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Abstract. In this paper, a general method to derive asymptotic error expansion for-

mulas for the mixed finite element approximations of the Maxwell eigenvalue problem

is established. Abstract lemmas for the error of the eigenvalue approximations are ob-

tained. Based on the asymptotic error expansion formulas, the Richardson extrapolation

method is employed to improve the accuracy of the approximations for the eigenvalues

of the Maxwell system from O (h2) to O (h4) when applying the lowest order Nédélec

mixed finite element and a nonconforming mixed finite element. To our best knowl-

edge, this is the first superconvergence result of the Maxwell eigenvalue problem by the

extrapolation of the mixed finite element approximation. Numerical experiments are

provided to demonstrate the theoretical results.

AMS subject classifications: 65M10, 65N30

Key words: Maxwell eigenvalue problem, mixed finite element, asymptotic error expansion, Richard-

son extrapolation.

1. Introduction

The Maxwell eigenvalue problems are of basic importance in designing the microwave

resonators, microwave ovens, and communication equipments [2,3,16]. Assuming that the

electromagnetic fields are time-harmonic, after elimination of the magnetic field intensity,

the Maxwell eigenvalue problem can be formulated by [5,11]

∇×∇× p = λp, in Ω, (1.1)

∇ · p = 0, in Ω, (1.2)

p× n= 0, on ∂Ω, (1.3)

where Ω is a bounded cubic domain in R3.
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There are many results for the Maxwell eigenvalue problems based on the finite ele-

ment modeling and analysis, see, e.g., [1,3,5,8,15]. It is known, see [19], that the model-

ing of electromagnetic resonances is delicate. The early attempts to calculate FEMs approx-

imation may lead to the occurrence of non-physical, so-called spurious eigenmodes [4,16].

In order to overcome this difficulty, many methods have been proposed. In general,

there are two possibilities: either one imposes the constraint of divergence-freeness on

the problem, or one looks for an easy identification of the eigenvectors from the ker-

nel of the curl operator. In order to impose the divergence-free constraint on the prob-

lem, one may try to incorporate this property in the definition of the discrete function

spaces [7, 11, 30, 31, 37]. Several researchers prefer to impose this constraint implicitly,

using mixed formulations [2, 3, 15, 20]. The finite element approximation of the Maxwell

equation has also been studied to solve the electromagnetic field in [11,21,28].

When approximating the eigenvalue of Maxwell equations by the finite element method,

it has been proved that it is not easy to distinguish the spurious values [4] using the nodal

elements, especially for the lower order nodal elements. Such spurious values can be re-

moved by the weighted regularization method [10] or by the least-square method [6]. For

the non-smoothing solution not in H1(Ω), a element-local L2 projection technique was pre-

sented in [14] to deal with the nonconvex Lipschitz polyhedron with reentrant corners and

edges. However, it has been shown that edge elements for the eigenvalue Maxwell equa-

tions can have a good approximation on the affine mesh [2–4], though can not achieve op-

timal approximation on non-affine mesh for the lower order edge elements [5]. In [23,24],

one of the variational form EQrot
1 of Rannacher-Turek nonconforming element was pro-

posed and numerical examples were shown that it can produce better approximations for

the eigenvalue of elliptic problem. In three dimensions, this nonconforming finite element

is a face-element. And it has been applied to solve the time-harmonic Maxwell’s equations

with the absorbing boundary condition by Douglag etc. in [12].

To enhance the finite element eigenvalues approximation, one of the most important

techniques is the polynomial preserving recovery (PPR) [29, 36]. Remarkable fourth or-

der convergence is observed for linear elements under structured meshes as well as un-

structured initial meshes with the conventional refinement. The extrapolation method is

another important technique to enhance the finite element eigenvalue approximation. For

many eigenvalue problems, the extrapolation method can be applied to improve the accu-

racy of eigenvalue approximation on the structured mesh. Based on asymptotic expansions

of error approximation, one or two orders of convergence rate can be improved by a sim-

ple extrapolation postprocessing, see, e.g., [9,17,18,22,25,35]. These accelerators are all

based on an extremely important assumption that the solution should be higher smooth-

ing. Most of these researches were presented for conforming finite elements or conforming

mixed finite elements except for [25,35]. For mixed finite element, one of the difficulties is

that it is hard to derive asymptotic error expansion formulations. So far, we have not found

any superconvergence results for the Maxwell eigenvalue problem by the extrapolation of

the mixed finite element approximation.

