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Abstract. A triangular spectral method for the Stokes equations is developed in this

paper. The main contributions are two-fold: First of all, a spectral method using the

rational approximation is constructed and analyzed for the Stokes equations in a tri-

angular domain. The existence and uniqueness of the solution, together with an error

estimate for the velocity, are proved. Secondly, a nodal basis is constructed for the effi-

cient implementation of the method. These new basis functions enjoy the fully tensorial

product property as in a tensor-produce domain. The new triangular spectral method

makes it easy to treat more complex geometries in the classical spectral-element frame-

work, allowing us to use arbitrary triangular and tetrahedral elements.
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1. Introduction

The spectral-element method is a high-order variational method which combines the

geometric flexibility of finite-elements with the high accuracy of spectral methods. It ex-

hibits several favorable computational properties, such as the use of tensor products, nat-

urally diagonal mass matrices, and suitability for parallel computation. However, in order

to use fast tensor product summation, the standard spectral-element method is usually re-

stricted to quadrilateral partitions, which are difficult to use for adaptive computation in

complex geometries. One way to overcome this drawback is to allow triangular partitions,

which are more flexible in handling complex geometries.

Existing spectral methods on triangle can be classified into three categories according

to the class of functions used in the approximations: (i) approximations by polynomials in

triangle through mapping (see, e.g., [3,5,8,12,16]); (ii) approximations by polynomials in

triangle using special nodal points such as Fekete points (see, e.g., [7,13,14,17]); and (iii)
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approximations by non-polynomial functions in triangle (see, e.g., [2,6,15]). The triangu-

lar spectral methods based on polynomials were motivated by the classical result that any

smooth function can be well approximated by polynomials. The orthogonal polynomials

on triangle, often referred as Dubiner’s basis in the spectral-element community, were con-

structed by Koornwinder [9] and by Dubiner [5], and implemented in the spectral-element

package NekTar (cf. [8,16]). A drawback of this approach is that no suitable interpolation

operator, i.e., no corresponding nodal basis, is available for the Dubiner’s basis, which in-

volves a wrapped product, instead of the tensor product, of the Jacobi polynomials used

to define the basis functions. The lack of nodal basis makes it difficult to implement in

a collocation framework. Recently, a triangular spectral method using rational polynomi-

als was proposed and analyzed (cf. [15]). The rational basis functions are constructed

through the Duffy mapping in the reference square, and are mutually orthogonal with re-

spect to a suitable weight function. In particular, one can construct a nodal basis through

the Duffy mapping which allows simple and efficient implementation as a usual nodal

spectral-element method.

In this paper, we will consider a triangular spectral method based on the rational func-

tion approximation for the Stokes equations. First, we construct and analyze a new tri-

angular spectral method for the Stokes equations. By using a compatible pair of spaces

for the velocity and pressure, we establish the well-posedness of the discrete problem, and

derive an error estimate for the velocity. Although no theoretical estimate is provided for

the inf-sup constant, numerical tests are carried out to investigate its asymptotic behav-

ior. Second, we introduce a nodal basis, the transformation of which is the tensor product

of the standard Lagrangian polynomials defined on the rectangular Gauss-Lobatto points,

with an exception corresponding to the “collapsed" side. The remarkable advantage of this

basis is that it enjoys the fully tensorial-product property, and easy to implement in case of

multi-elements. The availability of nodal triangular basis greatly enhances the geometrical

flexibility of spectral-element method by allowing fully unstructured mesh.

The paper is organized as follows. In the next section, we present some preliminary

results which will be used in the sequel. Then we construct the triangular spectral method

for the Stokes equations, and study its well-posedness and error estimate in Section 3. In

Section 4, we provide implementation details, with a particular attention to the construc-

tion of the nodal basis functions. Some numerical results and discussions are presented in

Section 5.

2. Construction of the triangular spectral method

Throughout this paper, we will use boldface letters to denote vectors and vector func-

tions. Let c stand for a generic positive constant independent of any functions and of any

discretization parameters. We use the expression A® B to mean that A¶ cB, and use the

expression A∼= B to mean that A® B ® A. For a bounded domain Ω and a generic positive

weight function ω, we denote the inner product of L2
ω(Ω) by

(u, v)ω,Ω :=

∫

Ω

uvωdx
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and the associated norm by ‖ · ‖ω,Ω. We use Hm
ω(Ω) and Hm

0,ω(Ω) to denote the usual

weighted Sobolev spaces, whose norm and semi-norm are denoted by ‖u‖m,ω,Ω and |u|m,ω,Ω,

respectively. We also denote

L2
0,ω(Ω) =

¨
φ ∈ L2

ω(Ω) :

∫

Ω

φωdx = 0

«
.

In cases with no confusion would arise, ω (if ω = 1) and/or Ω may be dropped from

the notations. Let N be the set of all non-negative integers and Λ = (−1,1). For any

N ∈ N, we denote by PN (Λ) the set of all polynomials of degree ≤ N defined in Λ, and set

P0
N (Λ) := {φ ∈ PN (Λ) : φ(±1) = 0}.

2.1. Preliminaries

Let � := (−1,1)2 and △ be the triangular domain

△=
�
(x , y) : 0< x , y < 1, 0< x + y < 1

	
.

