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1. Introduction

The main goal of this work is to establish some new reflection principles for Maxwell’s
equations when general mixed perfect and imperfect scatterers are involved, and then
to apply the reflection principles to the unique determination of the scatterers in inverse
electromagnetic scattering problems by either the electric far field patterns or the magnetic
far field patterns.

Consider an impenetrable scatterer D, which is assumed to be a compact domain in
R

3 and may consist of finitely many pairwise disjoint bounded polyhedra. Suppose the
incident fields are taken to be the normalized time-harmonic electromagnetic plane waves
of the form (cf. [10])

Ei(x) :=
i

k
curl curl p eikx·d = ik(d × p)× deikx·d, (1.1)

Hi(x) :=curl p eikx·d = ikd × peikx·d , (1.2)
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where i=
p−1, and p ∈ R3, k > 0 and d ∈ S2 := {x ∈ R3; |x| = 1} represent respectively a

polarization, a wave number and a direction of propagation. Then the associated forward
scattering problem is described by the following time-harmonic Maxwell’s equations (see
[10]):

curlE− i k H = 0, curlH+ i k E = 0 in G := R3\D, (1.3)

lim
|x|→∞

(Hs× x− |x|Es) = 0, (1.4)

where E = (E1, E2, E3) and H = (H1, H2, H3) are respectively the total electric and magnetic
fields formed by the incident fields Ei(x), Hi(x) and the scattered fields Es(x) and Hs(x):

E(x) = Ei(x) + Es(x), H(x) = Hi(x) +Hs(x) . (1.5)

We shall assume that the boundary ∂D of the scatterer D has a Lipschitz dissection, i.e.,
∂D = ΓD ∪ Σ ∪ ΓI , where ΓD and ΓI are two disjoint and relatively open subsets of ∂D,
having Σ as their common boundary (see [21]). Then we shall further complement the
system (1.3)-(1.5) with the following general mixed boundary condition:

ν × E =0 on ΓD, (1.6)

ν × curl E− iλ (ν × E)× ν =0 on ΓI , (1.7)

where ν is the unit outward normal to ∂D, and λ ∈ C0,α(ΓI) is a non-negative Hölder con-
tinuous function, with 0< α < 1. Scattering problems with the mixed boundary conditions
(1.6)-(1.7) are widely encountered in military and engineering applications. For instance,
in order to avoid the detection by radar, hostile objects may be partially coated by some
special material designed to reduce the radar cross section of the scattered wave. Bound-
ary conditions (1.6)-(1.7) correspond to the case where the perfect conductor D is partially
coated on the part ΓI of its boundary with a dielectric. We refer to [3], [4] and [5] for the
physical relevance and practical implications of the electromagnetic scattering problems in
this setting.

It is known that the forward scattering system (1.3)-(1.7) has a unique solution (E,H) ∈
Hl oc(curl;G) × Hl oc(curl;G) (see [4] and [7]). And the singular behavior of the weak
solution occurs only around the corners and edges, that is, (E,H) satisfies (1.3) in the
classical sense in any subdomain of G, which does not meet any corner or edge of D

(see [15]). By the regularity of the strong solution for the forward scattering problem
(see [9] and [10]), we know that both E and H are C0,α-continuous up to the regular
points, namely, points lying in the interior of the open faces of D. Moreover, E and H are
analytic in G and the asymptotic behavior of the scattered fields Es and Hs is governed by
(see [10])

Es(x;D, p, k, d) =
eik|x|

|x|
�

E∞(x̂;D, p, k, d) + O ( 1

|x|)
�

as |x| →∞, (1.8)

Hs(x;D, p, k, d) =
eik|x|

|x|
�

H∞(x̂;D, p, k, d) + O ( 1

|x|)
�

as |x| →∞, (1.9)
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uniformly for all x̂ = x/|x| ∈ S2. The functions E∞(x̂) and H∞(x̂) in (1.8) and (1.9) are
called, respectively, the electric and magnetic far field patterns, and both are analytic on
the entire unit sphere S2. We note that the notation Es(x;D, p, k, d) or E∞(x̂;D, p, k, d)

used above will be frequently adopted to specify their dependence on the polarization p,
the wave number k and the incident direction d .

An important topic which we shall address is the inverse electromagnetic scattering
problem, where one intends to determine the scatterer D by using some measurement
data of the electric or magnetic far-field patterns. This inverse problem is fundamental
in exploring objects by electromagnetic waves, for which we refer to [10] for a detailed
discussion. One of the most important topics in the inverse scattering problem is on the
uniqueness, that is, how much far field data can uniquely determine a scatterer D. Mathe-
matically, this can be formulated as follows:

If two scatterers D and eD produce the same far field data, i.e.,

E∞(x̂;D, p, k, d) = E∞(x̂; eD, p, k, d) for all x̂ ∈ S2,

does D have to be the same as eD ?