In this paper, we assume that the exact solution is sufficiently smooth in order to em-

ploy the extrapolation technique. For the lowest order Nédélec mixed finite element and
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a nonconforming mixed finite element introduced in [12, 32], we derive some necessary

asymptotic error expansion formulas in discrete H(curl) space automatically and formu-

late abstract theorems for the eigenvalue and its approximation on the uniform mesh. In

the end, a posterior extrapolation method is used to improve the accuracy from O (h2)

to O (h4). The extrapolation method has also been applied to get the superconvergence

solution of the electromagnetic field for the Maxwell equation by mixed finite element

approximations in [32,33].

This paper is organized as follows: In Section 2, the lowest order Nédélec mixed fi-

nite space and a nonconforming mixed finite element space are introduced. In Section 3,

abstract theorems of asymptotic eigenvalues of the Maxwell system by the lowest order

Nédélec mixed finite element and the nonconforming mixed finite element are derived.

Some helpful asymptotic error expansion formulas are also presented. In Section 4, the

Richardson extrapolation method is used to enhance the accuracy of eigenvalue approx-

imations. A remarkably convergence rate O (h4) for the eigenvalue approximation is ob-

tained. In Section 5, numerical experiments are given to show the efficiency of our method.

The paper ends with some conclusions in Section 6.

2. Mixed finite element formulation

Denote the Hilbert space

Q = H0(curl,Ω) =
�

p ∈ (L2(Ω))3;∇× p ∈ (L2(Ω))3, p× n= 0 on ∂Ω
	

,

V = (L2(Ω))3,

and the standard variational formulation for problem (1.1)-(1.3) is: finding 0 6= λ ∈ R

such that p ∈Q, (p, p) = 1 and

(∇× p,∇× q) = λ(p,q), ∀q ∈Q. (2.1)

An equivalent mixed formulation [3] is: finding (λ,u, p) ∈ R × V × Q such that λ 6=
0, (p, p) = 1 and

a(u, v) + b(v, p) = 0, ∀v ∈ V, (2.2)

b(u,q) = −λ(p,q), ∀q ∈Q, (2.3)

where

a(u, v) =

∫

Ω

uvd xd ydz, b(v, p) =

∫

Ω

v · ∇× pd xd ydz.

2.1. Nédélec mixed finite element approximation

Here, we consider the lowest order Nédélec mixed finite element to approximate (2.2)-

(2.3). In [26,31], the lowest Nédélec mixed finite element space is

Qh =
�

φ ∈ (L2(Ω))3;φ
�

�

K
∈ Q0,1,1 ×Q1,0,1 ×Q1,1,0

	

, (2.4)

Uh =
�

ψ ∈ (L2(Ω))3;ψ
�

�

K
∈Q1,0,0 ×Q0,1,0 ×Q0,0,1

	

. (2.5)
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Obviously Qh ⊂ Q. The corresponding interpolation operator is defined by πh, Ih, respec-

tively.

The approximation version of (2.2)-(2.3) is: finding (λh,uh, ph) ∈ R×Uh×Qh such that

λh 6= 0, (ph, ph) = 1 and

a(uh, v) + b(v, ph) = 0, ∀v ∈ Uh, (2.6)

b(uh,q) = −λh(ph,q), ∀q ∈Qh. (2.7)

2.2. Nonconforming mixed finite element approximation

Now we introduce a nonconforming mixed finite element. LetJh be a uniform partition

of Ω ⊂ R3, and denote each element K = [xK − hx , xK + hx]× [yK − hy , yK + hy]× [zK −
hz, zK + hz] with size h=max{hx ,hy ,hz}.

Let K̂ = [−1,1]3 be a reference cube element, and denote Q̂ = Q̂ x × Q̂ y × Q̂z, where

Q̂ x = Span
�

1, ŷ , ẑ, ŷ2, ẑ2
	

,

Q̂ y = Span
�

1, ẑ, x̂ , ẑ2, x̂2
	

,

Q̂z = Span
�

1, x̂ , ŷ , x̂2, ŷ2
	

.

Denote ĝi, i = 1, · · · , 6, be the front, back, left, right, upper and lower face of the

reference. For û ∈ H0(curl, K̂), the local interpolation operator is defined as follows: π̂ :

H0(curl, K̂)−→ Q̂(K̂)

1

| ĝi|

∫

ĝi

(π̂K̂φ̂ − φ̂)dŝ = 0, i = 1, · · · , 6,
1

|K̂ |

∫

K̂

(π̂K̂φ̂ − φ̂)d x̂d ŷdẑ = 0. (2.8)

In every element K , the local interpolation operator is defined by

πKφ = (π̂K̂φ̂) ◦ F−1
K ,

where affine mapping FK : K̂ → K is

x = hx x̂ + xK , y = hy ŷ + yK , z = hz ẑ + zK .