We will use two coordinate systems: the Cartesian coordinate (x , y)-system for the triangle

△ and the (ξ,η)-system for the square �. For ease of notation, we also denote x = (x , y)

and ξ = (ξ,η).

(a)

•

(0,0)
@

@
@

@
@

@
@@

•

(1,0)

•

(0,1)

(b)

•

(-1,-1)
•

•

(1,1)

(1,-1)

•

(-1,1)

Figure 1: (a) Domain △ with 
oordinate (x , y). (b) Domain � with 
oordinate (ξ,η).
An one-to-one transformation from � to △ is given by the Duffy mapping x = F(ξ):





x =
1

4
(1+ ξ)(1−η),

y =
1+η

2
,

∀(ξ,η) ∈�, (2.1)

with its inverse ξ = F−1(x) from △ to � by




ξ=

2x

1− y
− 1,

η= 2y − 1,

∀(x , y) ∈△. (2.2)
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(ξ,η) is often referred to as collapsed coordinate system or the Duffy coordinates. Note that

the transformation (2.1) maps the whole top side of � to the top vertex (0,1) of △, and

the two vertical sides of � onto sides radiating out of this vertex.

We collect here some properties of the Duffy mapping, which will be used in the sequel.

∂ ξ

∂ x
=

2

1− y
=

4

1−η
,
∂ ξ

∂ y
=

2x

(1− y)2
=

2(1+ ξ)

1−η
,
∂ η

∂ x
= 0,

∂ η

∂ y
= 2, (2.3)

and

∂ x

∂ ξ
=

1− y

2
=

1−η

4
,
∂ x

∂ η
=

x

2(1− y)
= −

1+ ξ

4
,
∂ y

∂ ξ
= 0,

∂ y

∂ η
=

1

2
. (2.4)

From the above, one easily finds the determinant of the Jacobian for (2.1):

det
�∂ (x , y)

∂ (ξ,η)

�
=

1−η

8
=

1− y

4
. (2.5)

Throughout the paper, we shall associate a function u in △ with a function eu in �

through

eu(ξ,η) = u(x , y), x =
1

4
(1+ ξ)(1−η), y =

1+η

2
, ∀(ξ,η) ∈�.

It is easy to see that

∇xu= (∂xu, ∂yu)T =

�
4

1−η
∂ξeu,

2(1+ ξ)

1−η
∂ξeu+ 2∂ηeu
�T

, (2.6)

and inversely,

∇ξeu = (∂ξeu, ∂ηeu)T =
�

1− y

2
∂x u,

x

2(1− y)
∂x u+

1

2
∂yu

�T
. (2.7)

From (2.7), we have immediately

∂ξeu(ξ, 1) = 0 a.e. if ∂xu is a measurable function. (2.8)

In other words, if the approximation solution is chosen such that its partial derivative

with respect to x is bounded in △, then its transformation in � by Duffy mapping must

be constant at the top side. This fact should be kept in mind in constructing the basis

functions for the approximation space.

The approximation space to be used in our method consists of the rational functions

generated by polynomials in the reference square through the Duffy transform. More

precisely, let eRmn(ξ,η) be the polynomial in � defined by:

eRmn(ξ,η) = J0,0
m (ξ)J

1,0
n (η), ∀(ξ,η) ∈�, (2.9)
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where J
α,β

k
(ζ),ζ ∈ Λ, is the classical Jacobi polynomial of degree k. Then we define the

rational function Rmn(x , y) in △ by the Duffy transformation of eRmn(ξ,η), i.e.,

Rmn(x , y) = eRmn

�
2x

1− y
− 1,2y − 1

�
= J0,0

m

�
2x

1− y
− 1

�
J1,0

n (2y−1), ∀(x , y) ∈△,

and the approximation spaces and their transformations as follows:

QN (△) = span{Rmn(x , y), 0≤ m, n≤ N , (x , y) ∈△},

eQN (�) = span{ eRmn(ξ,η), 0≤ m, n ≤ N , (ξ,η) ∈ �},

Q0
N (△) = {v ∈QN (△) : v|∂△ = 0},

eQ0
N (�) = {v ∈ eQN (�) : v|∂� = 0}. (2.10)

By the orthogonality of the Jacobi polynomials, we have the following orthogonality:

∫

△

Rmn(x , y)Rm′n′(x , y)d xd y

=
1

8

∫ 1

−1

J0,0
m (ξ)J

0,0

m′
(ξ)dξ

∫ 1

−1

J1,0
n (η)J

1,0

n′
(η)(1−η)dη

=γmnδmm′δnn′ , with γmn =
1

2(n+ 1)(2m+ 1)
.

Furthermore, any function u ∈ L2(△) can be expressed as

u(x , y) =

∞∑

m=0

∞∑

n=0

bumnRmn(x , y),

with the coefficient bumn given by

bumn =
1

γmn

∫

△

u(x , y)Rmn(x , y)d xd y. (2.11)

On the other hand, we have eu ∈ L2
̟(�) if and only if u ∈ L2(△), where the weight function

̟ :=
1−η

8
(2.12)

is the Jacobian in (2.5), and

eu(ξ,η) =

∞∑

m=0

∞∑

n=0

bumn
eRmn(ξ,η),

with bumn given in (2.11), or expressed in the alternative form:

bumn =
1

γmn

∫

�

eu(ξ,η) eRmn(ξ,η)̟dξdη.
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It can be checked, by using (2.6) and (2.7), that the space associated to H1(△) by the

Duffy mapping is:

eH1
̟(�) :=
¦
eu ∈ L2

̟(�) : ∂ξeu ∈ L2
̟−1(�) and ∂ηeu ∈ L2

̟(�)
©

, (2.13)

endowed with the norm:

‖eu‖ eH1
̟(�)

=

�
‖eu‖2

L2
̟(�)

+ ‖∂ξeu‖2L2

̟−1(�)
+ ‖∂ηeu‖2L2

̟(�)

� 1
2

.