The electric far field data above can be replaced by the magnetic far field data. But noting
that the discussion about the latter is completely parallel to the one with the former, we
shall only focus on the electric far field data throughout this paper. As is widely known, the
uniqueness in inverse problems always plays an indispensable role (see [16]). Moreover,
the uniqueness for the inverse electromagnetic scattering problem with optimal measure-
ment data has been remaining to be a longstanding open problem (see [6] and [11]).
One can easily see that this inverse problem is formally determined with all x̂ ∈ S2 and
fixed p0 ∈ R3, k0 > 0 and d0 ∈ S2, since the far field data depend on the same number
of variables, as does the object which is to be recovered. Hence, one may anticipate the
uniqueness by using the far field data from only one or at most a few incident waves.
Unfortunately, not much has been done on the topic in the literature. This uniqueness
in inverse electromagnetic scattering is quite similar to the one in inverse acoustic obsta-
cle scattering, where one utilizes acoustic far field measurements to identify the unknown
object. But for the acoustic scattering, significant progress has been made in the past few
years on the unique determination of polyhedral type scatterers by means of a single or sev-
eral incident waves (see, e.g., [2,8,12,20]). The fundamental tools leading to the progress
lie on various reflection principles for the Helmholtz equation, as well as suitably devised
techniques such as the path argument developed in [20]. Along this line, a novel reflec-
tion principle was derived in [19] for time-harmonic Maxwell’s equations associated with
perfect conductors. This is the first time to derive and justify a reflection principle for the
Maxwell system. In combination of this new reflection principle with the path argument
from [20], the uniqueness result was established for determining the perfect polyhedral
conductors in the inverse electromagnetic scattering by the far field measurements from
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two incident waves.
This current work is a continuation of our efforts in [19]. We shall first establish some

new reflection principles (Theorems 2.1-2.4) for the Maxwell’s equations with very general
mixed boundary conditions, then apply (Section 3) the principles to derive the uniqueness
results (Theorems 3.1 and 3.2) for the inverse electromagnetic obstacle scattering under
general physical boundary conditions (1.6)-(1.7).

2. Reflection principles for Maxwell’s equations

In this section, we shall establish some reflection principles for Maxwell’s equations
(1.3) when D is a polyhedral scatterer as described in Section 1. For the first time, the
reflection principles are rigorously justified to be valid also for Maxwell’s system with gen-
eral mixed physical boundary conditions (1.6)-(1.7). In [19], the reflection principle was
derived for Maxwell’s equations with the simpler perfect boundary condition. As we shall
see, the derivation for the new reflection principles is derived via Maxwell’s equations,
unlike that in [19] via the vector Helmholtz equation.

We start with a definition of some special planes in G. For any two-dimensional plane
Π in R3, we shall use νΠ and RΠ to denote respectively the unit normal to Π and the
reflection with respect to Π in R3.

Definition 2.1. Let Π be a two-dimensional plane in R3 and eΠ ⊂ Π be an open connected

subset. eΠ is called a perfect plane corresponding to the electric field E in (1.3), if

νΠ × E= 0 on eΠ; (2.1)

while it is called an imperfect plane corresponding to the electric field E in (1.3), if

νΠ × curl E− iλ(νΠ × E)× νΠ = 0 on eΠ, (2.2)

where λ ∈ C0,α(eΠ) is some non-negative function.

It is noted that a perfect or imperfect plane is not necessarily a plane in R3. Similarly,
one can define the perfect and the imperfect planes corresponding to the magnetic field H

in (1.3).
Now, we are ready to state a general reflection principle.

Theorem 2.1. For a connected polyhedral domain Ω in G := R3\D, let eΠ ⊂ ∂Ω be one of

its faces and be a perfect plane associated with E. Furthermore, let Π be the plane in R3

containing eΠ and Ω∪ RΠΩ ⊂ G. Suppose that a different face Γ of Ω from eΠ is an imperfect

plane corresponding to E, namely,

νΓ × curl E− iλ(νΓ × E)× νΓ = 0 on Γ, (2.3)

where νΓ is the unit normal to Γ directed to the interior of Ω. Then Γ′ = RΠΓ is also an

imperfect plane corresponding to E, i.e.,

νΓ′ × curl E− iη(νΓ′ × E)× νΓ′ = 0 on Γ′, (2.4)
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where νΓ′ is the unit normal to Γ′ directed to the interior of RΠΩ and η(x) = λ(RΠx) for

x ∈ Γ′.
The proof of Theorem 2.1 will be divided into the following several lemmata.

