
Numer. Math. Theor. Meth. Appl. Vol. 4, No. 2, pp. 142-157
doi: 10.4208/nmtma.2011.42s.2 May 2011

Chebyshev Spectral Methods and the Lane-Emden

Problem

John P. Boyd∗

Department of Atmospheric, Oceanic and Space Science, University of

Michigan, 2455 Hayward Avenue, Ann Arbor, MI 48109-2143, USA.

Received 1 July 2010; Accepted (in revised version) 16 November 2010

Available online 6 April 2011

Abstract. The three-dimensional spherical polytropic Lane-Emden problem is yr r +

(2/r)yr + ym = 0, y(0) = 1, yr(0) = 0 where m ∈ [0,5] is a constant parameter.
The domain is r ∈ [0,ξ] where ξ is the first root of y(r). We recast this as a non-
linear eigenproblem, with three boundary conditions and ξ as the eigenvalue allow-
ing imposition of the extra boundary condition, by making the change of coordinate
x ≡ r/ξ: yx x + (2/x)yx + ξ

2 ym = 0, y(0) = 1, yx (0) = 0, y(1) = 0. We find that a
Newton-Kantorovich iteration always converges from an m-independent starting point
y (0)(x) = cos([π/2]x), ξ(0) = 3. We apply a Chebyshev pseudospectral method to
discretize x . The Lane-Emden equation has branch point singularities at the endpoint
x = 1 whenever m is not an integer; we show that the Chebyshev coefficients are
an ∼ constant/n2m+5 as n→∞. However, a Chebyshev truncation of N = 100 always
gives at least ten decimal places of accuracy — much more accuracy when m is an inte-
ger. The numerical algorithm is so simple that the complete code (in Maple) is given as
a one page table.

AMS subject classifications: 65L10, 65D05, 85A15
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1. Introduction

The Lane-Emden problem is

yr r + (2/r)yr + ym = 0, y(0) = 1, yr(0) = 0, (1.1)

where m ∈ [0,5] is a constant parameter. (This is the three-dimensional spherical poly-
tropic case whose astrophysical context is given in the book by the Nobel Laureate “Black
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Hole” Chandrasekhar [7]; other variants are described in [10].) The goal of the astrophys-
ical problem is to integrate this equation from the origin to its first zero, r = ξ. It is helpful
to rescale the problem by defining

r = ξx , x ≡ r/ξ. (1.2)

The problem becomes

yx x + (2/x)yx + ξ
2 ym = 0, y(0) = 1, yx(0) = 0, y(1) = 0. (1.3)

This is a nonlinear eigenvalue problem with the location of the first zero ξ as the eigen-
value. The eigenvalue is chosen so that the extra boundary condition is satisfied. Analytical
solutions are known only for the exponent m equal to 0, 1 or 5 as catalogued in Table 1.Table 1: Analyti
al exa
t solutions.

m y(r; m) ξ [first zero of y(r; m)]

0 1− (1/6)r2
p

6
1 sin(r)/r π

5 1/
p

1+ r2/3 ∞

The Lane-Emden problem has a long history. Numerical tables for selected values of
m were published as early as 1932. A small subset of the available literature is given
in the bibliography table. This problem has become one of those benchmarks which are
revisited repeatedly as every new numerical method is tested against it. In spite of this vast
literature, recent applications of higher spectral methods have sloughed over important
difficulties.

First, the Lane-Emden equation is singular at the right endpoint (where y(1) = 0)
whenever the order m is not equal to an integer. Singularities degrade the usual exponen-
tial rate of convergence of a spectral method to a finite order rate of convergence. That
is to say, the error falls proportional to 1/N k for some constant k, the so-called "algebraic
order of convergence", where k depends on the type of singularity as will be explained in
more detail below. Fortunately, it is possible to modify spectral methods so as to recover an
exponential rate of convergence as will be explained later. Second, the Lane-Emden prob-
lem is a nonlinear eigenvalue problem. Although the differential equation is the second
order, we need to satisfy three boundary conditions. This is possible because the problem
also contains an eigenparameter space ξ which must be determined simultaneously with
the solution to the differential equation.

