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Abstract. A three-dimensional full-Stokes computational model is considered for deter-

mining the dynamics, temperature, and thickness of ice sheets. The governing thermo-

mechanical equations consist of the three-dimensional full-Stokes system with nonlin-

ear rheology for the momentum, an advective-diffusion energy equation for temper-

ature evolution, and a mass conservation equation for ice-thickness changes. Here,

we discuss the variable resolution meshes, the finite element discretizations, and the

parallel algorithms employed by the model components. The solvers are integrated

through a well-designed coupler for the exchange of parametric data between com-

ponents. The discretization utilizes high-quality, variable-resolution centroidal Voronoi

Delaunay triangulation meshing and existing parallel solvers. We demonstrate the grid-

ding technology, discretization schemes, and the efficiency and scalability of the paral-

lel solvers through computational experiments using both simplified geometries arising

from benchmark test problems and a realistic Greenland ice sheet geometry.
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1. Introduction

The computational modeling of glaciers and ice sheets has been a subject of growing in-

terest because of the influential role they play in global sea level and climate change studies
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[6–8, 13]. Among the different types of approaches employed, the full three-dimensional

Stokes ice sheet model is generally accepted to truly model ice sheet flows [18,28,41,42].

A three-dimensional full-Stokes ice sheet computational model requires the integration of

effective gridding strategies, discretization schemes, couplers for data exchange between

model components, and efficient, scalable solvers.

Finite difference, finite volume, and finite element methods have proven successful for

high-resolution computational simulations based on the full-Stokes model with free sur-

face evolution [19,40,42]. However, the applicability of the methods for large-scale, high-

resolution simulations of realistic glaciers and ice sheets remains an open question. Our

approach uses finite element discretizations of the mechanical and thermal components.

Based on observations from field and satellite-based studies [5, 34, 35, 37], another key

component is a high-quality, adaptive, variable resolution meshing scheme that can often

significantly reduce the computational cost while maintaining comparable solution accu-

racy relative to quasi-uniform grids. Recently, centroidal Voronoi tessellation (CVT) based

mesh generation techniques have been widely incorporated into finite volume and finite

element approximation schemes for convection-diffusion equations [12, 22], the Navier-

Stokes equations [23], and the shallow water equations [43]; CVT-based mesh generation

offers significant advantages, compared to other meshing algorithms, for improving dis-

cretization/solution accuracy and controlling local mesh sizes [11,17,21,22,24,43].

This paper reports on progress made towards the development of an efficient, parallel,

finite element solver for three-dimensional, full-Stokes ice sheet modeling. The coupled

thermo-mechanical processes are numerically approximated by a scalable system using

Message Passing Interface (MPI) that is computing intensive and capable of performing

large amounts of data transfer during the simulation processes. We first present the gov-

erning equations, the methods we use for their discretization, and the parallel solvers we

use. We then validate our numerical schemes and parallel implementations by applying

them to benchmark tests having simple geometries put forward by the ice sheet model-

ing community. The feasibility of our parallel solvers is then demonstrated on realistic

geometries by applying our package to idealized simulations of the Greenland ice sheet.

We consider the evolution of momentum, temperature, and thickness of an ice sheet

having ice-atmosphere and ice-bedrock boundaries only. Moreover, we consider a sim-

plified set of boundary conditions along those boundaries. These simplifications are in

concert with the main goals of this paper, which are as follows:

• develop and test a finite element discretization of the full, three-dimensional Stokes

model for ice sheet dynamics, coupled to an energy equation for the evolution of the

temperature in the ice sheet and a conservation equation for the evolution of the ice

sheet thickness;

• implement high-quality, variable-resolution prismatic grids based on centroidal

Voronoi Delaunay triangulations;

• develop and test efficient parallel solvers for the discretized coupled system;

• demonstrate that the combined components result in a potentially powerful tool for

ice sheet modeling.
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2. The coupled 3D full-Stokes ice sheet model

In this section, we present the set of governing equations and associated initial and

boundary conditions that define the thermo-mechanical ice sheet mathematical model we

consider.

2.1. The full-Stokes equations for ice sheet dynamics

The dynamical behavior of an ice sheet is governed by the full-Stokes equations for a

viscous fluid in a low Reynolds-number flow over the time interval (0, tmax] and in the

three-dimensional spatial domain Ωt occupied by the ice sheet. Note that the ice sheet

domain changes in time due to the variation of the ice thickness which can affect both the

vertical and lateral extent of the ice sheet. The system is considered incompressible so that

the dynamic momentum equation and the kinematic continuity equation are given by

ρ
∂ u

∂ t
=∇ ·σ+ρg, in Ωt × (0, tmax] (2.1)

∇ · u= 0, in Ωt × (0, tmax], (2.2)

respectively, where u(x, t) = (u1,u2,u3)
T denotes the velocity, σ the full stress tensor, ρ

the constant density of ice, and g =
�

0,0,−|g|
�

the gravitational acceleration. The stress

tensorσ can be decomposed into the viscous (or deviatoric) stress τ and the static pressure

p as

σ = τ− pI or σi j = τi j − pδi j , (2.3)

where δi j denotes the Krönecker tensor equal to the identity tensor I. The convective con-

tribution u · ∇u has been neglected from the acceleration term due to the slow, creeping

motion of the ice flow. Similarly, scaling arguments can be used to obtain that the remain-

ing acceleration term ρ∂ u/∂ t is negligible, i.e., we assume that the ice flow is quasi-static.