So the interpolation operator πh in the domain Ω is defined by

πhφ
�

�

K
= πKφ.

Note that (2.8) provides fifteen degrees of freedom needed to determine an element in

Q̂(K̂). Next let Ŝ = Ŝx × Ŝy × Ŝz, where

Ŝx = Span
�

1, ŷ , ẑ
	

,

Ŝy = Span
�

1, ẑ, x̂
	

,

Ŝz = Span
�

1, x̂ , ŷ
	

.
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and define a local interpolation Î : (L2(K̂))3 −→ Ŝ(K̂) as follows. For ψ̂ = (ψ̂1, ψ̂2, ψ̂3) ∈
Ŝ(K̂)
∫

K̂

( ÎK̂ψ̂l − ψ̂l)d x̂d ŷdẑ = 0,

∫

K̂

curl( ÎK̂ ψ̂l − ψ̂l)d x̂d ŷdẑ = 0, l = 1,2,3, (2.9)

where curl is defined as

curlψ̂1 =
�∂ ψ̂1

∂ ẑ
,−
∂ ψ̂1

∂ ŷ

�

, curlψ̂2 =
�∂ ψ̂2

∂ x̂
,−
∂ ψ̂2

∂ ẑ

�

, curlψ̂3 =
�∂ ψ̂3

∂ ŷ
,−
∂ ψ̂3

∂ x̂

�

.

In every element K , the local interpolation operator IK is defined by

IKψ= ( ÎK̂ψ̂) ◦ F−1
K ,

so the interpolation operator Ih in the domain Ω is defined by

Ihψ
�

�

K
= IKψ.

Note that (2.9) provides nine degrees of freedom needed to determine an element in

Ŝ(K̂) and that

∇× Q̂ = Ŝ.

The nonconforming mixed finite element space will be defined as

Wh =

(

φ ∈ (L2(Ω))3 : φ
�

�

K
◦ FK ∈ Q̂, K ∈ Jh,

∫

g

[φ]ds = 0,φ × n
�

�

∂Ω
= 0

)

, (2.10)

Vh =
�

ψ ∈ (L2(Ω))3 :ψ
�

�

K
◦ FK ∈ Ŝ, K ∈ Jh

	

, (2.11)

with the respective norm

‖φ‖h =
∑

K∈Jh

(‖φ‖20 + ‖∇×φ‖
2
0)

1/2, ‖ψ‖0 =





∑

K∈Jh

∫

K

φ2d xd ydz





1/2

.

The constructed finite element spaces are divergence-free by

∇ ·φh =
∂ φ1h

∂ x
+
∂ φ2h

∂ y
+
∂ φ3h

∂ z
= 0.

For each φ1h, it is the integration continuous on the adjoint face of two element in y-

direction and z-direction, and it is continuous on the face in x -direction because of E1h not

containing the variant x . For φ2h,φ3h, we have the similar conclusion. On the other hand,

the constructed mixed finite element spaces satisfy inf-sup condition

sup
φ∈Wh

bh(φ,ψ)

‖φ‖h
≥ sup

q∈H0(curl ,Ω)

bh(πhq,ψ)

‖πhq‖h

= sup
q∈H0(curl ,Ω)

bh(q,ψ)

‖πhq‖h
≥ C sup

q∈H0(curl ,Ω)

bh(q,ψ)

‖q‖H0(curl ,Ω)

,
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which can impose the divergence-free condition on the eigenvalue problem implicitly. We

can overcome the spurious modes [15] when using this new mixed finite element space.

From the above analysis, this new element method will satisfy Gaussian’s laws, and it can

not exist spurious modes.

Therefore, the mixed finite element discrete version of Eqs. (2.2)- (2.3) is defined by:

find (λh,uh, ph) ∈ R× Vh×Wh such that λh 6= 0, (ph, ph) = 1 and

ah(uh, v) + bh(v, ph) = 0, ∀v ∈ Vh, (2.12)

bh(uh,q) = −λh(ph,q), ∀q ∈Wh, (2.13)

where

ah(uh, v) =
∑

K

∫

K

uhvd xd ydz, bh(v, ph) =
∑

K

∫

K

v · ∇× phd xd ydz.

Using the method in [9,17,27,34], we can will get a general error estimation as follows:

Theorem 2.1. Suppose that (λ,u, p) and (λh,uh, ph) is the eigenpair of problem (2.2)-(2.3)

and (2.6)-(2.7) or (2.12)-(2.13), respectively, then the following error estimations for the

eigenvalue and eigenfunction hold:

|λ−λh| ≤ ch2, ‖p− ph‖0 + ‖u− uh‖0 ≤ ch2(‖p‖2 + ‖u‖2). (2.14)

In the following two sections, we can see that the accuracy of the approximations of the

Maxwell eigenvalues can be improved remarkably from O (h2) to O (h4) by the Richardson

extrapolation post process.