2. Numerical strategies

One strategy is based upon the following theorem.

Theorem 2.1. Suppose that w(x ,ξ) solves wx x+(2/x)wx+ξ
2w = 0 with w(0) = 1, wx (0) =

0, w(1) = 0. Then v ≡ ωw(x ,ξ) solves vx x + (2/x)vx +Ξ
2vm = 0 with v(0) = ω, vx (0) =
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0, v(1) = 0 provided that

ω =

�

ξ2

Ξ2

�1/(m−1)

. (2.1)

Proof. Substitution of v into the equation is solved by v followed by cancellation of
common factors. �Table 2: Lane-Emden bibliography.

Airey [8] Taylor series in x

Bender et al [2] perturbation parameter is m− 1
Chandrasekhar [7] book including extensive tables
Chandrasekhar [6] numerical table for m= 3.25

Davis [8] review
He [9] derives variational principle; no solutions

Horedt [10]
extensive tables; good discussion of other
Lane-Emden cases (planar geometry, etc.)

Hunter [11]
Euler-accelerated power series; discussion

of singularities in the complex plane
Liao [12] homotopy perturbation method
Liu [13] analytic approx. including m→∞

Mandelzweig & Tabakin
[16] review of quasi-linearization;

LE, reduced to form without 1st deriv.
is example with rate-of-convergence plot

Marzban, Tabrizidooz & Razzaghi [17] Legendre domain decomposition

Mohan & Al-Bayaty [18]
power series about x = 0, x = ξ and an
arbitrary point. Expansions about x = ξ

for integer m only

Nouh [20]
power series in x2, accelerated by Euler

sum acceleration, then applied Padé

Parand et al. [21]
rational Legendre on x ∈ [0,∞];

restricted to integer m

Pascual [22] Padé approximants

Ramos [23]
homotopy perturbation applied to both

differential eq. & Voltera integral formulation

Roxburgh & Stockman [24]
power series, Padé approximants

and simple rational approximations
Sadler & Miller [25] extensive tables, m ∈ [1,5]

Shawagfeh [26] Adomian decomposition
Yildirim & Özi̧s [28] He’s variational-iteration method

The theorem implies that one can solve the Lane-Emden differential equation as a
boundary value problem with ξ > 0 as an arbitrary constant and with homogeneous
Dirichlet boundary conditions. The Neumann condition at the origin, wx (0) = 1, will
not be satisfied. However,the condition can be satisfied by using the theorem to rescale
the amplitude of the solution and simultaneously rescale the parameter ξ and thus deter-
mine the eigenvalue. We program this strategy and indeed were successful in solving the
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problem over most of parameter space. However, when m = 1, the problem becomes a
linear eigenproblem which is insoluble unless ξ is equal to a discrete eigenvalue. Thus, the
simple boundary value method fails for this value of the exponent m. Consequently, we
developed a second numerical strategy which is more robust.

2.1. Nonlinear eigenvalue strategy

In this strategy, we discretized the spatial dependence by using collocation, also known
as the “pseudo-spectral” method, on an N -point Chebyshev Lobatto grid. The numerical
unknowns consisted of the Nspectral coefficients a j of the truncated Chebyshev polynomial
series plus the eigenvalue ξ. We impose a total of N+1 constraints to implicitly determine
the unknowns:

1. (N−2) collocation conditions that the residual of the differential equation should be
zero are imposed at the interior points of the Lobatto grid plus;

2. y(0) = 1;

3. yx (0) = 0;

4. y(1) = 0.