Lemma 2.1. Let Ω and eΠ be the same as stated in Theorem 2.1 and c be a real constant and

C= (0,0,2c) ∈ R3. If the face eΠ lies on the plane Π: x3 = c, then it holds that

E(x) + RΠE(RΠx) = C in Ω∪ eΠ∪ RΠΩ , (2.5)

and

H(x)− RΠH(RΠx) = C in Ω∪ eΠ∪ RΠΩ . (2.6)

Proof. We note that νΠ = (0,0,1) and RΠ(x1, x2, x3) = (x1, x2, 2c − x3). Setting

V(x) = E(x) + RΠE(RΠx)−C , W(x) = H(x)− RΠH(RΠx)−C ,

we can easily check that

V(x) =

�
E1(x1, x2, x3) + E1(x1, x2, 2c − x3), E2(x1, x2, x3) + E2(x1, x2, 2c − x3),

E3(x1, x2, x3)− E3(x1, x2, 2c − x3)

�
, (2.7)

W(x) =

�
H1(x1, x2, x3)−H1(x1, x2, 2c − x3), H2(x1, x2, x3)−H2(x1, x2, 2c − x3),

H3(x1, x2, x3) +H3(x1, x2, 2c − x3)

�
. (2.8)

Using these two relations and the fact that (E, H) satisfies (1.3), it is straightforward to
verify that

curl V− ikW = 0, curl W+ ikV = 0 in Ω∪ eΠ∪ RΠΩ. (2.9)

Noting that eΠ is a perfect plane, we see from condition (2.1) that E1 = E2 = 0 on eΠ, thus

V1 = V2 = 0 on eΠ , (2.10)

which implies
∂ Vl

∂ x l

= 0 on eΠ for l = 1,2.

Next, by the definition of V we know

∂3V1 = ∂3V2 = 0 and ∂1V3 = ∂2V3 = 0 on eΠ.

Then by direct calculations we obtain

(curl V)1 = (curl V)2 = 0 on eΠ, (2.11)
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where (curl V)1 and (curl V)2 are, respectively, the first and second Cartesian components
of curl V. Clearly, (2.10) implies that νΠ×V = 0 on eΠ while (2.11) implies that νΠ×W= 0
on eΠ. Then, by the unique continuation (see Lemma 3.2, [1]), we have V = W = 0 in
Ω∪ eΠ∪ RΠΩ. The proof is completed. �

Now, we can show that Theorem 2.1 holds in a special case.

Lemma 2.2. Theorem 2.1 holds when eΠ is contained in the plane Π: x3 = c.

Proof. Let νΓ = (a1, a2, a2) := a. Then νΓ′ = (a1, a2,−a3) := a′. By straightforward
calculations, we obtain from (2.3) that for any x = (x1, x2, x3) ∈ Γ,

0=νΓ × curl E(x)− iλ(x)
�
νΓ × E(x)
�
× νΓ

=ik




a2H3 − a3H2

a3H1 − a1H3

a1H2 − a2H1


 (x)− iλ(x)




E1 − (E · a)a1

E2 − (E · a)a2

E3 − (E · a)a3


 (x). (2.12)

From the proof of Lemma 2.1, we know that E1 and E2 are odd symmetric with respect
to Π and E3 is even symmetric with respect to Π, whereas H1 and H2 are even symmetric
with respect to Π and H3 is odd symmetric with respect to Π. Then a direct algebraic
manipulation along with (2.12) further gives

ik



−a2H3 − a3H2

a3H1 + a1H3

a1H2 − a2H1


 (x1, x2, 2c − x3)

− iλ(x)



−E1 + (E · a′)a1

−E2 + (E · a′)a2

E3 + (E · a′)a3


 (x1, x2, 2c − x3) = 0 (2.13)

for x ∈ Γ. Noting that (x1, x2, 2c − x3) ∈ Γ′ for x ∈ Γ, we can reformulate (2.13) to give

ikνΓ′ ×H(x1, x2, 2c − x3)− iλ(x1, x2, x3)
�
νΓ′ × E(x1, x2, 2c − x3)

�
× νΓ′ = 0

for x ∈ Γ, which is actually (2.4). �

In order to prove Theorem 2.1 in the general case, we need some further auxiliary
results in the following Lemmata 2.3 and 2.4. Henceforth, we shall use U = (ukl)1≤k,l≤3 to
denote a rotation matrix in R3.

Lemma 2.3. For arbitrary constant vectors a,b ∈ R3, we have

U(a× b) = Ua× Ub. (2.14)

Proof. This is clear from the geometric interpretation of vector product. �
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Lemma 2.4. Using the transformation y = U−1x for any x ∈ R3, or x = Uy for any y ∈ R3,

we define

J(y) = U−1E(x) = U−1E(Uy) ∀y ∈ U−1G, (2.15)

K(y) = U−1H(x) = U−1H(Uy) ∀y ∈ U−1G. (2.16)

If (E(x),H(x)) satisfies the Maxwell’s equations (1.3) in G, then (J(y),K(y)) satisfies the

Maxwell’s equations in U−1G, namely

curlyJ(y)− ikK(y) = 0, curlyK(y)+ ikJ(y) = 0 in U−1G. (2.17)

Proof. By a coordinate transformation and Lemma 2.3, one can easily find that

∇y× J(y) = U T∇x× U T E(x) = U T (∇x× E(x)). (2.18)

That is, curlxE(x) = UcurlyJ(y). Similarly, curlxH(x) = UcurlyK(y). Then using (1.3) and
(2.15)-(2.16), we have

UcurlyJ(y)− ikUK(y) = 0, UcurlyK(y)+ ikUJ(y) = 0 for y ∈ U−1G,

which exactly implies (2.17). �

Now, we are in a position to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Let U be a rotation matrix such that U−1Π = {x3 = c} with a
constant c; namely, y= U−1x ∈ {y3 = c} for x ∈ eΠ. Set

J(y) = U−1E(Uy), K(y) = U−1H(Uy).