Thus, we obtain from (2.1) the instantaneous momentum balance equation

−∇ ·τ+∇p = ρg, in Ωt × (0, tmax]. (2.4)

The strain rate tensor ǫ̇u is defined in terms of the velocity u by

ǫ̇u =
1

2

�

∇u+ (∇u)T
�

or ǫ̇i j(u) =
1

2

�

ui, j + u j,i

�

=
1

2

�

∂ ui

∂ x j

+
∂ u j

∂ x i

�

. (2.5)

The constitutive law for ice connects the viscous stress tensor τ to the strain rate tensor ǫ̇u

by the generalized form of Glen’s flow law [38,39]

τ = 2ηu,T ǫ̇u or τi j = 2ηu,T ǫ̇i j, (2.6)

where

ηu,T =
1

2
A−1/nǫ̇(1−n)/n

e , (2.7)
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and ηu,T denotes the temperature and strain rate-dependent rheology coefficient (referred

to as the effective viscosity), n the power-law exponent, A the inverse deformation rate

factor, and ǫ̇e the equivalent strain rate defined as

ǫ̇e =

r

1

2
ǫ̇u : ǫ̇u =

√

√

√

√

1

2

3
∑

i, j

ǫ̇2
i j

=

r

1

2

�

ǫ̇2
11+ ǫ̇

2
22 + ǫ̇

2
33 + 2ǫ̇2

12+ 2ǫ̇2
23+ 2ǫ̇2

31

�

. (2.8)

The parameter A depends on the temperature through an Arrhenius relation defined by

A= A(T ) = A0 exp (−Q/RT ) , (2.9)

where T denotes the absolute temperature measured in Kelvin, A0 is an empirical flow law

constant, Q the activation energy, and R the universal gas constant; see, e.g., [38, 42] for

more details. Obviously, the constitutive coefficient (2.7) is a function of both the strain

rate and the thermodynamic state.

Let Γt denote the outer boundary of the ice which consists of two parts: the ice-bedrock

boundary Γi b which we assume to be fixed in time and the ice-atmosphere boundary Γia;t ,

i.e., Γt = Γi b ∪ Γia;t . At the ice-bedrock boundary Γi b, we impose the no-slip boundary

condition

u = 0. (2.10)

At the ice-atmosphere boundary Γia;t , we have

σ · n= −pn+τ · n= −patmn, (2.11)

where patm denotes the standard atmospheric pressure. Note that, due to the quasi-static

assumption about the dynamics of the ice sheet, no initial condition is required for the

velocity field; the initial velocity field is fully determined from the boundary conditions,

the initial temperature field, and the initial ice sheet geometry by solving the system (2.2),

(2.4), (2.10), and (2.11).

2.2. Evolution of temperature

The prognostic equation describing the evolution of temperature is given by

ρc
∂ T

∂ t
+ρcu · ∇T =∇ · (κ∇T ) + 2ηu,T + ǫ̇u : ǫ̇u+ q, in Ωt × (0, tmax], (2.12)

where T (x, t) denotes the temperature, c the constant heat capacity, κ the constant thermal

conductivity, q(x, t) a volumetric internal heat source, and ρ the constant density of ice.

Note that for the two tensors ǫ̇ and τ, ǫ̇ : τ denotes the sum of the element-wise products,

i.e., ǫ̇ : τ =
∑3

i, j ǫ̇i jτi j. Strain heating is included through the second to last term in (2.12).
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We assume that the temperature is known at the initial time t = 0 at every point in the

ice sheet,† i.e., we have, for a given function T0(x), that

T |t=0 = T0(x), in Ω0. (2.13)

The boundary condition at the ice-sheet-atmosphere boundary is given by

T = Tia(x, t), on Γia;t , (2.14)

where Tia denotes a given temperature on Γia;t that is generally chosen as the mean annual

surface temperature, i.e., a “skin” temperature. The boundary condition at the ice-sheet-

bedrock boundary is given by

κ
∂ T

∂ n
=

1

ρc
qi b(x, t), on Γi b, (2.15)

where qi b denotes a given geothermal flux on Γi b.

2.3. Evolution of ice thickness

The coupled ice sheet system also includes a prognostic equation describing the evo-

lution of the top free surface of the ice sheet. The ice sheet domain Ωt at a time t can be

defined as

Ωt =
n

(x , y, z) | Si b(x , y)≤ z ≤ Sia(x , y, t), for (x , y) ∈ ΩH , t ∈ [0, tmax]
o

, (2.16)

where ΩH denotes the horizontal extent of the ice sheet and where Sia(x , y, t) and Si b(x , y)

denote the elevation of the top and fixed bottom surfaces of the ice sheet, respectively.

Thus, the ice thickness is given by

H(x , y, t) = Sia(x , y, t)− Si b(x , y), for (x , y) ∈ ΩH and t ∈ [0, tmax].

The prognostic equation for the evolution of the ice thickness is given by the hyperbolic

equation

∂ H

∂ t
+ U1

∂ H

∂ x
+ U2

∂ H

∂ y
− U3 = H f lux , for (x , y) ∈ ΩH and t ∈ (0, tmax], (2.17)

along with the initial condition

H
�

�

t=0
= H0(x , y) = Sia(x , y, 0)− Si b(x , y), for (x , y) ∈ ΩH (2.18)

and the obvious constraint equation

H(x , y, t) ≥ 0, for (x , y) ∈ ΩH and t ∈ [0, tmax], (2.19)

†Assuming that the temperature at the top and bottom surfaces and the thickness distribution of the ice sheet

are known at t = 0, the initial temperature at every location within the ice sheet is estimated through a

smoothed interpolation process; see Section 7.3.
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where Sia(x , y, 0) is given, U = (U1, U2, U3)
T denotes the vertical average of the ice sheet

velocity u (that is determined from the full-Stokes system (2.2), (2.4), (2.10), and (2.11)),

and H f lux is a given source/sink term, i.e., an accumulation-ablation function representing

the known annual average addition or subtraction of ice at the ice-atmosphere boundary.