3. Asymptotic expansion of eigenvalue error

In order to employ the Richardson extrapolation post process, in this section, we will

establish the asymptotic expansion formulations of the eigenvalue error firstly.

3.1. Asymptotic expansion formulation

When

hx ≡ h1, hy ≡ h2, hz ≡ h3, ∀K ∈ Jh, (3.1)

the mesh Jh is called uniform [23]. The following lemmas give the important asymptotic

expansion formulations.

Lemma 3.1. Suppose that mesh Jh is uniform, πh is the interpolation operator in Qh. Let

p = (p1, p2, p3),q = (q1,q2,q3), ∀p ∈ (H4(Ω))3 ∩H0(curl,Ω), ∀q ∈Qh, we have

(p−πhp,q) =−
h2

1

3

∫

Ω

(p2x xq2 + p3x x q3)−
h2

2

3

∫

Ω

(p1y y q1 + p3y y q3)

−
h2

3

3

∫

Ω

(p1zzq1 + p2zzq2) +O (h
4)|p|4‖q‖0. (3.2)
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Proof. The asymptotic error expansion formula in two-dimension can be found Lemma

3.1 in [33] and we can extend this result to three-dimension with the same technique. �

Lemma 3.2. Suppose that mesh Jh is uniform, πh is the interpolation operator in Qh. Let

p = (p1, p2, p3), v = (v1, v2, v3), ∀p ∈ (H4(Ω))3 ∩H0(curl,Ω), ∀v ∈ Uh, we have

b(v,πhp− p) =
h2

1

3

∫

Ω

p3x x y v1−
h2

1

3

∫

Ω

p2x xz v1 −
h2

2

3

∫

Ω

p3x y y v2

+
h2

2

3

∫

Ω

p1y yz v2+
h2

3

3

∫

Ω

p2xzz v3 −
h2

3

3

∫

Ω

p1yzz v3 + O (h
4)|p|4‖v‖0. (3.3)

Proof. For different p̂i, i = 1,2,3 on the reference element K̂ , their interpolations π̂K̂ p̂i

are shown in the following table

p̂i , 1 x̂ ŷ ẑ x̂ ŷ x̂ ẑ ŷ ẑ x̂2 ŷ2 ẑ2

π̂K̂ p̂3 1 x̂ ŷ 0 x̂ ŷ 0 0 1 1 1

3

π̂K̂ p̂2 1 x̂ 0 ẑ 0 x̂ ẑ 0 1 1

3
1

π̂K̂ p̂1 1 0 ŷ ẑ 0 0 ŷ ẑ 1

3
1 1

p̂i x̂3 ŷ3 ẑ3 x̂2 ŷ x̂ ŷ2 x̂2ẑ x̂ ẑ2 ŷ2ẑ ŷ ẑ2 x̂ ŷ ẑ

π̂K̂ p̂3 x̂ ŷ 0 ŷ x̂ 0 1

3
x̂ 0 1

3
ŷ 0

π̂K̂ p̂2 x̂ 0 ẑ 0 1

3
x̂ ẑ x̂ 1

3
ẑ 0 0

π̂K̂ p̂1 0 ŷ ẑ 1

3
ŷ 0 1

3
ẑ 0 ẑ ŷ 0

Using the result

b(v,πhp− p) =
∑

K

∫

K

h

((πK p− p)3y − (πK p− p)2z)v1

−((πK p− p)3x − (πK p− p)1z)v2+ ((πK p− p)2x − (πK p− p)1y)v3

i

,

we can define a bilinear form

B(p̂, v̂1) =

∫

K̂

(π̂K̂ p̂− p̂)3 ŷ v̂1.

Consequently, we have

|B(p̂, v̂1)| ≤ C‖p̂‖4K̂‖v̂1‖0K̂ .

Here and after let v̂1 = (1, x̂). By calculating,

B( x̂2 ŷ , v̂1) =

∫

K̂

( ŷ − x̂2 ŷ) ŷ(1, x̂) =
16

3
(1,0) =

1

3

∫

K̂

p3x̂ x̂ ŷ v̂1,

p̂3 = x̂2 ŷ, B(P̂3/ x̂2 ŷ , v̂1) = 0.
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Let

H(p̂3, v̂1) = B(p̂3, v̂1)−
1

3

∫

K̂

p3x̂ x̂ ŷ v̂1.