It is possible to impose three boundary conditions on a differential equation that is only of
order two because the eigenvalue ξ is determined simultaneously with the solution so that
the extra boundary condition is satisfied. This proved to be a very robust procedure. Be-
cause the differential equation is nonlinear, we employed a Newton-Kantorovich iteration.
(This strategy is also known as "quasi-linearization".) We assume that the solution can be
written

y(x)≈ y(n)(x)+ δ(n)(x), ξ≈ ξ(n) + ε(n), (2.2)

where the correction |δ(n)(x)|∞ ≪ |y(n)(x)|∞ and |ε(n)| ≪ ξ(n). Substitution into the dif-
ferential equation, neglect of terms quadratic in the correction space δ, and rearrangement
gives a linear differential equation for the correction assuming that the previous iterate
y(n)(x) is already known:

δ(n)x x + (2/x)δ
(n)
x +m
�

ξ(n))
�2 �

y(n)
�m−1

δ(n)

=−
n

y(n)x x + (2/x)y
(n)
x + ξ2
�

y(n)
�m
o

(2.3)

with the boundary conditions

δ(n)x (0) = 0, δ(n)(1) = 0. (2.4)

The eigenvalue ξ is adjusted so that in addition

δ(n)(0) = 0. (2.5)
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A universally successful first guess for all m ∈ [0,5) was

y(0)(x) = cos([π/2] x), ξ(0) ≡ 3. (2.6)

Thus, this problem is not representative of nonlinear problems in general where continua-
tion in a parameter and other sophisticated techniques are needed to provide a satisfactory
first guess. To discretize the Newton-Kantorovich iteration, begin by choosing N as the
number of points in a Chebyshev-Lobatto grid:

x j = (1/2)
¦

1+ cos
�

t j

�©

, j = 1,2, · · · , (2.7)

where

t j ≡ π
j− 1

N − 1
, j = 1,2, · · ·N . (2.8)

The unknowns y(x) and δ(n)(x) are expanded as a truncated Chebyshev series:

y(x) =

N−1
∑

j=0

a j T j(x), δ(n)(x) =

N−1
∑

n=0

d
(n)

j
T j(x). (2.9)

We will obtain N algebraic relations from (i) collocation of the differential equation at
(N − 2) interior points plus (ii) imposition of the two homogeneous boundary conditions,
as is standard in the discretization of any second order ODE. What makes this an eigenvalue
problem is that ξ is added as the (N+1)-st unknown while the extra constraint is the third
boundary condition, y(0) = 1. This is a normalization-of-amplitude condition is similar
to the normalization of the eigenvectors performed by linear eigenvalue library routines.

Define the differentiation matrices ~~D0, ~~D1, and ~~D2 to have the elements

D0i j =T j(2x i − 1) = cos([ j− 1]t i), j = 1,2, · · ·N ,

D1i j =T j,x (2x i − 1) = 2( j− 1)
sin(( j− 1)t i)

sin(t i)
,

D2i j =T j,x x (2x i − 1)

=4

¨

−( j− 1)2
cos([ j− 1]t i)

sin2(t i)
+ ( j− 1)

sin([ j− 1]t i) cos(t i)

sin3(t i)

«

, (2.10)

where we have used the trigonometric connection between a Fourier cosine basis and the
Chebyshev polynomials

Tn(cos(t))≡ cos(nt), ∀n, t. (2.11)
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The derivative formulas have numerators and denominators that vanish as |x | → 1. Fortu-
nately, the limits are known analytically:

D01 j = 1, (2.12)

D0N j = (−1) j+1, (2.13)

D11 j = 2( j− 1)2, (2.14)

D1N j = 2 (−1) j+1 ( j− 1)2, (2.15)

D21 j = 4( j− 1)2(( j− 1)2− 1)/3, (2.16)

D2N j = 4(−1) j+1 ( j− 1)2(( j− 1)2 − 1)/3. (2.17)

Let ~δ be a vector of dimension N + 1 whose first N elements are the Chebyshev coeffi-
cients of the function δ(n)(x) and whose last element is ξ(n). The Newton iteration requires
solving at each step the (N + 1)-dimensional linear algebra problem

~~J ~δ = −~r. (2.18)

The grid point values of y(n)(x) and its first two derivatives are organized into vectors of
length N by