Note that there is A two-way coupling between the ice-thickness evolution system

(2.17)–(2.19), the full-Stokes system (2.2), (2.4), (2.10), and (2.11), and the tempera-

ture evolution system (2.12)–(2.15).

3. CVDT-based prismatic meshes

Constructing a high-quality variable-resolution mesh for a three-dimensional ice sheet

with realistic geometry is a critical and challenging task in computational ice sheet model-

ing. Our approach is to first to generate a variable-resolution triangular grid for the two-

dimensional domain ΩH that defines the horizontal extent of the ice sheet. For this purpose,

we use centroidal Voronoi tessellation (CVT)-based meshing techniques [10, 11, 21]. CVTs

are special Voronoi tessellations having the property that the generators of the Voronoi

tessellations are also the centroids, with respect to a given density function, of the cor-

responding Voronoi cells. The dual mesh of a CVT is referred to as a centroidal Voronoi

Delaunay triangulation (CVDT) which can then be used for finite element approximations.

CVT-based meshing methods have proven to be very useful in producing high-quality grids;

the local mesh size can be precisely controlled through the use of a point density function;

see [21, 22] for details about CVDT construction algorithms and related properties. The

point density function could be determined, as demonstrated in [43], from the ice topog-

raphy and/or velocity data according to practical needs for reducing the computational

costs. For example, in our Greenland ice sheet simulations, we use the inverse of the ice

thickness to define a point density function that is used to generate a two-dimensional

CVDT horizontal grid for Greenland. As one moves from the ice sheet interior towards

the margins, the ice gets thinner but the complexity and speed of the flow also increase.

Thus, increasing the mesh density as the ice gets thinner is a good zeroth-order guess for

the point density function that does not bias the calculated flow field by putting too much

resolution in any one place as might happen if we instead use, e.g., a map of observed

velocities. The point density function can also be used to effect refinement so that bound-

aries are adequately resolved. In the sequel, we denote the two-dimensional CVDT of ΩH

as Th.

The two-dimensional CVDT grid is then transformed to a three-dimensional surface

triangular grid of the top surface of the ice sheet by adding the z-coordinate obtained from

the topography of the bedrock plus the ice thickness. Finally, at any time t, we produce a

full three-dimensional prismatic mesh of the ice sheet domain Ωt by mapping the surface

meshes linearly along the z-direction down to the bedrock; see Fig. 1 for a sample three-

dimensional prismatic mesh generated for Greenland based on realistic topography data

with 5 km resolution [5], where the local mesh size of the layered CVDT grid is inversely

proportional to the ice thickness. Throughout, we denote the three-dimensional prismatic

grid of Ωt as Ph;t ; note that because Ωt changes in time, so does Ph;t .
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Figure 1: A three-dimensional prismati
 mesh of the Greenland i
e sheet with 26 layers and33,343 nodes per layer; the 
olors display the lo
al i
e thi
kness and, to aid visualization, the
z-dire
tion of the i
e sheet is enlarged by a fa
tor of 15.

4. Variational formulations of the governing equations and their

discretizations

4.1. Variational formulations

Taking the dot product of (2.4) with a vector function v, the product of (2.2) with a

scalar function r and integrating both over Ωt results in
¨

− (∇ ·τ,v)Ωt
+ (∇p,v)Ωt

= (ρg,v)Ωt
,

(∇ ·u, r)Ωt
= 0,

(4.1)

where (·, ·)D denotes the L2(D) inner product and D could denote Ωt or Γt or some other

domain. For pairs of scalars, vectors, and tensors, we have ( f , g)Ωt
=
∫

Ωt
f g dx, (u,v)Ωt

=
∫

Ωt
u · v dx, and (ǫ̇,τ)Ωt

=
∫

Ωt
ǫ̇ : τ dx, respectively. At this point, the only requirements

of the test functions v and r are that the integrals we encounter are well defined and that

v satisfies the boundary condition (2.10), i.e., v= 0 on Γi b.

Integration by parts on the first two terms of the first equation in (4.1) results in
¨

(τ,∇v)Ωt
− (p,∇ · v)Ωt

− (τ · n,v)Γt
+ (pn,v)Γt

= (ρg,v)Ωt
,

(∇ · u, r)Ωt
= 0.

(4.2)

Using the symmetry of τ and (2.6), we have

(τ,∇v)Ωt
=
�

τ,
1

2
(∇v+
�

∇v)T
�

�

Ωt

=
�

τ, ǫ̇v

�

Ωt
=
�

2ηu,T ǫ̇u, ǫ̇v

�

Ωt
. (4.3)

Using (2.11) and the fact that v= 0 on Γi b, we also have

(−pn+τ · n,v)Γt
= (σ · n,v)Γt

= (σ · n,v)Γia;t
+ (σ · n,v)Γi b

= −(patm,v · n)Γia;t
. (4.4)
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Substituting (4.3) and (4.4) into (4.2) results in the variational problem we discretize:

(
�

2ηu,T ǫ̇u, ǫ̇v

�

Ωt
− (p,∇ · v)Ωt

= (ρg,v)Ωt
− (patm,v · n)Γia;t

,

− (∇ ·u, r)Ωt
= 0.

(4.5)

In addition to (4.5), u is required to satisfy (2.10). However, u and p are not required to

explicitly satisfy the boundary condition (2.11); that boundary condition is natural to the

variational formulation and thus is automatically satisfied.

Through a similar process we can recast (2.12)–(2.15) into the variational formulation

�

ρc
∂ T

∂ t
,S
�

Ωt

+ (k∇T ,∇S)Ωt
+ (ρcu · ∇T,S)Ωt

=(q,S)Ωt
+ (2ηu,T ǫ̇u : ǫ̇u,S)Ωt

+
1

ρc
(qi b,S)Γi b

. (4.6)

At this point, the only requirement on the test function S is that the integrals encountered

are well defined and that S = 0 on Γia;t . In addition to (4.6), T is required to satisfy the

initial condition (2.13) and the boundary condition (2.14) but is not required to explicitly

satisfy the natural boundary condition (2.15); that condition is automatically satisfied by

solutions of the variational formulation through the inclusion of the last term on the right-

hand side of (4.6).