Then it follows from Lemma 2.4 that

curlyJ(y)− ikK(y) = 0, curlyK(y)+ ikJ(y) = 0 for y ∈ U−1Ω. (2.19)

Noting that eΠ is a perfect plane, we have

νΠ × UJ(y) = 0 for y ∈ U−1eΠ, (2.20)

which along with Lemma 2.3 further leads to

U−1νΠ × J(y) = 0 for y ∈ U−1Π. (2.21)

On the other hand, by noting that Γ is an imperfect plane, we have

νΓ × curlxUJ(y)− iλ(Uy)
�
νΓ × UJ(y)
�
× νΓ = 0 for y ∈ U−1Γ. (2.22)

Equations (2.14), (2.18) and (2.22) give

0=νΓ × curlxUJ(y)− iλ(Uy)
�
νΓ × UJ(y)
�
× νΓ

=UU−1νΓ × curlxUJ(y)− iλ(Uy)
�

UU−1νΓ × UJ(y)
�
× UU−1νΓ

=U
�

U−1νΓ × curlyJ(y)
�
− iλ(Uy)U
h�

U−1νΓ × J(y)
�
× U−1νΓ

i
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for all y ∈ U−1Γ, that is,

U−1νΓ × curlyJ(y)− iλ(Uy)
�

U−1νΓ × J(y)
�
× U−1νΓ = 0 for y ∈ U−1Γ. (2.23)

Noting that U−1eΠ ⊂ {x3 = c}, by (2.21) and (2.23), we can apply Lemma 2.2 to obtain for
any y ∈ (U−1Γ)′ that

(U−1νΓ)
′× curlyJ(y)− iλ(Uy′)

�
(U−1νΓ)

′× J(y)
�
× (U−1νΓ)

′ = 0, (2.24)

where (U−1Γ)′, (U−1νΓ)
′ and y′ are respectively, the reflections of U−1Γ, U−1νΓ and y

with respect to U−1Π= {y3 = c}. Noting that

(U−1Γ)′ = U−1Γ′, (U−1νΓ)
′ = U−1νΓ′ ,

we derive from (2.24) that for any y ∈ U−1Γ′,

U−1νΓ′ × curlyJ(y)− iλ(Uy′)
�
(U−1νΓ′)× J(y)

�
× (U−1νΓ′) = 0. (2.25)

Multiplying the both sides of (2.25) by U and using relations in (2.14) and (2.18) again,
we finally come to

νΓ′ × curlxE(x)− iλ(RΠx)
�
νΓ′ × E(x)
�
× νΓ′ = 0 for x= Uy ∈ Γ′. (2.26)

This completes the proof of Theorem 2.1. �

Remark 2.1. One can easily see from the proof of Theorem 2.1 that Theorem 2.1 holds
also for Γwhich may not be a face of Ω. In fact, it has been shown that if x ∈ Γ is an interior
point such that (2.3) holds, then (2.4) holds for x′ := RΠx ∈ Γ′. Hence, Theorem 2.1 also
holds when Γ is a subset of one (open) face of Ω.

Setting (eE, eH) := (−H,E), one can easily see that eE and eH satisfy the Maxwell’s equa-
tions. Therefore we have the following reflection principle on the magnetic field H which
is the counterpart to Theorem 2.1.

Theorem 2.2. For a connected polyhedral domain Ω in G := R3\D, let eΠ ⊂ ∂Ω be one of

its faces and be a perfect plane associated with H. Furthermore, let Π be the plane in R3

containing eΠ and Ω ∪ RΠΩ ⊂ G. Suppose that Γ is a subset of one face of Ω other than eΠ,

and the following condition holds,

νΓ × curl H− iλ(νΓ ×H)× νΓ = 0 on Γ, (2.27)

where νΓ is the unit normal to Γ directed to the interior of Ω. Then we have

νΓ′ × curl H− iη(νΓ′ ×H)× νΓ′ = 0 on Γ′, (2.28)

where Γ′ = RΠΓ, νΓ′ is the unit normal to Γ′ directed to the interior of RΠΩ and η(x) =

λ(RΠx) for x ∈ Γ′.
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In order to prove our next reflection principle, we need the following theorem, which
was given in [19].

Theorem 2.3. For a polyhedral domain Ω in G := R3\D, let eΠ ⊂ ∂Ω be one of its faces

and be a perfect plane associated with E in (1.3). Furthermore, let Π be the plane in R3

containing eΠ and Ω ∪ RΠΩ ⊂ G. Suppose that a different face Γ of Ω from eΠ is another

perfect plane associated with E. Then the reflection Γ′ of Γ with respect to Π is also a perfect

plane associated with E.

Similarly to Remark 2.1, we would like to emphasize that Theorem 2.3 still holds when
Γ is not necessarily a face of Ω but only a subset of one face of Ω.