Moreover, noticing that

0≤
x

1− y
=

1+ ξ

2
≤ 1, ∀(x , y) ∈△ and (ξ,η) ∈�,

we have the following norm equivalence:

‖u‖H1(△)
∼= ‖eu‖ eH1

̟(�)
. (2.14)

2.2. A triangular spectral method for the Stokes equations

The Stokes equations in△ are as follows: For a given forcing function f ∈ L2(△)2, find

the velocity field u and the pressure p such that




−∆u+∇p = f , in △,

∇ · u = 0 , in △,

u = 0, on ∂△.

(2.15)

We shall first write (2.15) in an abstract weak formulation. Let X = H1
0(△) with X = X 2,

and M = L2
0(△). we introduce the bilinear form a(·, ·) over X×X by

a(v,w) =

∫

△

∇v∇wd xd y, ∀v,w ∈ X,

and the bilinear form b(·, ·) over X×M by,

b(v,q) = −

∫

△

∇ · vqd xd y, ∀v ∈ X,q ∈ M .

Then the weak formulation for the Stokes problem (2.15) reads: Find u ∈ X and p ∈ M

such that 



a(u,v) + b(v, p) = (f,v), ∀v ∈ X,

b(u,q) = 0, ∀q ∈ M .
(2.16)
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In order to construct our triangular spectral method, we let XN and MN be the rational

function spaces, defined by

XN = X 2
N , XN = X ∩QN (△), MN = M ∩QN−2(△), (2.17)

and aN (·, ·) and bN (·, ·) are two discrete forms, which we define below. Let ξp, p =

0,1, · · · , N , be the Legendre-Gauss-Lobatto points associated to LN , i.e., zeros of (1 −
z2)L′N (z); ωp, p = 0,1, · · · , N , be the corresponding weights. Then, we have the well-

known Legendre Gauss-Lobatto quadrature:

∫ 1

−1

ϕ(z)dz =

N∑

q=0

ϕ(ξq)ωq, ∀ϕ ∈ P2N−1(Λ), (2.18)

and the norm equivalence (cf. [4]):

N∑

q=0

ϕ2(ξq)ωq
∼= ‖ϕ‖2, ∀ϕ ∈ PN (Λ). (2.19)

Thanks to the identity

(φ,ψ) =

∫

△

φ(x , y)ψ(x , y)d xd y =

∫

�

eφ(ξ,η) eψ(ξ,η)
1−η

8
dξdη, ∀φ,ψ ∈ C(△),

where
1−η

8
is nothing than the Jacobian given in (2.5), we can then define the discrete

inner product (·, ·)N on △:

(φ,ψ)N =

N∑

p,q=0

eφ(ξp,ξq) eψ(ξp,ξq)
1− ξq

8
ωpωq, ∀φ,ψ ∈ C(△), (2.20)

We now define the discrete bilinear forms:

aN (uN ,vN ) = (∇uN ,∇vN )N , bN (vN ,qN ) = −(qN ,∇ · vN )N . (2.21)

With the above definitions, our triangular spectral method for (2.16) is: Find uN ∈ XN , pN ∈
MN , such that

(
aN (uN ,vN ) + bN (vN , pN ) = (f,vN ), ∀vN ∈ XN ,

bN (uN ,qN ) = 0, ∀qN ∈ MN .
(2.22)

Remark 2.1. It is well-known that, to avoid spurious pressure modes, the discrete velocity

and pressure spaces for the Stokes equations are required to satisfy an inf-sup condition.

In the above, similar to the usual PN × PN−2 approach in a rectangular spectral method,

we let the pressure approximation space MN in (2.17) to be two “degrees" less than the

velocity approximation space XN . We will prove below that a discrete inf-sup condition is

satisfied for this pair of spaces so the discrete problem (2.22) is well-posed. However, we

are unable to derive a lower bound for the inf-sup constant and will resort to numerical

experiments to study its behavior with respect to N .
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3. Well-posedness and error estimation

3.1. Well-posedness of the discrete problem

We shall prove the well-posedness of problem (2.22) by applying the classical saddle-

point theory (cf. [1]). The first task is to show that a(·, ·) is continuous and coercive over

XN ×XN .

Lemma 3.1. There exist two positive constants α and γ such that

|aN (uN ,vN )| ≤ γ‖uN‖1‖vN‖1, ∀uN ,vN ∈ XN ,

and

aN (vN ,vN )≥ α‖vN‖
2
1, ∀vN ∈ XN .

