8(t) = te−t

�

151e3t − 2369

7560
+

256

945

�

e
9t
4 + e

3t
4

�

− 81

280
(e2t + et) +

104

315
e

3t
2

�

, (5.15c)

f10(t) = te−t

�

15619e3t − 347261

1088640
+

78125

217728

�

e
12t
5 + e

9t
5 + e

6t
5 + e

3t
5

�

−4096

8505

�

e
9t
4 + e

3t
4

�

+
729

4480
(e2t + et)− 4192

8505
e

3t
2

�

. (5.15d)

These MPE approximations are plotted as red lines in Fig. 5. The convergence seems
uniform for all t.
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When expanded, the above functions yield

f2(t) =
t2

2
+

t3

4
+ · · · , (5.16a)

f4(t) =
t2

2
+

t4

8
+

5t5

192
+ · · · , (5.16b)

f6(t) =
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

384
+ · · · , (5.16c)

f8(t) =
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

420
+

31t8

40320
+

1307t9

8601600
+ · · · , (5.16d)

f10(t) =
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

420
+

31t8

40320
+

t9

6720
+

13t10

403200
+

13099t11

232243200
, (5.16e)

and agree with the exact solution to the claimed order.
Here we have convergence due to the following theorem.

Theorem 5.1. We have given the initial value problem (2.1) and the exact solution of the
initial value problem, see (5.9). Then the approximated g(t,ε) done with the MPE method is
convergent with the rate:

�

�gexact(t)− gM PE,2(i+1)(t)
�

� ≤ C t2(i+1)+1 , (5.17)

where C is independent of t and ε and 0≤ C ≤ 0.25, for i = 0,1,2, · · · .
Proof. We apply the difference between exact and approximated solution, due to the

Taylor expansion of both solutions. We begin with i = 0:
�

� fexact(t)− fM PE,2(t)
�

�

=

�

�

�

�

exp(2t)

9
−
�

1

9
+

t

3

�

exp(−t)−
�

exp(−t)(exp(3t)− 1)
t

6

�

�

�

�

�

=
t3

4
+ O (t5) ≤ CO (t5), (5.18)

and 0≤ C ≤ 0.25.
For i ≥ 0: we have the

�

� fexact(t)− fM PE,2(i+1)(t)
�

�

≤ t2(i+1)+1

4
≤ CO (t2(i+1)+1), (5.19)

and 0≤ C ≤ 0.25. �

Remark 5.3. Here we have uniform convergence because of the non singularities of the
MPE products.
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5.4. The time-dependent radial Schödinger equation

We consider the radial Schrödinger equation

∂ 2u

∂ r2
= f (r, E)u(r), (5.20a)

where

f (r, E) = 2V (r)− 2E+
l(l + 1)

r2
. (5.20b)

By relabeling r → t and u(r)→ q(t), (5.20a) can be viewed as harmonic oscillator with a
time dependent spring constant

k(t, E) = − f (t, E) (5.21)

and Hamiltonian

H =
1

2
p2 +

1

2
k(t, E)q2. (5.22)

Thus any eigenfunction of (5.20a) is an exact time-dependent solution of (5.22). For
example, the ground state of the hydrogen atom with l = 0, E = −1/2 and

V (r) = −1

r
(5.23)

yields the exact solution
q(t) = t exp(−t) (5.24)

with initial values q(0) = 0 and p(0) = 1. Denoting

Y (t) =

�

q(t)
p(t)

�

, (5.25)

the time-dependent oscillator (5.22) now corresponds to

A(t) =

�

0 1
f (t) 0

�

=

�

0 1
0 0

�

+

�

0 0
f (t) 0

�

≡ T + V (t), (5.26)

with
f (t) = (1− 2/t) . (5.27)

In this case, the second-order midpoint algorithm is

T2(h, t) =e
1
2

hT ehV
�

t+ h
2

�

e
1
2

hT

=

�

1+ 1
2
h2 f

�

t + 1
2
h
�

h+ 1
4
h3 f

�

t + 1
2
h
�

hf
�

t + 1
2
h
�

1+ 1
2
h2 f

�

t + 1
2
h
�

�

(5.28)
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and for q(0) = 0 and p(0) = 1, (setting t = 0 and h= t), correctly gives the second-order
result,

q2(t) = t +
1

4
t3 f

�

1

2
t

�

= t − t2 +
1

4
t3. (5.29)