Then

H(P̂3, v̂1) = 0, |H(P̂3, v̂1)| ≤ C |p̂3|4K̂‖v̂1‖0K̂ .

Therefore, by Bramble–Hilbert Lemma [see Lemma 2.6, [23]], we have

B(p̂3, v̂1) =
1

3

∫

K̂

p3x̂ x̂ ŷ v̂1 + O (1)|p̂3|4K̂‖v̂1‖0K̂ .

Hence,

∫

K

(p−πK p)3y v1d xd ydz =
h2

1

3

∫

K

p3x x y v1 + O (h
4)|p3|4K‖v1‖0K . (3.4)

Similarly,

−

∫

K

(p−πK p)2z v1d xd ydz = −
h2

1

3

∫

K

p2x xz v1 + O (h
4)|p2|4K‖v1‖0K , (3.5)

−

∫

K

(p−πK p)3x v2d xd ydz = −
h2

2

3

∫

K

p3x y y v2+ O (h
4)|p3|4K‖v2‖0K , (3.6)

∫

K

(p−πK p)1z v2d xd ydz =
h2

2

3

∫

K

p1y yz v2+ O (h
4)|p1|4K‖v2‖0K , (3.7)

∫

K

(p−πK p)2x v3d xd ydz =
h2

3

3

∫

K

p2xzz v3 + O (h
4)|p2|4K‖v3‖0K , (3.8)

−

∫

K

(p−πK p)1y v3d xd ydz = −
h2

3

3

∫

K

p1yzz v3 + O (h
4)|p1|4K‖v3‖0K . (3.9)

If the mesh is uniform, combining (3.4)-(3.9) on each element, we can finish the proof. �

By the definition of interpolation, from [26,33], we know

Lemma 3.3. Ih is the interpolation operator in Qh, ∀q ∈Qh, v ∈ Uh, we have

a(u− Ihu, v) = 0, (3.10)

b(u− Ihu,q) = 0. (3.11)

From [32], we have the following lemma:

Lemma 3.4. Suppose that mesh Jh is uniform, ∀q ∈Wh, πh is the interpolation operator in

Wh, ∀p ∈ (H6(Ω))3 ∩H0(curl,Ω),u ∈ (H5(Ω))3 and v ∈ Vh, Ih is the interpolation operator
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in Vh, we have

(p−πhp,q) = O (h4)‖p‖4‖q‖0, (3.12)

ah(u− Ihu, v) = O (h4)‖u‖4‖v‖1h, (3.13)

bh(u− Ihu,q) = O (h4)‖u‖4‖q‖2h, (3.14)

bh(v,πhp− p) = 0, (3.15)

∑

K

∫

∂ K

u× nqds =
h2

1

3

∫

Ω

(−u1x x yq3+ u1x xzq2)d xd ydz

+
h2

2

3

∫

Ω

(−u2y yzq1 + u2x y y q3)d xd ydz

+
h2

3

3

∫

Ω

(−u3xzzq2 + u3yzzq1)d xd ydz+ O (h4)‖u‖5‖q‖2h. (3.16)

3.2. Abstract asymptotic expansion formulation

Using the lowest order Nédélec mixed finite element (2.4)-(2.5) to approximate the

eigenvalue problem of (2.2)-(2.3), we have the following abstract asymptotic expansion

formulation:

Theorem 3.1. Suppose that (λ,u, p) ∈ R× V × Q and (λh,uh, ph) ∈ R× Uh × Qh are the

eigenpairs of problem (2.2)-(2.3) and (2.6)-(2.7), respectively, then the following expansion

for the eigenvalue error holds:

λh−λ=λ(p−πhp, p̄h)− b(ūh,πhp− p)

+ a(u− Ihu, ūh)− b(Ihu− u, p̄h) + O (h
4), (3.17)

where ūh =
uh

(p,ph)
, p̄h =

ph

(p,ph)
.

Proof. Define Maxwell project solution: finding (ũh, p̃h) ∈ Uh×Qh such that

a(ũh, v) + b(v, p̃h) = 0, ∀v ∈ Uh, (3.18)

b(ũh,q) = −λ(p,q), ∀q ∈ Qh. (3.19)

By the Maxwell’s projection, we know

a(u− ũh, v) + b(v, p− p̃h) = 0, ∀v ∈ Uh,

b(u− ũh,q) = 0, ∀q ∈Qh.

By (p, p̄h) = 1, we have

λh = λh(p, p̄h) = λh(p− p̃h, p̄h) +λh(p̃h, p̄h).