Proof. By using (2.6) and (2.7), we have

∫

△

∇xuN (x , y)∇xvN (x , y)d xd y

=

∫

�

∇xuN ◦ F∇xvN ◦ F|J |dξdη=

∫

�

eJ T∇ξeuN
eJ T∇ξevN |J |dξdη,

where F is the Duffy mapping from △ to � (see (2.1)), J is its Jacobian:

J =




∂ x

∂ ξ

∂ x

∂ η
∂ y

∂ ξ

∂ y

∂ η


 =

1−η

8
,

and eJ is the inverse of J :

eJ =




∂ ξ

∂ x

∂ ξ

∂ y

∂ η

∂ x

∂ η

∂ y


 =

1

|J |




∂ x

∂ ξ
−
∂ x

∂ η

−
∂ y

∂ ξ

∂ y

∂ η


 .

A rearrangement of the above equality leads to

∫

△

∇xuN (x , y)∇xvN (x , y)d xd y

=

∫

�

�
G1

∂ euN

∂ ξ

∂ evN

∂ ξ
+ G2

∂ euN

∂ η

∂ evN

∂ η
+ G3

�
∂ euN

∂ ξ

∂ evN

∂ η
+
∂ euN

∂ η

∂ evN

∂ ξ

��
dξdη,
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where G1, G2, and G3 are geometric factors, defined as

G1 =
1

|J |

��∂ x

∂ η

�2
+
�∂ y

∂ η

�2�
,

G2 =
1

|J |

��∂ x

∂ ξ

�2
+
�∂ y

∂ ξ

�2�
,

G3 = −
1

|J |

�
∂ x

∂ ξ

∂ x

∂ η
+
∂ y

∂ ξ

∂ y

∂ η

�
.

Thus, by the definition (2.21), we have

aN (uN ,vN ) =

N∑

p,q=0

G1(ξp,ξq)
∂ euN

∂ ξ

∂ evN

∂ ξ
(ξp,ξq)ωpωq

+

N∑

p,q=0

G2(ξp,ξq)
∂ euN

∂ η

∂ evN

∂ η
(ξp,ξq)ωpωq

+

N∑

p,q=0

G3(ξp,ξq)

�
∂ euN

∂ ξ

∂ evN

∂ η
+
∂ euN

∂ η

∂ evN

∂ ξ

�
(ξp,ξq)ωpωq.

A direct calculation by using (2.4) and (2.5) gives

G1 =
8

1−η

(1+ ξ)2 + 4

16
=
(1+ ξ)2 + 4

2(1−η)
,

G2 =
8

1−η

(1−η)2

16
=

1−η

2
,

G3 =
8

1−η

(1+ ξ)(1−η)

16
=

1+ ξ

2
.

Thanks to the above and the fact that euN ,evN ∈ eQ0
N (�), the three functions

G1

∂ euN

∂ ξ

∂ evN

∂ ξ
, G2

∂ euN

∂ η

∂ evN

∂ η
, and G3

�
∂ euN

∂ ξ

∂ evN

∂ η
+
∂ euN

∂ η

∂ evN

∂ ξ

�
,

with one variable fixed, either belong to the polynomial space P2N−1(Λ)
2, or are bounded

by a sum of the square of a polynomial in PN (Λ)
2. As a result, we can apply the Gauss-

Lobatto quadrature (2.18) and norm equivalence (2.19) to derive the following continuity

inequality:

|aN (uN ,vN )| ® ‖uN‖1‖vN‖1, ∀uN ,vN ∈ XN .

By taking vN = uN in the above, the proof of the coercivity of aN (·, ·) follows from a similar

argument. �

Next, we establish the continuity of the bilinear form bN .
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Lemma 3.2.

|bN (vN ,qN )| ® ‖vN‖1‖qN‖, ∀vN ∈ XN ,∀qN ∈ MN .

Proof. Using the Duffy mapping, we have

b(v,q) =−

∫

△

∂x v1qd xd y −

∫

△

∂y v2qd xd y

=−

∫

�

4

1−η
∂ξev1eq

1−η

8
dξdη−

∫

�

�
2(1+ ξ)

1−η
∂ξev2+ 2∂ηev2

�
eq1−η

8
dξdη

=−
1

2

∫

�

∂ξev1eqdξdη−

∫

�

�
1+ ξ

4
∂ξev2 +

1−η

4
∂ηev2

�
eqdξdη.

It is readily seen that the integrands are all polynomials of degree less than 2N − 1 for all

v ∈ XN ,q ∈ MN . Thus the Gauss-Lobatto quadrature applied to the above integrals is exact

for such functions, which results in

b(v,q) = −(∂x v1,q)N − (∂y v2,q)N = bN (v,q), ∀v ∈ XN , ∀q ∈ MN . (3.1)

Consequently, we obtain

|bN (vN ,qN )| = |b(vN ,qN )| ≤ ‖vN‖1‖qN‖, ∀vN ∈ XN , ∀qN ∈ MN .

�

The following lemma guarantees the uniqueness of the pressure.

Lemma 3.3. �
qN ∈ MN : bN (vN ,qN ) = 0,∀vN ∈ XN

	
= {0}.