~y ≡ ~~D0~a, ~y x ≡ ~~D1~a, ~y x x ≡ ~~D2~a. (2.19)

The first (N − 2) elements of the residual vector come from the interior collocation condi-
tions applied to the discretization of the Lane-Emden equation:

r j = y x x j+1 + (2/x j+1)y x j+1 +
�

y j+1

�m
. (2.20)

The next two elements come from the homogeneous boundary conditions imposed on
δ(n)(x):

rN−1 = rN = 0. (2.21)

The final element of the residual vector imposes the inhomogeneous boundary condition
y(0) = 1:

rN+1 = y1 − 1. (2.22)

The elements of the Jacobian matrix are

Ji j = D2i+1, j + (2/x i+1)D1i+1, j + ξ
2my

(m−1)
i+1 D0i+1, j, i = 1, · · · , (N − 2),

j = 1, · · · , N ,

JN−1, j = D01, j, j = 1, · · · , N ,

JN , j = D1N , j, j = 1, · · · , N ,

JN+1, j = D0N , j, j = 1, · · · , N ,

Ji,N+1 = 2ξ(n) yi+1, i = 1, · · · , N ,

JN−1,N+1 = JN ,N+1 = JN+1,N+1 = 0. (2.23)
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3. Singularities

When m is an integer, the Lane-Emden solution y(x) is regular on the entire domain.
When m is non-integral, then the term ym has a branch point singularity at x = 1 where
the boundary condition requires y(1) = 0. If y(x) has a simple zero at x = 1, i. e.,

y(x)≈ Az + higher order terms in z, (3.1)

where A is a constant (always negative for the Lane-Emden equation for m ∈ [0,5] at least)
and where

z ≡ x − 1, (3.2)

then obviously
ym ∼ (−A)m(−z)m + higher order terms in z, (3.3)

where we have chosen the branches to give the correct real-valued result when A< 0 and
z < 0, as it is to the left of the boundary at x = 1. As noted by Hunter [11]— his variable
ζ is our x2, but the same principle applies — the singularity in y(x) is a branch point
of order two greater than that in ym because it is the second derivative of y(x) that must
balance ym

y(x)∼ Az− ξ2(−A)m

(m+ 2)(m+ 1)
(−z)m+2 + higher order terms in z. (3.4)

(Note that there is no inconsistency between the answer and the argument used to derive it
because the leading branch point term is always decaying as fast as quadratically as x → 1
while Az is linear.) In other words, when m is not an integer, y(x) will have a branch point
of order m+ 2 at the right endpoint, x = 1.

3.1. Implications for Chebyshev spectral methods

Elliott proved that if a function has a branch point singularity of the form (1 − x)φ

where φ is not an integer, then the Chebyshev coefficients an would asymptotically be
approximately

(1− x)φ =⇒ an ∼ constant/n2φ+1, n≫ 1. (3.5)

When the Chebyshev coefficients decay asymptotically as 1/nk for some constant k< then k

is the “algebraic order of convergence” in the language of [4]. In contrast, when a function
y(x) which is singularity-free on the interval is expanded in Chebyshev polynomials, the
coefficients decrease geometrically fast, that is, fall like the terms of a geometric series with
terms asymptotically proportional to pn for some |p| < 1, or equivalently

an ∼ constantexp(−qn),

where q = log(p). For many functions with weak singularities (high algebraic convergence
order k), it is common to see the Chebyshev coefficients display both an algebraic, power
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law rate of convergence (for large degree) and an exponential decay (for small and mod-
erate n). The degree where there is a (usually rather sharp) transition is the “crossover
degree”. Examples of such transitions are given in [4]. It follows from the previous sub-
section and Elliott’s theorem that when m is not an integer, the Chebyshev coefficients of
the solution to the Lane-Embden equation will have an algebraic rate of convergence with
convergence order

an ∼ constant/n2m+5. (3.6)

However, the algebraic order is relatively high because the minimum order of convergence
is always at least five. Does such a relatively high rate of algebraic convergence matter?
The subtle answer: in a practical sense: No. However, the algebraic convergence is defi-
nitely observable as shown below.