From(2.2)–(2.3), (2.6)–(2.7) and (3.18)–(3.19), we have

λh(p̃h, p̄h) = −b(ūh, ũh) = a(ũh, ūh) = −b(ũh, p̄h) = λ(p, p̄h) = λ,
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and

λh(p− p̃h, p̄h) = λh(p−πhp, p̄h) +λh(πhp− p̃h, p̄h)

= λh(p−πhp, p̄h)− b(ūh,πhp− p̃h)

= λh(p−πhp, p̄h)− b(ūh,πhp− p)− b(ūh, p− p̃h)

= λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− ũ, ūh)

= λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− Ihu, ūh) + a(Ihu− ũh, ūh)

= λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− Ihu, ūh)− b(Ihu− ũh, p̄h)

= λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− Ihu, ūh)

−b(Ihu− u, p̄h)− b(u− ũh, p̄h)

= λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− Ihu, ūh)− b(Ihu− u, p̄h).

By (2.14), we have λh = λ+ O (h
2), which yields (3.17). Now we can finish the proof. �

Using the nonconforming mixed finite element (2.10)–(2.11) to approximate the eigen-

values of Maxwell’s system (2.2)–(2.3), we have the following abstract asymptotic expan-

sion formulation:

Theorem 3.2. Suppose that (λ,u, p) ∈ R×V×Q and (λh,uh, ph) ∈ R×Vh×Wh are the eigen-

pairs of problem (2.2)–(2.3) and (2.12)–(2.13), respectively, then the following expansion for

the eigenvalue error holds:

λh−λ=λ(p−πhp, p̄h)− bh(ūh,πhp− p) + ah(u− Ihu, ūh)

− bh(Ihu− u, p̄h) +
∑

K

∫

∂ K

u× np̄hds+ O (h4), (3.20)

where ūh = uh/(p, ph), p̄h = ph/(p, ph).

Proof. Define Maxwell project solution: finding (ũh, p̃h) ∈ Uh×Qh such that

ah(ũh, v)+ bh(v, p̃h) = 0, ∀v ∈ Vh, (3.21)

bh(ũh,q) = −λ(p,q), ∀q ∈Wh. (3.22)

By the Maxwell’s projection, we know

ah(u− ũh, v) + bh(v, p− p̃h) = 0, ∀v ∈ Uh,

bh(u− ũh,q) = −
∑

K

∫

∂ K

u× nqds, ∀q ∈Qh.

By (p, p̄h) = 1, we have

λh = λh(p, p̄h) = λh(p− p̃h, p̄h) +λh(p̃h, p̄h).
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From(2.2)–(2.3), (2.12)–(2.13) and (3.21)–(3.22), we have

λh(p̃h, p̄h) = −bh(ūh, ũh) = ah(ũh, ūh) = −bh(ũh, p̄h) = λ(p, p̄h) = λ,

and

λh(p− p̃h, p̄h) =λh(p−πhp, p̄h) +λh(πhp− p̃h, p̄h)

=λh(p−πhp, p̄h)− b(ūh,πhp− p̃h)

=λh(p−πhp, p̄h)− b(ūh,πhp− p)− b(ūh, p− p̃h)

=λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− ũ, ūh)

=λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− Ihu, ūh) + a(Ihu− ũh, ūh)

=λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− Ihu, ūh)− b(Ihu− ũh, p̄h)

=λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− Ihu, ūh)

− b(Ihu− u, p̄h)− b(u− ũh, p̄h)

=λh(p−πhp, p̄h)− b(ūh,πhp− p) + a(u− Ihu, ūh)− b(Ihu− u, p̄h)

+
∑

K

∫

∂ K

u× np̄hds.

By (2.14), we have λh = λ+O (h
2), which lead to (3.20). Now we can finish the proof. �

4. Richardson extrapolation of the eigenvalue

Based on Theorems 2.1, 3.1–3.2 and Lemmas 3.3–3.4, we have the following theorem:

Theorem 4.1. Suppose that λ,λh ∈ R is the eigenvalue of problem (2.2)–(2.3) and (2.12)–

(2.13), respectively. For Nédélec mixed finite element, if the partition is uniform, ∀p ∈
(H4(Ω))3 ∩H0(curl,Ω),u ∈ (L2(Ω))

3, the eigenvalues error estimation hold:

λ−λh =−
h2

1

3

∫

Ω

(p2x x p2 + p3x x p3)−
h2

2

3

∫

Ω

(p1y y p1 + p3y y p3)

−
h2

3

3

∫

Ω

(p1zz p1 + p2zz p2)−
h2

1

3

∫

Ω

p3x x y u1 +
h2

1

3

∫

Ω

p2x xzu1 +
h2

2

3

∫

Ω

p3x y y u2

−
h2

2

3

∫

Ω

p1y yzu2 −
h2

3

3

∫

Ω

p2xzzu3 +
h2

3

3

∫

Ω

p1yzzu3 + O (h
4). (4.1)

Let λex t ra
h

= (4λh/2 −λh)/3. The Richardson extrapolation eigenvalue error is

λ−λex t ra
h

= O (h4). (4.2)

Proof. From

1− (p, ph) =
1

2
(p− ph, p− ph)≤ Ch2,
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we have (p, ph)≥ 1− Ch2.