We also define a variational formulation of the ice-thickness equation (2.17):

�∂ H

∂ t
, V
�

ΩH

=
�

H f lux + U3 − U1

∂ H

∂ x
− U2

∂ H

∂ y
, V
�

ΩH

. (4.7)

The only requirement on the test function V is that the integrals encountered are well

defined. In addition to (4.7), H is required to satisfy the constraint (2.19) and the initial

condition (2.18). If H and V are chosen to belong to the same function space, then (4.7)

simply defines a least-squares projection onto that space.

We also would like note that in our numerical experiments, due to the geometrical

settings of target ice sheets, the ice-atmosphere boundary Γia;t is decomposed into two

parts – lateral boundary and top surface boundary, and special conditions such as periodic

or zeros boundary conditions are often imposed on the lateral parts which will cause slight

differences in the above variational weak forms.

4.2. Discretized system

At any time t, let Ph;t denote the prismatic subdivision of the ice domain Ωt into finite

elements described in Section 3. Here, h is a measure of the spatial grid size, e.g., the max-

imum diameter of any of the prismatic finite elements. The finite element space Ph;t used

for approximating the components of the velocity, the pressure, and the temperature con-

sists of functions that, within each prismatic element, are the product of a two-dimensional

linear polynomial in the two horizontal directions and a linear polynomial in the vertical

direction, e.g., in x , y, z space, they are functions of the form a0+a1 x+a2 y+a3z+a4 xz+
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a5 yz for constants ai, i = 0, · · · , 5. Such functions are uniquely determined by their val-

ues at the six vertices of a prismatic element. In addition, the functions in Ph;t are required

to be continuous across element faces. This continuity requirement is automatically met

by specifying the value of the functions in Ph;t at the nodes of the prismatic subdivision

Ph;t . We also define the constrained space P0
h;t

to consist of functions in Ph;t that vanish

on Γi b so that boundary condition (2.10) is satisfied. Such functions are characterized by

setting their values at the nodes located on Γi b to zero. Note that because Ωt and therefore

the prismatic grid Ph;t change in time, the corresponding finite element space Ph;t also

changes in time.

For the approximation of the thickness field H(x , y, t), we use the finite element space

Vh consisting of continuous piecewise linear polynomials defined with respect to the two-

dimensional CVDT triangulation Th of the horizontal extent of the ice sheet, i.e., of ΩH ,

into finite elements described in Section 3. Note that, because we are assuming that ΩH

is fixed, the corresponding finite element space Vh is also fixed in time. Recall that this a

simplification introduced here and that in subsequent work, ΩH will be free to evolve in

time as well.

We also divide the time interval [0, tmax] into K subintervals {[tk−1, tk]}
K
k=1

, where

tk = k∆t and ∆t = tmax/K . Then, for each k = 0, · · · , K , let uh,k(x), ph,k(x), Th,k(x),

and Hh,k(x , y) denote the approximations to u(x, tk), p(x, tk), T (x, tk), and H(x , y, tk),

respectively.‡

We need to define an approximation Th,0(x) ∈ Ph;0 of the initial data T0(x); this issue

is discussed in Section 7.3. We also need to define an approximation Tia;h,k(x) of the

boundary data Tia(x, tk). We do so by, for each k = 1, · · · , K , setting each nodal value of

the discrete temperature Tia;h,k(x) along the boundary Γia;tk
to be the value of Tia(x, tk)

at that node. In same way, we define an approximation Hh,0(x , y) ∈ V h of the initial data

for the height field H0(x , y) by setting the nodal values of the former equal to those of the

latter over the nodes of the CVDT triangulation Th.

The choice we made for the finite element spaces for the velocity and pressure does

not satisfy the LBB (or inf-sup) stability condition [14] required for mixed finite element

methods. Thus, to circumvent the LBB condition, we discretize the Stokes equation using a

penalty method, i.e., we add a penalty term to the variational formulation (4.5). Thus, for

each k = 0,1, · · · , K , given Ωtk
and Th,k(x), we seek functions uh,k ∈ (P

0
h;tk
)3 and ph,k ∈ Ph;tk

‡Any update of the domain Ωt requires recomputing the grid. To lessen the number of times such updates are

invoked, in practice, we do not update the domain every time step; instead we update the domain every M time

steps, where M > 0 is a specified integer whose value is determined through computational experimentation.

Correspondingly, we only have to update the prismatic grid Ph;t and the finite element space Ph;t every M time

steps. Thus, in the sequel, we have, for k = 0, 1, · · · , K ,

Ωtk
= Ωtk′

, Ph;tk
=Ph;tk′

, and Ph;tk
= Ph;tk′

,

where k′ = M
�

k

M

�

with
�

k

M

�

= greatest integer less than or equal to k

M
.
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such that










�

2ηuh,k ,Th,k
ǫ̇uh,k

, ǫ̇vh

�

Ωtk

− (ph,k,∇ · vh)Ωtk

= (ρg,vh)Ωtk
− (patm,vh · n)Γia;tk

, for all vh ∈ (P
0
h;tk
)3,

− (∇ ·uh,k, rh)Ωtk
+ ε(∇ph,k,∇rh)Ωtk

= 0, for all rh ∈ Ph;tk
,

(4.8)

where ε > 0 denotes a penalty parameter that is usually chosen so that ε = O (∆x2 +