Higher order multi-product expansions using (5.28) yield

q4(t) = t − t2 +
7t3

18
− t4

9
+

t5

96
, (5.30a)

q6(t) = t − t2 +
211t3

450
− 31t4

225
+

17t5

600
+ · · · , (5.30b)

q8(t) = t − t2 +
32233t3

66150
− 5101t4

33075
+

3139t5

88200
+ · · · , (5.30c)

q10(t) = t − t2 +
88159t3

1786050
− 143177t4

893025
+

91753t5

2381400
+ · · · . (5.30d)

Comparing this to the exact solution (5.24):

q(t) = t − t2 +
t3

2
− t4

6
+

t5

24
− t6

120
+

t7

720
− t8

5040
· · ·

= t − t2 +
t3

2
− 0.1667t4+ 0.0417t5− 0.0083t6+ 0.0014t7 · · · , (5.31)

one sees that MPE no longer matches the Taylor expansion beyond second-order. This is
due to the singular nature of the Coulomb potential, which makes the problem a challenge
to solve. Since A(t) is now singular at t = 0, the previous proof of uniform convergence
no longer holds. Nevertheless, from the exact solution (5.24), one sees that force (or
acceleration)

lim
t→0

f (t)q(t) = −2 (5.32)

remains finite. It seems that this is sufficient for uniform convergence as the coefficients of
the t3 and t4 terms do approach 1

2
and 1

6
with increasing order:

7

18
= 0.3889,

211

450
= 0.4689,

32233

66150
= 0.4873,

88159

1786050
= 0.4936,

1

9
= 0.1111,

31

225
= 0.1378,

5101

33075
= 0.1542,

143177

893025
= 0.1603.

Similar results hold for all other coefficients. To see this uniform convergence, Fig. 6 shows
how higher order MPE, up to the 100th-order, matches against the exact solution. The cal-
culation is done numerically rather than by evaluating the analytical expressions such as
(5.30). For orders 60, 80 and 100, it is necessary to use quadruple precision to circum-
vent rounding errors. Also shown are some well know fourth-order symplectic algorithm
FR (Forest-Ruth [17], 3 force-evaluations), M (McLachlan [26], 4 force-evaluations), BM
(Blanes-Moan [5], 6 force-evaluations), Mag4 (Magnus integrator, see below, ≈ 2.5 force-
evaluations) and 4B [12] (a forward symplectic algorithm with only ≈ 2 evaluations).
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These symplectic integrators steadily improves from FR, to M, to Mag4, to BM to 4B. For-
ward algorithm 4B is noteworthy in that it is the only fourth-order algorithm that can go
around the wave function maximum at t = 1, yielding

q4B(t) = t − t2 +
t3

2
− 0.1635t4+ 0.0397t5− 0.0070t6+ 0.0009t7 · · · , (5.33)

with the correct third-order coefficient and comparable higher order coefficients as the
exact solution (5.31). By contrast, the FR algorithm, which is well know to have rather
large errors, has the expansion,

qFR(t) = t − t2 − 0.1942t3+ 3.528t4− 2.415t5+ 0.5742t6− 0.0437t7 · · · , (5.34)

with terms of the wrong signs beyond t2. The failure of these fourth-order algorithms
to converge correctly due to the singular nature of the Coulomb potential is consistent
with the findings of Wiebe et al. [36]. However, their finding does not explain why the
second-order algorithm can converge correctly and only higher order algorithms fail. A
deeper understanding of Suzuki’s method is necessary to resolve this very interesting, but
puzzling issue.