Proof. First, for all vN ∈ XN , qN ∈ MN , we have
∫

△

∂x v1,NqN d xd y =

∫

�

4

1−η
∂ξev1,NeqN

1−η

8
dξdη

=
1

2

∫

�

∂ξev1,NeqN dξdη

=−
1

2

∫

�

ev1,N∂ξeqN dξdη

=−

∫

△

v1,N∂xqN d xd y, (3.2)

and
∫

△

∂y v2,NqN d xd y =

∫

�

�
2(1+ ξ)

1−η
∂ξev2,N + 2∂ηev2,N

�
1−η

8
eqN dξdη

=

∫

�

�
1+ ξ

4
∂ξev2,N +

1−η

4
∂ηev2,N

�
eqN dξdη
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=

∫

�

ev2,N

�
1

4
eqN +

1+ ξ

4
∂ξeqN −

1

4
eqN +

1−η

4
∂ηeqN

�
dξdη

=−

∫

�

ev2,N

�
1+ ξ

4
∂ξeqN +

1−η

4
∂ηeqN

�
dξdη

=−

∫

△

v2,N∂yqN d xd y. (3.3)

It can be directly verified that

�ev; ev= v ◦ F,v ∈ XN

	
=
�ev ∈ (eQ0

N (�))
2,∂ξev(ξ, 1) = 0
	

=span
�
J

0,0
i
(ξ)J

1,0
j
(η), i, j = 1, · · · , N − 1

	

=span
�
hi(ξ)h j(η), i, j = 1, · · · , N − 1

	
,

where hi(ξ) is the Lagrangian interpolation polynomial based on the N + 1 Legendre-

Gauss-Lobatto points ξi, i = 0,1, · · · , N .

Let qN ∈ MN be a function such that bN (vN ,qN ) = 0,∀vN ∈ XN . Then, by taking

evN = (ev1,N ,ev2,N )
T = (hi(ξ)h j(η), 0)

T , i, j = 1, · · · , N − 1,

we have, in virtue of (3.1) and (3.2),

0= bN (vN ,qN ) = b(vN ,qN )

= −

∫

△

∂x v1,N qN d xd y =

∫

△

v1,N∂x qN d xd y

=

∫

�

ev1,N

4

1−η
∂ξeqN

1−η

8
dξdη=

1

2

∫

�

ev1,N∂ξeqN dξdη

=
1

2

N∑

m,n=0

hi(ξm)h j(ηn)∂ξeqN (ξm,ξn)ωmωn

=
1

2
∂ξeqN (ξi,ξ j)ωiω j , ∀i, j = 1, · · · , N − 1.

The above implies that ∂ξeqN (ξi,η) = 0 at N−1 distinct points in η. Hence ∂ξeqN (ξi,η) = 0

for all η ∈ Λ, since ∂ξeqN (ξi ,η) is a polynomial of degree ≤ N − 2 in η. Similarly we have

∂ξeqN (ξ,η) = 0 for all ξ ∈ Λ, since ∂ξeqN (ξ,η) is a polynomial of degree ≤ N − 3 in ξ, and

vanishes at N − 1 distinct points in the same variable. Thus

∂ξeqN (ξ,η) = 0, ∀(ξ,η) ∈ Λ2. (3.4)

Hence, we have shown that eqN is independent of the variable ξ.

On the other side, by taking

evN = (ev1,N ,ev2,N )
T = (0,hi(ξ)h j(η))

T , i, j = 1, · · · , N − 1,
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and using (3.1), (3.3), and (3.4), we obtain

0=

∫

△

v2,N∂yqN d xd y

=

∫

�

ev2,N

�
2(1+ ξ)

1−η
∂ξeqN + 2∂ηeqN

�
1−η

8
dξdη

=

∫

�

ev2,N

1−η

4
∂ηeqN dξdη

=

N∑

m,n=0

hi(ξm)h j(ηn)∂ηeqN (ξm,ηn)
1−ηn

4
ωmωn

= ∂ηeqN (ξi,η j)
1−η j

4
ωiω j.

This means that for fixed j, ∂ηeqN (ξ,η j) = 0 at N − 1 distinct points in ξ, and therefore

∂ηeqN (ξ,η j) = 0,∀ξ ∈ Λ. For the same reason, we have

∂ηeqN (ξ,η) = 0, ∀(ξ,η) ∈ Λ2.

Combining this result and (3.4), and noting that
∫
△

qN d xd y = 0, we conclude

qN (x , y) = eqN (ξ,η) ≡ 0.

The lemma is proved. �

Since XN and MN are finite dimensional, an immediate consequence of the above

lemma is that there exists βN > 0 such that

inf
qN∈MN

sup
vN∈XN

bN (vN ,qN )

‖vN‖1‖qN‖
≥ βN .

However, an explicit lower bound for βN appears to be illusive. Nevertheless, the above

results and Lemmas 3.1 and 3.2 ensure that the discrete problem (2.22) admits a unique

solution.

3.2. Error estimation for the velocity

Let YN = H2
0(△)∩QN (△). First we remark that the space YN can be characterized by

eYN :=
�ev : ev = v ◦ F, v ∈ YN

	

=
�ev : ev ∈ eQN (�),ev|∂� = 0,

∂ ev
∂ n
|∂� = 0,∂ξev(ξ, 1) = 0,∂ 2

ξ ev(ξ, 1) = 0
	

=span
�
(1− ξ)2(1+ ξ)2(1−η)2(1+η)2J

2,2

l
(ξ)J2,2

m (η), 0≤ l, m ≤ N − 4
	
. (3.5)
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Then we define the H2
0 -orthogonal projector π

2,0
N : H2

0(△)→ YN by: ∀v ∈ H2
0(△),

�
∆(π

2,0
N v− v),∆ϕ
�
= 0, ∀ϕ ∈ YN . (3.6)

An error estimate for the projector π
2,0
N is derived in the following lemma.