Theorem 2.4. For a connected polyhedral domain Ω in G := R3\D, let eΠ ⊂ ∂Ω be one of

its faces and be a perfect plane associated with H. Furthermore, let Π be the plane in R3

containing eΠ and Ω∪RΠΩ⊂ G. Suppose that Γ ⊂ ∂Ω is a subset of one face of Ω other than
eΠ, and the following condition holds,

νΓ × curl E− iλ(νΓ × E)× νΓ = 0 on Γ, (2.29)

where νΓ is the unit normal to Γ directed to the interior of Ω and λ ∈ C0,α(Γ) is non-negative.

Then we have

νΓ′ × curl E− iη(νΓ′ × E)× νΓ′ = 0 on Γ′, (2.30)

where Γ′ = RΠΓ, νΓ′ is the unit normal to Γ′ directed to the interior of RΠΩ and η(x) =

λ(RΠx) for x ∈ Γ′.
Proof. We first consider the two cases where λ ≡ 0 on Γ and λ > 0 on Γ.
For the first case when λ ≡ 0 on Γ, i.e., νΓ ×H = 0 on Γ, the theorem follows directly

from Theorem 2.3 by setting (eE, eH) := (−H,E).
Now, we treat the second case where λ is strictly positive on Γ. By Maxwell’s equations

(1.3), we can reformulate condition (2.29) as

(νΓ × curl H)× νΓ + i
k2

λ
(νΓ ×H) = 0 on Γ, (2.31)

which implies that

h
(νΓ × curl H)× νΓ

i
× νΓ + i

k2

λ
(νΓ ×H)× νΓ = 0 on Γ, (2.32)

and by direct calculations we have

νΓ × curl H− i
k2

λ
(νΓ ×H)× νΓ = 0 on Γ. (2.33)

Now, noting νΠ ×H = 0 on eΠ and (2.33), we can apply the reflection principle in Theo-
rem 2.2 to obtain that

νΓ′ × curl H− i
k2

η
(νΓ′ ×H)× νΓ′ = 0 on Γ′. (2.34)
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By an argument similar to deriving (2.33), one can show that (2.34) implies (2.30).
Finally, in the case where

Γ = {x ∈ Γ;λ(x)> 0} ∪ {x ∈ Γ;λ(x) = 0},

the theorem follows by combining the above results for two cases. �

3. Uniqueness for inverse electromagnetic obstacle scattering

In this section, we will present some uniqueness results for determining a polyhedral
scatterer D in R3 as described in Section 1. We start with the introduction of some nota-
tions. For any fixed k0 > 0, d0 ∈ S2 and two polarizations p1, p2 such that p1, p2, d0 are
linearly independent, we shall write

E (x;D) =
n

E(x;D, p1, k0, d0),E(x;D, p2, k0, d0)
o

, (3.1)

H (x;D) =
n

H(x;D, p1, k0, d0),H(x;D, p2, k0, d0)
o

, (3.2)

where E(x;D, pl , k0, d0) and H(x;D, pl , k0, d0), l = 1,2, are respectively the total electric
and magnetic fields corresponding to the scatterer D. Starting from now on, the operations
on E (x;D) and H (x;D) are always understood to be elementwise. An open ball in R3

with center x and radius r will be written as Br(x), the closure of Br(x) as B̄r(x) and the
boundary of Br(x) as Sr(x). Now we define

Definition 3.1. PE is called the perfect set of E in G if

PE =
n

x ∈ G; ∃ a perfect plane eΠ associated with E passing through x
o

.

Similarly, the perfect set PH ofH in G, is defined.

Next, we shall recall some crucial properties of perfect sets and perfect planes. Since
the Cartesian components of E andH are analytic in G, by analytic continuation, we know
that for any perfect plane eΠ, its maximally connected extension is still a perfect plane. That
is, let Π be the plane in R3 containing eΠ. Then the open connected component of Π\D
which contains eΠ is also a perfect plane. Hence from now on, without loss of generality,
we will always assume that a perfect plane is meant to have been maximally connectedly
extended in G. Moreover, for an integer l, by Πl we always denote a plane in R3 which
contains some perfect plane eΠl . Finally, both perfect sets with respect to E or H and
perfect planes are bounded (see Lemma 3.2 in [19]).

Now, we are in a position to present our main uniqueness results. First, we consider the
determination of a polyhedral scatterer D associated with the mixed boundary conditions
(1.6)-(1.7) with the surface impedance λ which is identically zero; namely

ν ×E = 0 on ΓD and ν ×H = 0 on ΓN , (3.3)
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where ΓD and ΓN form a Lipschitz dissection of ∂D. Such a boundary value problem often
arises for example in the semiconductor modeling (see [17] and [18]), where ΓD is the
electric contact while ΓN is the insulating part. In the following, we shall write B[E,H] = 0
to denote the boundary condition of type (3.3).

Theorem 3.1. Let D and eD be two polyhedral scatterers with respective boundary conditions

B and eB. For any fixed k0 > 0 and d0 ∈ S2, and two different polarizations p1 and p2 such

that p1, p2, d0 are linearly independent, we have D = eD and B = eB as long as E∞(x̂;D) =

E∞(x̂; eD) for x̂ ∈ S2.