3.2. Generic properties of Chebyshev series

To interpret graphs of Chebyshev coefficients, note that

|Tn(2x − 1)| ≤ 1, ∀n, x ∈ [0,1], (3.7)

as follows trivially from the identity Tn(cos(t)) = cos(nt) and also that consequently the
error in truncating a Chebyshev series by neglecting all terms of degree N + 1 and higher
is always bounded by the sum of the absolute values of the neglected terms.

max
x∈[0,1]

| f (x)− fN (x)| ≤
∞
∑

n=N+1

|an|. (3.8)

Unfortunately, the error of a Chebyshev series with algebraically-converging coefficients
decreasing proportional to 1/nk yields an error which falls only as O (1/N k−1) because of
the following asymptotic inequality.

Theorem 3.1 (Bounds on Algebraically-Converging Sums). For k ≥ 2,

1

(k− 1) (N + 1)k−1
<

∞
∑

n=N+1

n−k <
1

(k− 1)N k−1
. (3.9)

Proved in [1].

(Although this identity only gives an error bound and not the error itself, bounds based
on summing the neglected coefficient are usually rather tight in practice as explained in
the author’s book [4].) Thus, a Chebyshev series with an algebraic index of convergence k

will have an error falling only as O (1/N k−1).
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3.3. Numerical results

The exact solution for m = 0 is a parabola which is given exactly as the sum of three
Chebyshev coefficients:

u(x ; m= 0) = (5/8)− (1/2)T1(2x − 1)− (1/8)T2(2x − 1) = 1− x2. (3.10)

Fig. 1 shows the numerical solution for a tiny perturbation of this case, m = 1/10,000.
The predicted fifth order convergence is observed with

an ∼ 0.001/n5

fitting the Chebyshev coefficients well for large n. Even so, because a100 ∼ 10−13, it is
obvious that the accuracy of the 100-point Chebyshev pseudospectral approximation is ex-
tremely high. This is true even though the rate of convergence of the error is one less than
the order of convergence of the coefficients as asserted by Theorem 3.1 and demonstrated
for this value of m in Table 3.
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Figure 1: Chebyshev 
oe�
ients for m = 1/10, 000 [thi
k solid℄. These asymptote for large degree nto roughly 0.001/n5. The exa
t solution for m = 0 is a parabola whose three Chebyshev 
oe�
ientsare marked by the bla
k disks. The perturbation of 
hanging m from zero to 1/10, 000 has modi�edthe Chebyshev 
oe�
ients by rendering nonzero all 
oe�
ients of degree three and greater. However,be
ause the sum of a series of Chebyshev 
oe�
ients is bounded by the absolute values of the in
luded
oe�
ients, it follows just from inspe
tion of the tiny magnitude of a3, a4, · · · that the algebrai
ally
onverging sum ∑∞
n=3 will modify y(x) by less than 0−4. Although the perturbation has drasti
ally
hanged the quantitative appearan
e of a graph of Chebyshev 
oe�
ients, u(x; m = 1/10, 000) is stillvery well approximated by the parabola u(x; m= 0).

When m = 5/2, the first 27 coefficients fall geometrically as shown in the left graph of
Fig. 2. Beyond this crossover degree, the coefficients fall proportional to n−10. These coef-
ficients were computed using thirty digits of accuracy in Maple to show that the predicted
theoretical behavior is truly there. It is difficult to see the power-law decay otherwise be-
cause the coefficient a26 has a magnitude smaller than 10−12!. For all practical purposes,
the convergence is geometric in spite of the branch point of order 4.5 of y(x) at y = 1.
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truncation degree max. pointwise error EN/2/EN