∆y2 + ∆z2). We use a direct Picard iteration algorithm to solve the nonlinear discrete

system (4.8). Specifically, at each time step k = 0,1, · · · , K and for j = 1,2, · · · , we solve

the linear system











�

2η
u
( j−1)

h,k
,Th,k
ǫ̇

u
( j)

h,k

, ǫ̇vh

�

Ωtk

−
�

p
( j)

h,k
,∇ · vh

�

Ωtk

= (ρg,vh)Ωtk
− (patm,vh · n)Γia;tk

, for all vh ∈ (P
0
h;tk
)3,

− (∇ ·u( j)
h,k

, rh)Ωtk
+ ε(∇p

( j)

h,k
,∇rh)Ωtk

= 0, for all rh ∈ Ph;tk
,

(4.9)

for u
( j)

h,k
and p

( j)

h,k
. The iteration over the index j is terminated when L2(Ω) norm of the

difference between two successive iterates u
( j−1)

h,k
and u

( j)

h,k
is smaller than some prescribed

tolerance or if a prescribed maximum number of iterations is reached. Upon terminating

the iteration, we set

uh,k = u
( j)

h,k
and ph,k = p

( j)

h,k
.

For k = 0, the iteration over the index j is initialized by setting u
(0)

h,0
= 0 almost every-

where and, for k > 0, by setting u
(0)

h,k
= uh,k−1. Based on standard analyses of Picard-type

iterations, we expect that this nonlinear iteration is linearly convergent with a contraction

constant (n− 1)/n, where n denotes the exponent in the Glen’s flow law.

We use the implicit backward-Euler method to effect the temporal discretization of the

energy equation; however, the velocity field appearing in this equation is treated explicitly.

Thus, for k = 0,1, · · · , K , given Ωtk
, Th,k(x)

§, and uh,k, we seek a function Th,k+1(x) ∈ Ph;tk

such that Th,k+1(x) = Tia;h,k+1(x) on Γia;t and

�

ρc
Th,k+1 − Th,k

∆t
,Sh

�

Ωtk

+ (κ∇Th,k+1,∇Sh)Ωtk
+ (ρcuh,k · ∇Th,k+1,Sh)Ωtk

=(q,Sh)Ωtk
+ (2ηuh,k

ǫ̇uh,k
: ǫ̇uh,k

,Sh)Ωtk
+

1

ρc
(qi b,Sh)Γi b

, for all Sh ∈ Ph;tk
. (4.10)

For the discretization of the thickness evolution equation, we use the explicit forward

Euler method (for efficiency issue) so that for k = 0,1, · · · , K , given uh,k, we solve the

§If a update of the domain Ωt and its mesh happens at the time tk, we must project the temperature Th,k

obtained from the previous mesh Ph;tk−1
onto the updated mesh Ph;tk

, for example, linear interpolation or L2

projection can be employed here without much loss of accuracy since low-order finite element spaces are used

in the discretizations.
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linear system
�

Hh,k+1, Vh

�

ΩH
=
�

Hh,k, Vh

�

ΩH

+∆t
�

H f lux;k + U3;h,k − U1;h,k

∂ Hh,k

∂ x
− U2;h,k

∂ Hh,k

∂ y
, Vh

�

ΩH

, for all Vh ∈ V h, (4.11)

for Hh,k+1(x , y) ∈ V h, where (·, ·)ΩH
denotes the L2(ΩH) inner product. To enforce the

H ≥ 0 constraint, we simply post process the result of (4.11) by setting any negative nodal

values of Hh,k+1 to almost zero. In (4.11), we determine the vertical average velocity

approximation Uh,k(x , y) ∈ (V h)3 from the solution uh,k(x , y, z) of (4.8) by evaluating, at

each node of the triangulation T h, the integral of the latter with respect to the vertical

coordinate z. This is easy to do because, for fixed values of x and y, uh,k(x , y, z) is a

piecewise linear function of z. Once Hh,k+1 has been determined, we define the new

domain Ωtk+1
. Although the CFL condition needs to be satisfied for the time step ∆t, it

usually can be quite large for the ice-sheet evolution [28].

5. Parallel implementation

Parallel computations apply a divide and conquer strategy to solve large-scale problems.

In our parallel solvers, we adopted the domain decomposition method (DDM) [9, 45], i.e.,

we divide the modeling domain into sub-domains and solve for the unknowns in the sub-

domains simultaneously on distributed computer processors. The finite element mesh is

first partitioned into a number of sub-meshes whose number is consistent with the number

of available processors. This results in dividing the computing domain Ωtk
into intercon-

nected sub-domains. By doing so, the original large-scale computing problem is decom-

posed into a group of relatively simpler and smaller problems that can be simultaneously

solved on different processors. The sub-domains could be overlapping or non-overlapping,

depending on the specific scheme employed. A variety of preconditioners [2] can used

to tackle inner interfaces, i.e., the degrees of freedom corresponding to the grid points

common to more than one subdomain [27,46]. A variety of methods, including Lagrange

multiplier-based substructuring methods [32], preconditioned Krylov subspace iterative

methods [4, 20], parallel direct solvers [1], and multi-grid [9, 25] and multi-level [4]

solvers, can be used to solve the linear systems introduced in Section 4.2.