Proof. With the new reflection principles established in Section 2, the theorem can be
proved by using a path argument similar to Theorem 3.3 in [19]. We shall outline the basic
ideas and emphasize some necessary modifications.

By contradiction, let eD be another polyhedral scatterer associated with the following
boundary condition

ν × E= 0 on eΓD and ν ×H = 0 on eΓN ,

where eΓD and eΓN are a Lipschitz dissection of ∂ eD, such that

E∞(x̂;D) = E∞(x̂; eD) x̂ ∈ S2. (3.4)

First, we show that it must have D = eD. Otherwise, by a standard argument, we can
always assume that, without loss of generality, there exists a perfect plane eΠ1 in G= R3\D
associated with E (x;D) orH (x;D). Then, we construct a curve γ(t)(t ≥ 0) in G such that

(a) γ(t) is regular, namely, γ(t) is C1-smooth and d

d t
γ(t) 6= 0;

(b) γ(0) = x1 ∈ eΠ1 and γ(t)(t > 0) is contained entirely in the unbounded connected
component of G\eΠ and limt→∞ |γ(t)| =∞;

(c) The distance between the curve γ and the scatterer D is larger than a positive con-
stant r0, i.e., d(γ,D) > r0 > 0. Note that γ is a closed set in R3 while D is a compact
set, this is always possible.

By the construction of the curve γ, we easily see that B̄r0
(x)⊂ G for any point x ∈ γ(t).

Now we set t1 = 0 and let Rl denote the reflection in R3 with respect to a plane Πl . Let

t̃2 =max{t > 0;γ(t) ∈ Sr0
(x1)}, x̃+2 = γ( t̃2)

be the ‘last’ intersection point between γ and Sr0
(x1). Then we let x̃−2 ∈ Sr0

(x1) be the
symmetric point of x̃+2 with respect to Π1. Now, let G+1 be the connected component of
G\eΠ1 containing x̃+2 , and G−1 be the connected component of G\eΠ1 containing x̃−2 . Then
let Λ+1 be the connected component of G+1 ∩R1(G

−
1 ) containing x̃+2 and Λ−1 be the connected

component of G−1 ∩ R1(G
+
1 ) containing x̃−2 . It is observed that Λ+1 = R1(Λ

−
1 ), and if we set

Λ1 = Λ
+
1 ∪ eΠ1∪Λ−1 , then Λ1 contains the closed ball B̄r0

(x1) and is symmetric with respect
to Π1. Clearly, Λ1 is an open connected set with the boundary composed of subsets on
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∂D and R1(∂D). Since D is a polyhedral scatterer with the boundary condition (3.3), in
terms of the reflection principles in Theorems 2.1-2.4, we know that at each regular point
of ∂Λ1, either

ν ×E = 0 or ν ×H = 0,

where ν is the inward normal to ∂Λ1. Next, we show that Λ1 must be bounded. Let
U ∈ R3×3 be a rotation matrix such that U−1Π1 ⊂ {x3 = c} with a constant c. Without
loss of generality, we may assume that eΠ1 is a perfect plane corresponding to E , namely,
νΠ1
×E = 0 on eΠ1. Then by the proof of Theorem 2.1 (see (2.21)), we see

U−1νΠ1
×J (y) = 0 for y ∈ U−1Π,

where J (y) = U−1E (Uy). Next, set J (y) = (J1(y), J2(y), J3(y)). Then by the proof of
Lemma 2.1, we have that J1(y) and J2(y) are odd symmetric with respect to U−1Π while
J3(y) is even symmetric with respect to U−1Π in U−1

Λ1. Hence,

J1(y) = J2(y) = 0 for y ∈ U−1Π1 ∩ U−1
Λ1;

namely,
U−1νΠ1

×J (y) = 0 for y ∈ U−1Π1 ∩ U−1
Λ1.

By using Lemma 2.3, we then deduce that νΠ1
×E (x) = 0 for x ∈ Π1∩Λ1. Next, it is noted

that ∂Λ1, ∂G±1 and R1(∂G±1 ) are bounded by our construction. If Λ1 is unbounded, then
Λ1 would contain R3\Br (x1) for some sufficiently large r > 0. Using νΠ1

×E |Λ1∩Π1
= 0 and

analytic continuation, we know that Π1\Br(x1) are parts of some perfect planes associated
with E (x;D). However Π1\Br(x1) is unbounded, so it contradicts the boundedness of any
perfect planes. Hence Λ1 is bounded and it forms a polyhedral domain in G. Now by the
unboundedness of γ, there must exist a t2 > t̃2 such that x2 = γ(t2) ∈ ∂Λ1. Noting the
fact that on ∂Λ1 either E or H takes the perfect condition, then by analytic continuation
x2 ∈ ∂Λ1 implies the existence of a perfect plane passing through x2, which we denote by
eΠ2. Clearly, we have x2 = γ(t2) ∈ PE ∪PH . Again, we assume that t2 =max{t > 0;γ(t) ∈
eΠ2}<∞.