From Theorem 2.1 we have ūh = u+O (h2), p̄h = p+O (h2). Take v = ūh,q = p̄h in Lem-

mas 3.3–3.5, and from Theorem 3.1, we can derive (4.1). Using Richardson extrapolation

formula, we can get (4.2). �

Theorem 4.2. Suppose that λ,λh ∈ R is the eigenvalue of problem (2.2)-(2.3) and (2.12)-

(2.13), respectively. For nonconforming mixed finite element in Section 2, if the partition is

uniform, ∀p ∈ (H6(Ω))3 ∩H0(curl,Ω),u ∈ (H5(Ω))3, the eigenvalues error estimation hold:

λ−λh =
h2

1

3

∫

Ω

(−u1x x y p3 + u1x xz p2)d xd ydz+
h2

2

3

∫

Ω

(−u2y yz p1 + u2x y y p3)d xd ydz

+
h2

3

3

∫

Ω

(−u3xzz p2 + u3yzz p1)d xd ydz+ O (h4). (4.3)

Let λex t ra
h

= (4λh/2 −λh)/3. The Richardson extrapolation eigenvalue error is

λ−λex t ra
h

= O (h4). (4.4)

Proof. From

1− (p, ph) =
1

2
(p− ph, p− ph)≤ Ch2,

we have (p, ph)≥ 1− Ch2. By Theorem 2.1, we have

ūh = u+ O (h2), p̄h = p+ O (h2).

Take v = ūh,q = p̄h in Lemma 3.6, from Theorem 3.2, we can derive (4.3). Using the

Richardson extrapolation formula, we can get (4.4). �

Remark 4.1.

λ−λh/2 =
λh−λh/2

3
+ O (h4) (4.5)

provides a posteriori error estimation (λh−λh/2)/3 for λ−λh/2.

5. Numerical results

In this section, we give some numerical results to validate our theoretical analysis.

Here we give some notations:

er rh = λ−λh, er r ex t ra
h

= λ−λex t ra
h

,

α=
log(er rh/er r h

2

)

log(2)
, αex t ra =

log(er r ex t ra
h

/er r ex t ra
h

2

)

log(2)
.
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Here, α,αex t ra stand for the numerical convergence order of eigenvalue from the mixed

finite element approximation and the extrapolation approximation, respectively.

We choose

p = (sin kπy sin tπz, sin kπz sin tπx , sin kπx sin tπy), λ = (k2+ t2)π2

and k, t ≥ 0 are integers. It is known that (λ, p) are eigenpairs of (1.1)–(1.3). We test the

accuracy for both the Nédélec mixed finite element and the nonconforming mixed finite

element on the uniform rectangular meshes.

In Tables 1–3, we list the approximations by the lowest order Nédélec mixed finite

element of the Maxwell eigenvalues 2π2, 5π2 and 10π2, respectively. In Tables 4–6, we

list the approximations by the nonconforming mixed finite element (2.10)–(2.11) of the

Maxwell eigenvalues 2π2, 5π2 and 10π2, respectively. It is observed that the eigenval-

ues computed by the lowest order Nédélec mixed finite element approximate the MaxwellTable 1: The approximations of eigenvalue 2π2 ≈ 19.73920880 by the lowest order Nédéle
 mixed �niteelement.
N3 2× 2× 2 4× 4× 4 8× 8× 8 16× 16× 16 32× 32× 32

λh 24 20.77328401 19.99416131 19.80270736 19.75506824

λex t ra
h

- 19.69771201 19.73445375 19.73888937 19.73918853

er rh -4.2608 -1.0341 -2.55E-01 -6.35E-02 1.59E-02

er r ex t ra
h

- -0.0415 -0.0048 -3.19E-04 -2.03E-05

α - 2.042748629 2.02E+00 2.01E+00 2.00E+00

αex t ra - - 3.112005026 3.91E+00 3.98E+00Table 2: The approximations of eigenvalue 5π2 ≈ 49.34802201 by the lowest order Nédéle
 mixed �niteelement.
N3 4× 4× 4 8× 8× 8 16× 16× 16 32× 32× 32