10 1.836e-08 -
20 1.266e-09 14.51
40 8.2218e-11 15.40
80 5.009e-12 16.40
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Figure 2: Chebyshev 
oe�
ients for m = 5/2. The left plot, whi
h uses a linear s
ale in degree but alogarithmi
 s
ale for the 
oe�
ients, shows that the leading 
oe�
ients fall geometri
ally. The dashedline is the graph of 2.5 exp(−1.12n). The right graph is the same but with both s
ales logarithmi
, andwith the range of 
oe�
ients extended. The 
oe�
ients of degrees 27 to 400 are well-�t by the dashedline, indistinguishable from the graph of the 
oe�
ients, 75/n10. The other dashed guidelines, 
learlynot of the same slope as the thi
k 
urve of the 
oe�
ients, have slopes proportional to n−9 and n−11.
Fig. 3 compares the Chebyshev coefficients for the exponent m from zero to 4.5 in

increments of one-half. As m increases, the rate of geometric convergence steadily slows.
However, when m is not an integer, there is an algebraically-converging tail that appears
when the degree n is beyond the crossover degree for that function. This tail converges
most slowly for smaller m; thus, only m = 1/2 has coefficients larger than 10−11 at n =

100, the right side of the graph. The crossover degree for high m is very large, and beyond
the right edge of the graph, because for m= 4.5, for example, the geometrically-converging
coefficients decrease more slowly than for any of the other nine exponents shown, but the
algebraic tail is proportional to n−14, and so only is visible at very large n.

Fig. 4 shows that a hundred Chebyshev polynomials suffice to give at ten decimal place
accuracy for all m shown. Nevertheless, there are sharp down spikes in the error curve
at m = 0,1,2,3 because there is no singularity when m is an integer. The spike at m = 4
is muted because the singularity is so weak — the error falls at least as fast as O (N−12)

for m > 4 — that it hardly matters except at considerably higher truncation, computed in
more than the 2× 10−16 precision of Matlab.
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4. Old table/new table/very new table

Chandrasekhar [6] published tables of the Lane-Emden function for m= 3.25. He gives
the first root as ξ = 8.01894, and then tabulates y(r; 3.25) and five derivative quantities
at intervals of one-tenth in r up to r = ξ, a total of 486 six digit numbers. This is old
style of table-making: list a lot of values in x so that low order interpolation can fill the
gaps in the tabulated values. A much more efficient way is to simply list the Chebyshev
coefficients of y(x ; 3.25). Derived quantities such as the first and second derivatives can
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be evaluated at an arbitrary point by using the trigonometric functions given in (2.10)
with t i replaced by t = arccos(x). Only thirty numbers suffice to give an accuracy to less
than 5× 10−11, as determined by bounding the neglected coefficients and rounding of the
numbers in the table. Summation of the Chebyshev series is not a low order interpolation,
but has the full specified accuracy at any point x ∈ [0,1]. The new style — Chebyshev
style — of table-making is much more efficient [14, 15, 19]. This can be extended to
bivariate Chebyshev series as in [3,27]. However, the Chebyshev pseudospectral/Newton-
Kantorovich algorithm is so simple that it is preferable here to apply a third strategy, which
is to give the complete computer code to solve the Lane-Embden equation as in Table 6.Table 4: Eigenvalues.

m ξ d y/d x(1)
0

p
6= 2.44948974278318 -2

0.5 2.752698054065 -1.3763410
1 π −1

1.5 3.65375373621912 608 -7.428128210
2 4.3528745959461246769735700 -0.553897420877303672

2.5 5.355275459010779 -0.408419619543
3 6.896848619376960375454528 -0.2926316151547704253437675

3.25 8.018937527 -0.24314991318450
3.5 9.535805344244850444 -0.1982587757607830
4 14.971546348838095097611066 -0.120043038478702539

4.5 31.836463244694285264 -0.0545851734317770
5 ∞ 0Table 5: Chebyshev 
oe�
ients for y(x; 3.25) to within an L∞ error of 5× 10−11.