Lemma 3.4. For all v ∈ H2
0(△)∩Hs(△) with s ≥ 2, it holds

‖π2,0
N v− v‖2 ® N3−s‖v‖s.

Proof. By the definition of π
2,0
N , immediately we have, ∀v ∈ H2

0(△)∩ Hs(△),

‖π2,0
N v − v‖2 ® ‖∆(π

2,0
N v − v)‖ ≤ inf

ϕ∈YN

‖∆(ϕ− v)‖.

In order to derive an error estimate for the right hand side, we will use Theorem 4.2

in [10]. More precisely, let

Y ∗N = span
�

x k y l : k, l ∈ N, k+ l ≤ N
	
∩H2

0(△),

we obtain from Theorem 4.2 in [10] that

inf
ϕ∈Y ∗

N

|ϕ− v|2 ® N3−s‖v‖s.

On the other hand, it can be verified that the transformation in � of Y ∗N is

eY ∗
N
= span
�
(1− ξ)2(1+ ξ)2(1−η)l(1+η)2J

2,2

l−4
(ξ)J

2l−3,2
m−2 (η), l ≥ 4, m ≥ 2, l +m≤ N

	
.

A direct comparison with (3.5) yields the following inclusion:

eY ∗N ⊂ eYN ,

which implies that

Y ∗N ⊂ YN .

Finally, we obtain

‖π2,0
N v− v‖2 ® inf

ϕ∈YN

‖∆(ϕ− v)‖ ≤ inf
ϕ∈Y ∗

N

‖∆(ϕ− v)‖® inf
ϕ∈Y ∗

N

|ϕ− v|2 ® N3−s‖v‖s.

This completes the proof of the lemma. �

Remark 3.1. We note that the error estimate in Lemma 3.4 is suboptimal due to the use

of Theorem 4.2 in [10]. As a consequence, all subsequent results in this section are also

suboptimal. It is likely that this result can be improved by using a more delicate analysis

(see Remark 4.1 in [10]).
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Next, we derive an approximation result for divergence-free spaces. Let V and VN be

respectively

V=
�
v ∈ X : ∀q ∈ M , b(v,q) = 0

	
,

VN =
�
vN ∈ XN : ∀qN ∈ MN , bN (vN ,qN ) = 0

	
.

Lemma 3.5. For any v ∈ Hs(△)2 ∩V, s ≥ 2, it holds

inf
vN∈VN

‖v− vN‖1 ® N2−s‖v‖s.

Proof. First of all, we recall that (cf. [1]), for any v ∈ Hs(△)2 ∩ V, s ≥ 2, there exists a

stream function ψ ∈ Hs+1(△) such that

v=∇×ψ :=

�
∂ψ

∂ y
,−
∂ψ

∂ x

�
, in △,

and

‖ψ‖s+1 ® ‖v‖s. (3.7)

Moreover we have ∇ψ = 0 on ∂△ due to the fact that v = 0 on ∂△. As a result, we have

(∂ψ/∂ n)|∂△ = 0, and ψ|∂△ = c, where c is a constant. Since ψ is determined up to an

additive constant, we can take a ψ such that ψ|∂△ = 0. Thus ψ ∈ H2
0(△). Now let π

2,0
N be

the projector defined in (3.6), then by Lemma 3.4, we have

‖ψ−π2,0
N ψ‖2 ® N2−s‖ψ‖s+1 ® N2−s‖v‖s, s ≥ 2. (3.8)

Furthermore, by definition of π
2,0
N ,
â
π

2,0
N ψ belongs to the space eYN , defined in (3.5). Now

we take vN = ∇× (π
2,0
N ψ), then it is readily seen that evN ∈ eQ0

N (�), and ∂ξevN (ξ, 1) = 0.

Therefore, we have vN ∈ XN , and so that vN ∈ VN . By using (3.8), we conclude that for

any v ∈ Hs(△)2 ∩V, s ≥ 2, we have

inf
vN∈VN

‖v− vN‖1 ≤ ‖∇×ψ−∇× (π
2,0
N ψ)‖1 ≤ ‖ψ−π

2,0
N ψ‖2 ® N2−s‖v‖s.

This completes the proof of the lemma. �

We are now in position to prove the main result.

Theorem 3.1. Let u be the velocity solution of problem (2.16), uN be the discrete solution of

the triangular spectral approximation (2.22). If u ∈ Hs(△)2, s ≥ 2, then it holds

‖u− uN‖1 ® N2−s‖u‖s.

Proof. Let wN be an arbitrary function in VN . Setting σN := uN−wN , and using Lemma

3.1, we have

α‖σN‖
2
1 ≤ aN (σN ,σN ) = a(u−wN ,σN )+ a(wN ,σN )− aN (wN ,σN ).
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Furthermore, using the continuity of a(·, ·) yields

α‖σN‖1 ≤ γ‖u−wN‖1 + sup
vN∈XN

vN 6=0

|a(wN ,vN )− aN (wN ,vN )|

‖vN‖1
.

Combining the above inequality with the triangular inequality

‖u− uN‖1 ≤ ‖u−wN‖1 + ‖σN‖1,

we find

‖u− uN‖1 ≤
�
1+

γ

α

�
‖u−wN‖1 +

1

α
sup

vN∈XN

vN 6=0

|a(wN ,vN )− aN (wN ,vN )|

‖vN‖1
, ∀wN ∈ VN .