For non-singular potentials such as the radial harmonic oscillator with

f (t) = t2 − 3, (5.35)

and exact ground state solution

q(t) = te−t2/2 = t − t3

2
+

t5

8
− t7

48
+

t9

384
− t11

3840
+ · · · , (5.36)
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the multi-product expansion now gives,

q2(t) = t − 3t3

4
+

t5

16
, (5.37a)

q4(t) = t − t3

2
+

29t5

192
+ · · · , (5.37b)

q6(t) = t − t3

2
+

t5

8
− 13t7

576
+ · · · , (5.37c)

q8(t) = t − t3

2
+

t5

8
− t7

48
+

20803t9

7741440
+ · · · , (5.37d)

q10(t) = t − t3

2
+

t5

8
− t7

48
+

t9

384
− 50977t11

193536000
+ · · · , (5.37e)

and matches the Taylor expansion up to the claimed order, as demonstrated in the previous
case of (5.16).

The fourth-order Magnus algorithm used is given:

T4(∆t) = ec3∆t(V2−V1)e∆t
�

T+ 1
2
(V1+V2)

�

e−c3∆t(V2−V1), (5.38a)

where now
V1 = V (t + c1∆t), V2 = V (t + c2∆t). (5.38b)

Normally, one would need to further split the central exponential in (3.38) to fourth-
order. In the general case, this would have required three or more force evaluations.
However, because the problem is basically a harmonic oscillator, it can be splitted to fourth-
order [12] via

e∆t(T+ 1
2
(V1+V2)) = ece∆t 1

2
(V1+V2))ecm∆tT ece∆t 1

2
(V1+V2), (5.39a)

where

ce =
1

2
− fa∆t2/24 and cm = 1+ fa∆t2/6. (5.39b)

Here fa =
1
2
[ f (t + c1∆t, E) + f (t + c2∆t, E)]. Thus the entire algorithm (5.38) needs

two evaluations of the potential in f (t, E) but slightly more effort in computing the final
force. We assign it as requiring 2.5 force evaluations. Algorithm 4B [12] requires truly two
evaluations of the force with an extra multiplication.

5.5. Computing eigenvalues to high precision

In the last study of the hydrogen ground state, the eigenvalue E = 1
2

was provided ini-
tially to test how well each algorithm can integrate the trajectory outward from the origin
t = 0. All time-dependent algorithms can be used to solve both the wave function and its
associated eigenvalue using Killingbeck’s method [24]. In this method, one integrate back-
ward from given large time t = T toward t = 0 and use Newton’s iteration to determine E
such that q(0) = 0.
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Here, we compare how well MPE can determine the ground state energy and wave

function of the spiked harmonic oscillator [1,4,25,30] with potential

V (r) =
1

2

�

r2+
λ

rM

�

, (5.40)

where M = 6 and λ = 0.001. By use of higher-order MPE with quadruple precision, we
have first determined that

E0 = 1.639927912960927107365. (5.41)

We integrate back from T = 16, with q(T ) = 0 and p(T ) = 10−10. Fig. 7 shows the
precision-effort comparison of various fourth-order algorithms as compared to higher-
order MPE. If greater precision is desired, it is more efficient to use higher order inte-
grators. The sixth-order MPE out-performs all fourth-order integrators except 4B at the
level of 8-digit precision. For about 14 digits, order 10 is near the limit of diminishing
return. Among fourth-order algorithms, BM performed the best, except when compared to
4B, which is specially efficient in solving harmonic problems.

Remark 5.4. It is of interest to note that the multi-product expansion, even in singular
cases, converges uniformly, and approaches the Taylor expansion asymptotically.

6. Conclusions and discussions

We have presented splitting methods based on Suzuki’s ideas and Multi product expan-
sions. Based on the derivation of higher order schemes with the Suzuki’s method and Multi
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product schemes, we can obtain starting splitting schemes of higher order. Extrapolation
schemes accelerate the reconstruction to more accurate schemes with less additional com-
putational terms. Numerical examples confirm the applications to differential equations of
stiff and time-dependent types. We demonstrate the benefits of our multi-product expan-
sion related to the extrapolation analysis. The benefits are in less force-evaluations, which
are necessarily with Magnus expansion or extrapolation schemes based on Romberg. In
future we will focus us on the development of improved operator-splitting methods with
respect to their application in nonlinear differential equations.
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