λh 51.32899651 49.90215741 49.48970653 49.38363202

λex t ra
h

- 49.42654437 49.3522229 49.34827386

er rh -1.980974503 -0.554135403 -0.141684525 -0.03561002

er r ex t ra
h

- -0.078522369 -0.004200899 -0.000251851

α - 1.837899865 1.96755635 1.99232706

αex t ra - - 4.224333788 4.060055064Table 3: The approximations of eigenvalue 10π2 ≈ 98.69604401 by the lowest order Nédéle
 mixed �niteelement.
N3 4× 4× 4 8× 8× 8 16× 16× 16 32× 32× 32

λh 1.13E+02 1.03E+02 99.70825598 98.94956997

λex t ra
h

– 99.21853695 98.70970614 98.69667463

er rh -14.46396713 -4.007861487 -1.012211968 -0.253525954

er r ex t ra
h

– -0.52249294 -0.013662128 -0.000630617

α – 1.85155875 1.985321212 1.997306083

αex t ra – – 5.257157384 4.437275319
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eigenvalues from above with the convergence order O (h2), and the eigenvalues computed

by the nonconforming mixed finite element (2.10)-(2.11) approximate the Maxwell eigen-

values from below with the convergence order O (h2). After a Richardson extrapolation

post process, we have successfully improved the accuracy of the approximations of the

Maxwell eigenvalues from O (h2) to O (h4).Table 4: The approximations of eigenvalue 2π2 ≈ 19.73920880 by the non
onforming mixed �niteelement (2.10)�(2.11).
N3 2× 2× 2 4× 4× 4 8× 8× 8 16× 16× 16 32× 32× 32

λh 16.84801921 18.81863788 19.49188625 19.67619616 19.72337988

λex t ra
h

– 19.47551076 19.71630238 19.73763279 19.73910779

er rh 2.891189587 0.920570926 0.247322549 0.063012646 0.015828919

er r ex t ra
h

– 0.263698038 0.022906424 0.001576012 1.01E-04

α – 1.651062432 1.896135097 1.972680476 1.993078624

αex t ra – – 3.525062684 3.86140176 3.96E+00Table 5: The approximations of eigenvalue 5π2 ≈ 49.34802201 by the non
onforming mixed �niteelement (2.10)�(2.11).
N3 4× 4× 4 8× 8× 8 16× 16× 16 32× 32× 32

λh 46.33042078 48.40880933 49.09927197 49.28491547

λex t ra
h

- 49.10160551 49.32942619 49.34679663

er rh 3.017601223 0.939212677 0.248750031 0.063106536

er r ex t ra
h

- 0.246416495 0.018595816 0.001225371

α - 1.683878379 1.916755175 1.978835359

αex t ra - - 3.728048877 3.923687015Table 6: The approximations of eigenvalue 10π2 ≈ 98.69604401 by the non
onforming mixed �niteelement (2.10)�(2.11).
N3 4× 4× 4 8× 8× 8 16× 16× 16 32× 32× 32

λh 95.36880373 96.86940843 98.15588458 98.55530348

λex t ra
h

- 97.36961 98.58470996 98.68844311

er rh 3.327240277 1.826635578 0.540159431 0.140740532

er r ex t ra
h

- 1.326434011 0.111334049 0.007600899

α - 0.865137216 1.757731643 1.940347416

αex t ra - - 3.574586125 3.872580952

6. Conclusion and future work

The main work of this paper is to derive the abstract lemma for the error of the eigen-

values of Maxwell system by the lowest order Nédélec and a nonconforming mixed finite

element, which is aimed at improving the eigenvalue approximation by Richardson ex-

trapolation formula. Some asymptotic error expansion formulas for the eigenvalue ap-
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proximation are presented. As a by-product, we can apply various finite element spaces

(for example, ECHL and MECHL spaces described in [13]) with high order accuracy to

form a class of a posterior error estimates for the eigenvalues of Maxwell system on the

uniform mesh. The Richardson extrapolation method is employed to improve the accuracy

of the approximations for the eigenvalues of the Maxwell system from O (h2) to remarkable

O (h4). Numerical experiments have demonstrated the theoretical results and the efficiency

of our proposed method.

In the numerical experiments, we have observed that the eigenvalues computed by the

lowest order Nédélec mixed finite element approximate the Maxwell eigenvalues always

from above and the eigenvalues computed by the nonconforming mixed finite element

(2.10)–(2.11) approximate the Maxwell eigenvalues always from below. It is a quite inter-

esting phenomenon, we will analyze it in the future work.
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