Up to now, we see the following facts: eΠ2 is different from eΠ1, since eΠ1 intersects γ
lastly at x1; the length of γ(t) from t1 to t2 is larger than r0, i.e.,

|γ(t1 ≤ t ≤ t2)| ≥ |γ(t1 ≤ t ≤ t̃2)| ≥ r0.

Next, from the perfect plane eΠ2, by exactly the same argument as we derived the point
x2 = γ(t2) and eΠ2 with Π̃1, we can find a point x3 ∈ γ(t3) (t3 > t2) and a perfect plane eΠ3

passing through x3 such that eΠ3 is different from eΠ1 and eΠ2, and

|γ(t2 ≤ t ≤ t3)| ≥ r0.

Continuing with the above procedure, we can construct a strictly increasing sequence
{tn}∞n=1 such that for any n,

xn = γ(tn) ∈ PE ∪PH ,
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and eΠn is a perfect plane with respect to E or H passing through xn. Moreover, those
perfect planes are different from each other, and the length of γ(t) from tn to tn+1 is not
less than r0, i.e.,

|γ(tn ≤ t ≤ tn+1)| ≥ r0. (3.5)

Since both PE and PH are bounded and limt→∞ |γ(t)| = +∞, we must have limn→∞ tn =

t0 for some finite t0. Finally, because γ(t) is a C1-smooth curve, we further have

lim
n→∞ |γ(tn ≤ t ≤ tn+1)| = lim

n→∞

∫ tn+1

tn

|γ′(t)|d t = 0, (3.6)

which contradicts inequality (3.5). Thus the proof that D= eD, is completed.
Finally, we show that ΓD = eΓD and ΓN = eΓN . In fact, if ΓD 6= eΓD, then one can

easily see that there exists an open portion of ∂D and we write as Γ0, on which

ν ×E = ν ×H = 0.

Then, by the unique continuation principle (see Lemma 3.2 in [1]), we obtain E =H = 0
in G, which is certainly not true. The proof is completed. �

Next, we consider the uniqueness for partially coated polyhedral scatterers. Let D be a
polyhedral scatterer on which the following boundary condition is enforced:

ν × E=0 on ΓD,

ν ×H =0 on ΓN ,

ν × curl E− iλ(ν ×E)× ν =0 on ΓI ,

(3.7)

where ΓD, ΓN and ΓI form a Lipschitz dissection of ∂D, and λ ∈ C0,α(ΓI) satisfies that
λ ≥ λ0 with λ0 being a positive constant. If ΓI 6= ;, the scatterer is said to be partially

coated, otherwise it is non-coated. Apparently, partial coating or non-coating is an intrinsic
physical property of the underlying scatterers, which one usually does not know a priori in
practical applications. The following theorem provides a uniqueness result in determining
such coating properties for polyhedral scatterers.

Theorem 3.2. Let D and eD be two polyhedral scatterers such that D is partially coated while
eD is non-coated. Then for any fixed k0 > 0 and d0 ∈ S2, and two different polarizations p1

and p2 such that p1, p2, d0 are linearly independent, there cannot hold that

E∞(x̂;D) = E∞(x̂; eD) for x̂ ∈ S2. (3.8)

Remark 3.1. Theorem 3.2 tells that two scatterers of the different coating properties can
not produce the same far-field patterns. In this sense, the corresponding far-field patterns
can uniquely determine such coating properties. However except for such coating proper-
ties, we are still unable to completely prove or disprove the unique determination of the
underlying scatterers by finitely many incident waves.
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In order to prove Theorem 3.2, we need the following lemma.

Lemma 3.1. Let Λ⊂ G be a bounded polyhedral domain and ∂Λ= ∂Λ1∪ ∂Λ2∪ ∂Λ3 where

∂Λl , l = 1,2,3 are three disjoint relative open subsets of ∂Λ. Let (E ,H ) be the solution to

the Maxwell’s system (1.3)-(1.5) and (3.7), and suppose that ν ×E = 0 on ∂Λ1, ν ×H = 0
on ∂Λ2 and ν×curl E − iλ(ν×E )×ν = 0 (or ν×curl E+ iλ(ν×E )×ν = 0) on ∂Λ3, where

ν is the unit normal to ∂Λ directed to the interior of Λ and λ ∈ C0,α(∂Λ3) is nonnegative.

Then λ= 0 on ∂Λ3.