Thanks to (2.18), we readily verify that

aN (wN ,vN ) = a(wN ,vN ), ∀wN ∈ XN−1, ∀vN ∈ XN .

Thus we have

‖u− uN‖1

≤ inf
wN∈VN

��
1+

γ

α

�
‖u−wN‖1 +

1

α
sup

vN∈XN

vN 6=0

|a(wN ,vN )− aN (wN ,vN )|

‖vN‖1

�

≤ inf
wN∈VN∩XN−1

��
1+

γ

α

�
‖u−wN‖1
�

.

Finally, by virtue of Lemma 3.5, we conclude that

‖u− uN‖1 ® N2−s‖u‖s.

This completes the proof of the theorem. �

4. Implementation with a nodal basis

In this section we describe the implementation details of our triangular spectral method,

based on a simple nodal basis for the velocity and pressure approximation spaces.

Under the Duffy mapping, the approximation spaces XN , MN in△ are transformed into:

eXN := eQ0
N (�)∩ eH1

̟(�) =
�
ϕ ∈ eQ0

N (�),∂ξϕ(ξ, 1) = 0
	
,

eMN := eQN−2(�)∩ L2
0,̟(�),

where ̟ is defined in (2.12), eQN (�) and eH1
̟(�) are respectively given in (2.10) and

(2.13).
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We now observe the following basic facts:

eQN (�) = span
�
hi(ξ)h j(η), 0≤ i, j ≤ N

	
,

eQ0
N (�) = span
�
hi(ξ)h j(η), 1≤ i, j ≤ N − 1

	
,

eXN = eQ0
N (�),

eMN = span
�

li(ξ)l j(η), 1≤ i, j ≤ N − 1
	
∩ L2

0,̟(�),

where lp(ξ), p = 1, · · · , N − 1, are the one-dimensional Lagrangian interpolants through

the interior Legendre-Gauss-Lobatto points, such that lp(ξ) ∈ PN−2(Λ), lp(ξq) = δpq, 1 ≤
p,q ≤ N − 1.

Let eϕi j(ξ,η) = hi(ξ)h j(η), eψi j(ξ,η) = li(ξ)l j(η), and define the basis functions

ϕi j(x , y) = eϕi j(ξ,η), ψi j(x , y) = eψi j(ξ,η)

through the Duffy mapping, we have

XN = span{(ϕi j(x , y), 0), (0,ϕi j(x , y)) : 1≤ i, j ≤ N − 1},

MN = span{ψi j(x , y), 1≤ i, j ≤ N − 1} ∩ L2
0(△).

Therefore, we can write

uN (x , y) = euN (ξ,η) =

N−1∑

i, j=1

ui j eϕi j(ξ,η),

pN (x , y) = epN (ξ,η) =

N−1∑

i, j=1

pi j
eψi j(ξ,η),

where, by definition of the basis functions, ui j = euN (ξi,ξ j) = uN (x i, y j), pi j = epN (ξi,ξ j) =

pN (x i, y j), 1 ≤ i, j ≤ N − 1, with (x i, y j) the mapped points in △ of the Gauss-Lobatto

points (ξi,ξ j), i.e., (x i, y j) = F(ξi ,ξ j); see Fig. 2.

Figure 2: Mapping of the triangle to square domain.
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Plugging these expressions into (2.22), and letting vN and qN to run through all the

basis functions (ϕi j , 0), (0,ϕi j) and ψi j respectively, we arrive at the following matrix

system: ¨
ANu+DN p = BN f,

DT
N u = 0,

(4.1)

where f is a vector representation of f at the Gauss-Lobatto points. The matrices AN , DN

and BN are block-diagonal matrices with 2 blocks each. The blocks of AN are the discrete

Laplace operator, and those of DN are associated to the different components of the discrete

gradient operators, while blocks of BN are the diagonal mass matrices.

An important property of the nodal spectral-element method is that the matrix-vector

product can be efficiently carried out thanks to the tensor product structure. In the follow-

ing we give a detailed description on how to perform ANvN by using the tensor product

factorization technique.

N−1∑

i, j=1

amn,i jui j =

N∑

p,q=0

�(1+ ξp)
2 + 4

2(1− ξq)

h N−1∑

i, j=1

ui jh
′
i(ξp)h j(ξq)
i

h′m(ξp)hn(ξq)ωpq

�

+

N∑

p,q=0

�1− ξq

2

h N−1∑

i, j=1

ui jhi(ξp)h
′
j(ξq)
i

hm(ξp)h
′
n(ξq)ωpq

�

+

N∑

p,q=0

�1+ ξp

2

h N−1∑

i, j=1

ui jh
′
i(ξp)h j(ξq)
i

hm(ξp)h
′
n(ξq)ωpq

�

+

N∑

p,q=0

�1+ ξp

2

h N−1∑

i, j=1

ui jhi(ξp)h
′
j(ξq)
i

h′m(ξp)hn(ξq)ωpq

�
,

where ωpq =ωpωq. Let’s emphasize that the denominator 1−ξq in the first term does not

cause any difficulty because the quantity behind this factor vanishes for q = N . In fact, a