To decompose the model domain for parallel computing, either edge- or vertex-based

partition methods can be used. In addition, we need to define variables for both local and

global interfaces, i.e., as the computing domain is partitioned, local variables have to be

re-ordered and the global ordering of variables must be updated systematically. In our

implementation, the mesh partition is handled by the multi k-way partitioning algorithm

(the package “METIS”) in order to obtain good load balance [26]. The partitioned sub-

domains have one layer of overlapping elements, that are needed for data communication,

i.e., interface updates, during the solution process. We have developed a parallel subsystem

to directly generate unstructured sparse graphs [36] from hybrid finite element meshes

that can be separated from the parallel package as a preprocessor. A partitioning of the

Greenland CVDT mesh into 16 sub-meshes is shown in Fig. 2.
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Figure 2: Partition of the Greenland CVDTmesh into 16 sub-meshes and inner boundary formation. Left:the two-dimensional CVDT grid of Greenland. Middle: the mesh is transformed into an unstru
turedgraph whi
h is used as input into the METIS pa
kage for partitioning. Right: all sub-domains areexpanded by one layer to form the inner interfa
es for 
ommuni
ation between sub-domains.
The large, sparse linear systems arising in high-resolution geoscience problems and

models often involve millions of unknowns. Solving such large-scale systems is a chal-

lenging task due to the high demand on computing power and memory. Iterative solu-

tion techniques based on Krylov subspace methods (as well as preconditioning techniques,

such as multi-grid and incomplete LU factorization preconditioner [29]) are commonly

used because the Krylov subspace iteration methods require only matrix-vector products.

In recent years, many parallel solvers for large-scale linear systems have become available

in the public domain. These include Multifrontal Massively Parallel sparse direct Solver

(MUMPS) [3], SuperLU [29], AZTEC [44], and parallel Algebraic Recursive Multilevel

Solvers (pARMS) [30]. Basically, there are two types of parallel iterative linear system

solvers based on Krylov methods: the GMRES and BiCG stabilized type for nonsymmet-

ric systems and the conjugate gradient type for symmetric systems [33]. Message Passing

Interface (MPI) is used as the parallel environment and we also chose to use the paral-

lel ILU(ǫ̇) preconditioned GMRES solver for solution of the linear systems resulting from

our numerical discretizationsl; in particular, the package AZTEC2.0 is employed in our

implementation due to its reliability and robustness.

6. Verification of the 3D full-Stokes solver

We verify our parallel, three-dimensional full-Stokes solver using two of the idealized

test cases considered in [41]. We use the parameters given in that paper; see Table 1. Note

that in these experiments, the rate factor A is chosen independent of the temperature.

The first test (Experiment A in [41]) considers ice flow within a parallel-sided slab of

mean thickness 1000 m, on a bed having periodic topography of amplitude 500 m and a
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onstants for veri�
ation experiments for the 3D full-Stokes solver.
Parameter name Symbol Value Units

rate factor A 10−16 Pa−na−1

power law exponent n 3 –

ice density ρ 910 kg m−3

mean slope α = 0.5◦. The basal topography is defined as:

zi b(x , y) = zia(x , y)− 1000+ 500 sin(ωx) sin(ωy).

The ice-atmosphere boundary is given by

zia(x , y) = −x tan(α).

Here, (x , y) ∈ [0, L]× [0, L] and although we have run tests with other values of L with

similar results, we only report on the cases L = 40, 80, and 160 km. Note that the basal

bumps have a frequency of ω = 2π/L. A no-slip boundary condition u = 0 is imposed at

the ice-bedrock boundary. At the lateral boundaries, doubly periodic boundary conditions

are imposed on the velocity u and a free-surface condition is imposed at the top boundary,

i.e., we set patm = 0 in (2.11). The set-up for the second test (Experiment B in [41]) is the

same except that the basal topography does not vary in y, i.e., we have

zi b(x , y) = zia(x , y)− 1000+ 500 sin(ωx).

For both Experiments A and B, we use a prismatic mesh having 41 layers; the horizontal

CVDT mesh is uniform and consists of 15,739 nodes and 30,972 triangles. Thus, the three-

dimensional prismatic grid has 645,299 nodes and 1,238,880 prismatic elements. The

penalty parameter is set to ε = 5 × 10−5. Because it is cumbersome to apply periodic

boundary conditions in a finite element approximation on unstructured meshes, we use a

larger domain of size 3L × 3L and set the lateral boundary conditions to u = 0. We then

focus attention on the center region of area L × L.

For the linear system solver, we use a preconditioned GMRES method with an ILU(0))

preconditioner. We set the maximum number of iterations to 2,500 and the tolerance for

the residual is 10−10. For the nonlinear solver, the relative error was reduced by a factor

of approximately 2/3 at each step of the Picard iteration as was expected for the value of

n= 3 of the Glen’s flow rate exponent. We stopped the iterative nonlinear solver whenever

the relative error reached 10−4. The CPU running times of our parallel, three-dimensional

full-Stokes solver for the case L = 160 km are given in Table 2.Table 2: Running times of the parallel 3D full-Stokes solver for Experiments A and B with L = 160 km.
Parallel performance Experiment A Experiment B

Number of processors 20 40 80 20 40 80

CPU time in seconds 4796 2304 1024 4773 2315 1019
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Numerical simulation results for the ice velocity u = (u1,u2,u3)
T at the top surface

are presented in Figs. 3 and 4. With the same geometric settings and parameters, the

numerical results produced by our parallel, three-dimensional, full-Stokes solver show ex-

cellent agreement with the benchmark results given in [40, 41] for the higher-order and

full-Stokes ice sheet models (ISMIP-HOM). This is illustrated in Fig. 5 where the horizontal

surface speed

us =
Æ

u2
1 + u2

2

is plotted vs. x for y = L/4. The results from [41] are the background of Fig. 5 and

our results are given by the red curve.¶ In that figure, PFEM denotes our parallel finite

element, three-dimensional, full-Stokes solver and FS and NFS denote the full-Stokes and

higher-orders models from [41], respectively.

Figure 3: Numeri
al simulation results of Experiment A. From left to right: the 
omponents u1, u2, and
u3 of the top-surfa
e velo
ity; from top to bottom: L = 40, 80, 160 km.
¶We have taken the background of Fig. 5 directly from the paper [41].
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Figure 4: Numeri
al simulation results of Experiment B. From left to right: the 
omponents u1, u2, and
u3 of the top-surfa
e velo
ity; from top to bottom: L = 40, 80, 160 km.