Proof. It suffices to consider the case where

ν × curl E − iλ(ν ×E )× ν = 0 on ∂Λ3,

while the case where

ν × curl E + iλ(ν ×E )× ν = 0 on ∂Λ3

can be treated exactly in the same manner. First, by the Maxwell’s equations (1.3) we have

curl curl E − k2E = 0 in Λ. (3.9)

Then by Green’s formula, we can deduce
∫

Λ

curl curl E · E −
∫

Λ

curl E · curl E = −
∫

∂Λ

(ν × curl E ) · E . (3.10)

Noting that ν ×E = 0 on ∂Λ1, ν × curl E = 0 on ∂Λ2 and ν × curl E − iλ(ν ×E )× ν = 0
on ∂Λ3, we have from (3.9) and (3.10) that

∫

∂Λ3

(ν × curl E ) · E = k2

∫

Λ

−|E|2+ |curl E|2, (3.11)

which further gives by the corresponding boundary condition on ∂Λ3 that

i

∫

∂Λ3

λ|ν ×E|2 = k2

∫

Λ

−|E|2+ |curl E|2. (3.12)

By taking the imaginary parts, we have from (3.12) that
∫

∂Λ3

λ|ν ×E|2 = 0. (3.13)

Since λ is non-negative, we cannot have an open portion Σ of ∂Λ3 on which λ is non-zero.
Otherwise, we easily see from (3.13) and the boundary condition on ∂Λ3 that ν ×E = 0
and ν ×H = 0 on Σ which implies by the continuation principle that E = H = 0 in G.
This is a contradiction with the boundedness of PE . Now, by the continuity of λ, it must
vanish identically on ∂Λ3. The proof is completed. �



New Reflection Principles for Maxwell’s Equations 15

Proof of Theorem 3.2. With Lemma 3.1, the proof follows basically by an argument
similar to that for Theorem 3.1. In the following, we only sketch the main difference.

By contradiction, we assume that there exist two scatterers as stated in Theorem 3.2
such that (3.8) holds. Clearly, we must have D 6= eD. Otherwise, we can easily show
that there exists an open subset on ∂D where ν × E = ν ×H = 0, which implies by the
unique continuation that E = H = 0 in G, hence leading to a contradiction. Therefore,
without loss of generality, we can assume that D 6= eD. Let Ω be the unbounded connected
component of R3\(D∪ eD). Then, we must have either

Λ := (R3\Ω)\eD 6= ; or eΛ := (R3\Ω)\D 6= ;.
Moreover, by choosing some connected components of Λ and eΛ if necessary, we may as-
sume that both Λ and eΛ are connected. Clearly, they form two bounded polyhedral do-
mains in R3.

First, we consider the case where eΛ 6= ;. Apparently, ∂ eΛ consists of two parts, one
of which lies on ∂ eD and the other part lies on ∂D. By the boundary conditions together
with the help of Rellich’s theorem, we see that on the part lying on ∂ eD, (E (eD),H (eD)) as-
sumes the boundary condition of type (3.3), while on the part lying on ∂D, (E (eD),H (eD))
assumes the boundary condition of type (3.7). Then we have by Lemma 3.1 that either

ν ×E = 0 or ν ×H = 0

at each regular point of ∂ eΛ. Hence, by analytic continuation, we easily deduce that there
exists a perfect plane in R3\eD, leading us to the same situation as that in the proof of
Theorem 3.1, where we eventually arrive at a contradiction.

Whereas for the case with Λ 6= ;, by the exactly same argument as treating the case
for eΛ 6= ;, we see that there exists a perfect plane (corresponding to E (D) or H (D)) in
G = R3\D. In the following, let us first see what will happen if we make a reflection
argument in G. Let eΠ1 be the perfect plane obtained above, and let Λ1,Λ+1 and Λ−1 be
respectively those bounded polyhedral domains in the proof of Theorem 3.1, which are
derived by making reflection with respect to Π1 in G. In terms of the reflection principles
in Theorems 2.1-2.4, we know that at all the regular points of ∂Λ1, either

ν ×E = 0, or ν ×H = 0, or ν × curl E − iη(ν ×E )× ν = 0,

where η(x) = λ(x) for x ∈ ∂D and η(x) = λ(RΠ1
x) for x ∈ RΠ1

(∂D), and ν denotes the
inward unit normal to ∂Λ1. Using Lemma 3.1 in Λ+1 and Λ−1 respectively, we further have
that the impedance boundary condition must be excluded on ∂Λ1. Hence, we can still
make use of the path argument as that in the proof of Theorem 3.1, and from eΠ1 we can
find another perfect plane eΠ2 and eventually we are led to a contradiction. This completes
the proof. �

4. Concluding remarks

Up to now, we have only considered polyhedral scatterers consisting of finitely many
pairwise disjoint polyhedra. However, almost all the previous results can be easily extended
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to scatterers of much more general type as that considered in [19].
Let us first follow [19] to prescribe exactly those general polyhedral scatterer. In the

following, a cell is defined to be the closure of an open subset of a 2-dimensional plane.
Moreover, an obstacle D is said to be a general polyhedral scatterer if it is a compact subset
of R3 with connected complement G = R3\D, and the boundary of G is the union of a
finite number of cells, i.e.,

∂G=

m⋃

j=1

C j, (4.1)

where each C j is a cell. Clearly, scatterers of this type admit the simultaneous presence of
both solid- and crack-type components. Under the assumption that there exists a unique
solution in Hl oc(curl;G)× Hl oc(curl;G) to the forward scattering problem associated with
such general obstacles, then one can show, with some natural minor modifications, that
all our previous reflection principles and uniqueness results, except for the one in Theo-
rem 3.2, still hold for such general polyhedral scatterers.
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