n an n an

0 0.3974001738440 15 2.8371063e-06
1 -0.5222925358655 16 2.930727e-07
2 0.1363576404586 17 -7.512164e-07
3 4.53209425128e-03 18 4.383967e-07
4 -0.0286527474641 19 -1.416943e-07
5 0.0178489951998 20 7.2662e-09
6 -6.1516194336e-03 21 2.31240e-08
7 5.808182397e-04 22 -1.67198e-08
8 8.106935493e-04 23 6.4938e-09
9 -6.449182037e-04 24 -9.950e-10
10 2.658761754e-04 25 -6.239e-10
11 -4.90112935e-05 26 6.092e-10
12 -1.97167283e-05 27 -2.799e-10
13 2.25847399e-05 28 6.48e-11
14 -1.10220727e-05 29 1.24e-11
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ode for solving the Lane-Emden equation.Digits:=30; # variable pre
ision; N:=20; # no. of interpolation pts;m:= 0.5; # Lane-Emden exponent; itermax:= 20; # no. of Newton iters.;with(LinearAlgebra); D0Mat:= Matrix(N,N): D1Mat:= Matrix(N,N):D2Mat:= Matrix(N,N): xCheb:= Ve
tor(N):fa:= Ve
tor(N+1,orientation=
olumn): ya0:= Ve
tor(N,orientation=
olumn):for ii from 1 by 1 to N do # 
ompute grid points xCheb;ta[ii℄:=evalf( Pi*(ii-1)/(N-1)); xCheb[ii℄:=evalf(0.5*(1+
os(ta[ii℄))); od:for ii from 2 to (N-1) do # differentiation matri
es:t:=ta[ii℄; ss:=evalf( sin(t)) ; 

:=evalf( 
os(t));for j from 1 by 1 to N doD0Matrix[ii,j℄:=evalf(
os((j-1)*t)); pt:=evalf(-(j-1)*sin((j-1)*t) );ptt:=evalf(- (j-1)*(j-1)*D0Mat[ii,j℄); D1Mat[ii,j℄:=evalf(-2*pt/ss);D2Mat[ii,j℄:=evalf(4*(ptt/(ss*ss)-

*pt/(ss*ss*ss))); od: od:# apply non-trig formulas at the endpoints;for j from 1 to N do D0Mat[1,j℄ := 1;D0Mat[N,j℄:= (-1)^(j+1); D1Mat[1,j℄:=evalf(2*(j-1)^2);D1Mat[N,j℄:=evalf(2*(-1)^j *(j-1)^2);D2Mat[1,j℄:=evalf((j-1)^2 *((j-1)^2 -1 )*(4/3));D2Mat[N,j℄:=evalf(-(-1)^j *(j-1)^2 *( (j-1)^2 - 1)*4/3) ; od:for ii from 1 to N do ya0[ii℄:=evalf(
os((Pi/2)*xCheb[ii℄));od: xi0:=3.0;# ya0, xi0 are first guess for Newton iteration;a0:=LinearSolve(<D0Matrix|ya0 >); # Cheb 
oeffs of ya0(x);a:=a0: xi:=xi0; Ja
obian:=Matrix(N+1,N+1): for iter from 1 to itermax do# begin Newton-Kantorovi
h iter.; ya:=MatrixVe
torMultiply(D0Mat,a);for ii from 1 to (N-2) do fa[ii℄:= - xi*xi*ya[ii+1℄**m;for j from 1 to N do fa[ii℄:= fa[ii℄ - D2Mat[ii+1,j℄*a[j℄- (2 / xCheb[ii+1℄ ) * D1Mat[ii+1,j℄*a[j℄; od: od: yatzero:=0;for j from 1 to N do yatzero:=evalf(yatzero + D0Mat[N,j℄*a[j℄): od;fa[N+1℄:=-( yatzero-1); fa[N-1℄:=0; fa[N℄:=0; Ja
obian[N+1,N+1℄:= 0;for ii from 1 to (N-2) do for j from 1 by 1 to N doJa
obian[ii,j℄:= D2Matrix[ii+1,j℄+(2 /xCheb[ii+1℄)*D1Mat[ii+1,j℄+ xi*xi * m * ya[ii+1℄**(m-1) * D0Mat[ii+1,j℄ ; od: od:for j from 1 to N do Ja
obian[N-1,j℄:= D0Mat[1,j℄;Ja
obian[N,j℄ := D1Mat[N,j℄; Ja
obian[N+1,j℄:= D0Mat[N,j℄; od:for ii from 1 to (N-2) do Ja
obian[ii,N+1℄ := 2*xi* ya[ii+1℄**m; od:Ja
obian[N,N+1℄:= 0; Ja
obian[N-1,N+1℄:= 0;delta_a_and_xi:=LinearSolve( <Ja
obian|fa>);for j from 1 to N do a[j℄:= evalf( a[j℄ + delta_a_and_xi[j℄ ); od:xidelta:=delta_a_and_xi[N+1℄; xi:=xi+xidelta; print(iter,xidelta); od:print(xi); for j to N do printf("%18.17e ...\n",a[j℄); od:
5. Mappings and difficulties