rearrangement of above expression leads to

N−1∑

i, j=1

amn,i jui j =

N∑

p,q=0

�(1+ ξp)
2+ 4

2(1− ξq)

h N−1∑

i, j=1

ui j Dpiδq j

i
Dpmδqnωpq

�

+

N∑

p,q=0

�1− ξq

2

h N−1∑

i, j=1

ui jδpi Dq j

i
δpmDqnωpq

�

+

N∑

p,q=0

�1+ ξp

2

h N−1∑

i, j=1

ui j Dpiδq j

i
δpmDqnωpq

�

+

N∑

p,q=0

�1+ ξp

2

h N−1∑

i, j=1

ui jδpi Dq j

i
Dpmδqnωpq

�
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=

N∑

p=0

(1+ ξp)
2 + 4

2(1− ξn)
Dpm

h N−1∑

i=1

Dpiuin

i
ωpn

+

N∑

q=0

1− ξq

2
Dqn

h N−1∑

j=1

Dq jumj

i
ωmq +

N−1∑

q=1

1+ ξm

2
Dqn

h N−1∑

i=1

Dmiuiq

i
ωmq

+

N−1∑

p=1

1+ ξp

2
Dpm

h N−1∑

j=1

Dnjup j

i
ωpn, ∀m, n= 1, · · · , N − 1,

where Dpi = h′i(ξp).

5. Numerical results and discussions

This section is devoted to verify the accuracy of the triangular spectral method, and to

investigate the numerical behavior of the inf-sup constant βN in (3.5).

5.1. Numerical investigation of the inf-sup constant

Since the matrix AN is positive definite, the system (4.1) can be decoupled by a stan-

dard block Gaussian elimination, leading to the following two decoupled systems:

(DT
NA−1

N DN )p = DT
NA−1

N BN f,

ANu = −DN p+ BN f, (5.1)

where SN := DT
N A−1

N DN is the so called Schur-complement. The above systems are usually

solved by using a preconditioned conjugate gradient method.

It is well-known (cf. [11]) that the condition number of the preconditioned Schur-

complement B−1
N SN is of order 1/β2

N . Hence, the efficiency of our method is directly linked

to the behavior of βN . Since we are unable to derive an estimate for the inf-sup constant

βN , it is therefore interesting to compute the inf-sup constant numerically and investigate

its behavior with respect to the degree of the approximation spaces.

We recall that in the rectangular PN × PN−2 spectral method for the 2-D Stokes equa-

tions, the inf-sup constant behaves like O (N−1/2) (cf. [1]). In Fig. 3, we plot the variations

of βN (i.e.,
p
λmin/λmax , where λmin and λmax are respectively the minimum and maxi-

mum eigenvalues of B−1
N SN) in log-log scale with respect to N . For comparison, the results

from the rectangle PN × PN−2 spectral method are also presented. While we observe that

the inf-sup constants for the triangular spectral method are smaller than the ones for the

rectangular spectral method for all N that we tested, it appears that the decay rate of the

triangular spectral method (close to O (N−1/4) for the range of N tested) is slower than of

the rectangular spectral method.
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Figure 3: Plot of βN with respe
t to N for both triangular and re
tangular spe
tral methods.
5.2. Accuracy tests

It is clear that with the triangular nodal basis, one can easily include triangular el-

ements in a spectral-element code. We now investigate the accuracy of the triangular

spectral-element method with K domain elements. The errors presented below are respec-

tively in the discrete L2-norm:

K∑

k=1




N∑

m,n=1

e2
N (ξ

k
m,ξk

n)
1−ξk

n

8
ωmn




1

2

and in the discrete H1-norm associated to the inner product (·, ·)N + (∇·,∇·)N , where

eN := uN − u.

We test the method for the following exact solution:




u1(x , y) = sin x cos y,

u2(x , y) = − cos x sin y,

p(x , y) = sin x sin y,

in the domain �, which is decomposed into four triangular and rectangular sub-domains

respectively as shown in Fig. 4.

In Fig. 5, we plot, in a semi-log scale, the L2-velocity errors (figure on the left) and

the H1-velocity errors (figure on the right). The L2-pressure errors are presented in Fig. 6.

In all these figures, the results obtained from the rectangular spectral-element method are

also plotted for comparison. We observe that, as the rectangular spectral-element method,

the errors for the triangular spectral-element method converge exponentially fast. We also

observe that the triangular method is slightly less accurate than the rectangular method,

due possibly to the unnecessarily clustered collocation points near the center.



A Triangular Spectral Method for the Stokes Equations 177

Figure 4: Triangular element mesh (left) and re
tangular element mesh (right).
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Figure 5: The velo
ity errors in L2-norm (left) and H1-norm (right) as a fun
tion of N .
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Figure 6: The pressure errors as a fun
tion of N .
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5.3. Summary

We presented a triangular spectral method based on a rational approximation through

Duffy mapping for the Stokes problem. We established the well-posedness of the method

and an error estimate for the velocity. Although we did not provide an explicit lower bound

for the inf-sup constant, our numerical results indicates that the inf-sup constant decays at

a rate between O (N−1/2) and O (N−1/4) for the range of N we tested, and the convergence

was exponential for smooth solutions and comparable to that for the rectangular spectral

method. We also constructed an easy-to-implement nodal basis which leads to an efficient

implementation of our method for the Stokes problem.
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