7. Preliminary results of Greenland ice sheet simulations

In this section, we present the results from some preliminary simulations of the Green-

land ice sheet based on the model discussed above. We emphasize that our goal here is not

to mimic observed velocities, temperatures, or thickness changes in Greenland, but rather

to illustrate the capabilities of the full-Stokes computational model as well as the energy

and mass conservation solvers on problems with realistic geometries and grid resolutions.

7.1. Input data and parameters

Observational data of current bedrock topography and ice thickness for Greenland at 5

km-resolution are presented in Fig. 6. We use the thickness data to define the horizontal

extent ΩH of the ice sheet and the initial ice sheet thickness H0(x , y). We use the bedrock

topography data to define the ice-bedrock boundary zi b(x , y) and, by adding to it the

observed thickness data, to define the initial ice-atmosphere boundary zia(x , y, 0). The
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maximum and minimum values of the ice thickness are 3340 m and 5 m, respectively.

Observational data of the annual average ice surface temperature [15] is also given in

Fig. 6. As shown in the right of Fig. 6, the temperature in some marginal areas of the

Greenland ice sheet is already above the melting point.

Figure 5: The horizontal speed of the i
e �ow at the top surfa
e vs. x at y = L/4 for Experiments A(top row) and B (bottom row) and for L = 40, 80, 160 km (from left to right).

Figure 6: Observational data with 5 km-resolution of the Greenland i
e sheet. From left to right:topography of the bedro
k (the 
olor indi
ates the elevation), i
e thi
kness, elevation of the i
e surfa
e,and the i
e surfa
e temperature.
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We first generated a two-dimensional CVDT grid of the Greenland ice sheet horizontal

domain ΩH as determined from the observational data. The CVT point density function

is chosen such that the local mesh size is inversely proportional to the ice thickness. The

resulting two-dimensional grid has 33,343 nodes and 64,125 high-quality triangles. Then,

a three-dimensional prismatic finite element mesh was produced by dividing the ice sheet

into 26 layers in the vertical direction, resulting in a total 866,918 nodes and 1,603,125

prismatic elements; see Fig. 1 for an illustration. The layers are defined by dividing the

ice thickness at each horizontal grid point into equal subintervals. As a result, at each grid

point of the horizontal CVDT mesh, the layers have equal thickness but that, because the

thickness of the ice sheet is not constant, the layer thicknesses change from one horizontal

grid point to another. In Table 3, we list all of the relevant parameters and constants used

for our Greenland ice sheet simulations.Table 3: Parameters and 
onstants for the Greenland i
e sheet simulations.
Parameter name Symbol Value Units

power law exponent n 3 –

penalty parameter ε 1× 10−4 ∼ 5× 10−5 –

absolute zero temperature T0 −273.15 o C

activation energy (T < 263K) Q 60× 103 J mol−1

activation energy (T > 263K) Q 139× 103 J mol−1

flow law constant (T < 263K) a 1.3× 10−5 Pa−3 a−1

flow law constant (T > 263K) a 6.26× 1010 Pa4−3 a−1

second per year sp y 31556926 s/a

ice density ρ 918.0 kg m −3

gravitational constant g 9.81 m s −2

initial equivalent strain rate ˙̇ǫ0
e

1× 10−4 –

minimum equivalent strain rate ˙̇ǫmin 1× 10−30 –

geothermal heat flux from seabed β 0.055 W/m2

universal gas constant R 8.314 J mol−1 K−1

thermal conductivity of ice κ 2.2 W(m◦C)−1

heat capacity of ice c 2093.0 J(kg◦C)−1

heat source term of ice q 0.0 W m−3

7.2. Simulations with a temperature-independent effective viscosity

We first test our three-dimensional full-Stokes solver by simulating the velocity field

in the Greenland ice sheet for a constant (temperature-independent) flow law rate factor

A = 10−16. In this case, we can focus on the Stokes solver itself without encumbrances

resulting from coupling to temperature and thickness evolution.

The no-slip boundary condition at the ice-bedrock boundary and a zero velocity/flux

condition are imposed on the lateral boundaries. We set the convergence criteria of the

ILU(0)-preconditioned GMRES parallel linear solver to 1.0×10−8. We found that 10 Picard

iterations are enough for the solutions to converge well.

Numerical results for the surface speed are presented in Fig. 7; specifically, we display
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the quantity

via = log10

�

1.0+
Æ

u2
1 + u2

2

�

, (7.1)

where the horizontal velocity components u1 and u2 are evaluated at the ice-atmosphere

boundary and where (7.1),
p

u2
1 + u2

2 is the surface speed. Comparing via with the bed-

rock topography and ice thickness data shown in Fig. 6 shows that, to a large extent,

speed is closely related to the elevation of the ice sheet and its thickness distribution, as

expected [40–43].

7.3. Simulations with the full-Stokes model coupled to temperature and

thickness evolution

We now turn to simulation for which the full-Stokes model for ice sheet dynamics is

coupled to the ice temperature and thickness evolution. Our goal here is to test the solvers

for temperature and thickness evolution and the coupling of these solvers to the full-Stokes

dynamical solver. Although these simulation lack realism from a geophysical point of view,

they include sufficient features to make the computational tests relevant.

The coupled simulation using the Greenland ice sheet geometry follows the following

recursive process.

1. We prescribe the temperature and thickness distributions as well as a three-

dimenaional prismatic grid as inputs into the discretized full-Stokes system (4.8).

For the first time step, these are prescribed as initial conditions; for subsequent time

steps, these are determined as outputs of Steps 2 and 3 at the previous time steps.