The endpoint singularity can be weakened by applying a change-of-coordinate (“map-
ping”) x = f (t) where t is the new computational coordinate, and where the mapping
function f (t) is chosen so that the standard Chebyshev grid in t gives a grid in x such that
points are much denser near the endpoints than in the Chebyshev grid with the same num-
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ber of points. Such mappings are thoroughly discussed in the Chapter 16 of the author’s
book [4]. However, the unmapped Chebyshev method does so well that the Lane-Emden
problem is a poor exemplar of the uses of mapping. In the limit the power of the nonlin-
earity m tends to five, the first root ξ in radius tends to infinity. It follows that

lim
m→5

y(x ; m) = δ(x),

a Dirac delta function. Again, a mapping can be used to mitigate the singularity. One pos-
sible strategy is to solve the problem on a semi-infinite domain in the original coordinate
r as done by [21]. However, apparently to duck the singularity at r = ξ where y(r) is
zero, they restricted their computations to integer m only. Interior singularities are more
damaging than endpoint singularities with a branchpoint of order φ giving Chebyshev co-
efficients proportional 1/nφ+1 and an error falling as 1/Nφ . For m near five, however,
φ ≈ 7 meaning that seventh order convergence would be still be achieved. The root can
be computed directly from the (mapped) Chebyshev series as explained in the review [5].
We have not actually implemented this strategy or any form of mapping because brute
force application of Chebyshev polynomials is very effective except when m is very close to
five, or when accuracy beyond ten decimal places is required.

6. Summary

The Lane-Emden problem is an interesting illustration of the effect of weak endpoint
singularities on the rate of convergence of Chebyshev series. Although the Lane-Emden
function is singular at the right endpoint whenever m is not an integer, there is no difficulty
in calculating the function to ten decimal places using fewer than a hundred Chebyshev
polynomials. And yet when we plot accuracy versus N , the effects of the branch points is
clearly evident. For small m, the coefficients decay exponentially for small and moderate N ,
followed by a rather abrupt transition to a “tail” for larger N that falls proportional nk for
some k. For the Lane-Emden function with exponent m ∈ [0,5], singularity analysis shows
that k = 2m+5, so the coefficients always display at least a fifth order rate of convergence
in the coefficients and fourth order in the error. The Lane-Emden problem is useless as a
test of nonlinear iterations. In most problems, devising a first guess within the radius of
convergence of Newton’s iteration is difficult; perturbation theory about a limiting (often
linear case) followed by continuation in the parameter is the usual remedy, accompanied
by underrelaxation, line search and trust region modifications to Newton’s method. None
of this is needed here. The choice

y(0)(x)≡ cos([π/2]x), ξ(0) = 3

works for all m ∈ [0,5].
The Lane-Emden problem is not a good test of differential equation solving methods

either because it is so smooth that even a poor algorithm will yield accurate results.
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