We apply the no-slip boundary condition at the bedrock and zero Dirichlet condi-

tion on the lateral boundaries. The parallel ILU(0)-preconditioned GMRES method

is used to solve the linear system. The convergence criteria is 1.0× 10−8, the maxi-

mum number of linear solver iterations is set to 2,500, and the maximum number of

nonlinear Picard iterations is set to 12. This step results in new approximate velocity

and pressure fields.

2. Next, we use the approximate velocity field determined in Step 1 as input into the

discrete energy equation (4.10). The strain heating term is set to zero which is

unrealistic in true ice sheet simulations, but is adequate for testing couplings to

other system components. We take a time step of two months. The values of the

parameters used for (4.10) are c = 2093 J(kg◦C)−1 and κ = 2.2 W(m◦C)−1. The

geothermal heat flux from the bedrock is given by α = 0.055W/m2. We use the

parallel biconjugate gradient stabilized (BiCG_stab) method as the solver for the

resulting linear system. Ten iterations of a Gauss-Seidel preconditioner for each sub-

domain are used and the convergence criteria for solving the linear system is set to

1.0× 10−9. This step results in a new approximate temperature field. The results of

this step can be used to repeat the process for the next time step, starting with Step

1, in case the ice sheet thickness is not updated.
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Figure 7: Distribution of via for the Greenland i
e sheet by using the full-Stokes model with a 
onstantGlen's �ow law rate fa
tor A= 10−16 and the power law exponent n = 3. For better visualization, we setthe upper limit of the values displayed to ea
h of the values 1.75, 2.25, 3, and max via whi
h 
orrespondto surfa
e speeds of 55.23, 176.83, 999, and 6, 600 ma−1, respe
tively.

Figure 8: Simulation results for the temperature evolution of the Greenland i
e sheet after one year.Left: the initial surfa
e temperature �eld after stabilization by a pure di�usion pro
ess; right: thesimulated evolved surfa
e temperature �eld after one year.

Figure 9: Simulated i
e-thi
kness 
hange of the Greenland i
e sheet after one year; the valuesplotted are restri
ted to di�erent ranges to aid in the visualization and interpretation.
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3. Then, every M = 6 time steps of the temperature evolution, the ice sheet thickness

is updated from (4.11), again using the approximate velocity field determined in the

Step 1 as input. This step results in a new approximate thickness field. The new

thickness field is used to define a new computational domain and a new prismatic

grid as explained before. The results of Steps 2 and 3 can used to repeat the process,

starting with Step 1, for the next time step.

To start the process, we need an approximation of the present-day temperature field

throughout the Greenland ice sheet. As mentioned above, we have observational and re-

analysis data for the ice surface temperature. For our testing purposes, we set the bottom

bedrock temperature to −36◦C everywhere. We then obtain an approximate temperature

field in the interior of the Greenland ice sheet by using linear interpolation on the prismatic

mesh based on these data. However, this approximation is prone to roughness so that we

use the interpolated temperature field as an initial condition for a pure diffusion problem

on the prismatic grid which we march, with a time step of 0.5 years, to steady state. We

found that this takes about 10 years and results in the smoother temperature field shown

in the left of Fig. 8 and which we use as the initial condition for the first time we visit Step

1 of the above procedure.

7.3.1. Temperature evolution

We conducted several numerical experiments to test our parallel solver for the discretized

energy equation (4.6). In [39], it was suggested that the temperature dependence of both

c and k is small over the range of temperature expected in polar ice sheets. We thus

assume that both these parameters are constant, as listed in Table 3. As mentioned above,

the computed smoothed temperature field is adopted as the initial condition for (4.6) and

the discretized convection velocity field is obtained from (4.8). Adiabatic conditions are

imposed on the top surface. A specified geothermal flux κ∂ T/∂ n is imposed at the bedrock

boundary. It is set to be an uniform, upward (into the ice) flux with a value of 0.055 W/m2.

We assume there are no internal heat sources due to strain heating. Fig. 8 shows the initial

surface temperature field after stabilization and the evolved surface temperature field after

one year.

7.3.2. Free surface evolution

We next computed the free surface evolution of the Greenland ice sheet using (4.11) with

the discretized output velocity obtained from (4.8). The time step for updating the ice

thickness is one year so that, because the time step used for the temperature evolution is

two months, we have that M = 6 in footnote 2. To clearly display the change of the ice

sheet free surface, we only display the decreasing part of the ice sheet change in Fig. 9.

We note that small interpolation errors occur whenever re-gridding of the existing finite

element mesh is needed due to ice-thickness change; however, the topology of the mesh

remains unchanged. Finally, some elements of the ice sheet will vanish because of the

successive loss of the ice mass. Then, the total number of finite element cells is reduced
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and the numerical calculation process is started over from the point at which the mesh

and data partition procedures are invoked. As a result, the whole process of the ice sheet

evolution simulation becomes self-consistent.

8. Concluding remarks

A finite element discretization of a three-dimensional, full-Stokes computational model

for ice sheet dynamics and temperature and height evolution has been developed. The

model features high-quality, variable resolution grids, finite element discretizations, and

scalable parallel solvers. It has been tested on benchmark problems and applied to high-

resolution modeling of the Greenland ice sheet, albeit with simplified boundary conditions.

The efficacy of the computational model has been demonstrated through the numerical

experiments so that its further development is warranted. In this regard, future work in-

cludes the implementation of higher-order accurate finite element and time-stepping dis-

cretization methods, implementing realistic basal sliding conditions along the ice-bedrock

boundary, accounting for ice-ocean interaction at the lateral boundaries, testing parallel

scalability on large numbers of processors, applying the model to realistic ice sheet settings

such as Greenland and Antarctica, and incorporating the dynamical core of the model into

next-generation ice sheet models [31] such as the Community Ice Sheet Model.
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